MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  axcc2lem Structured version   Visualization version   GIF version

Theorem axcc2lem 10337
Description: Lemma for axcc2 10338. (Contributed by Mario Carneiro, 8-Feb-2013.)
Hypotheses
Ref Expression
axcc2lem.1 𝐾 = (𝑛 ∈ ω ↦ if((𝐹𝑛) = ∅, {∅}, (𝐹𝑛)))
axcc2lem.2 𝐴 = (𝑛 ∈ ω ↦ ({𝑛} × (𝐾𝑛)))
axcc2lem.3 𝐺 = (𝑛 ∈ ω ↦ (2nd ‘(𝑓‘(𝐴𝑛))))
Assertion
Ref Expression
axcc2lem 𝑔(𝑔 Fn ω ∧ ∀𝑛 ∈ ω ((𝐹𝑛) ≠ ∅ → (𝑔𝑛) ∈ (𝐹𝑛)))
Distinct variable groups:   𝐴,𝑓,𝑛   𝑓,𝐹,𝑔   𝑔,𝐺,𝑛   𝑛,𝐾
Allowed substitution hints:   𝐴(𝑔)   𝐹(𝑛)   𝐺(𝑓)   𝐾(𝑓,𝑔)

Proof of Theorem axcc2lem
Dummy variables 𝑎 𝑧 𝑘 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fvex 6844 . . . 4 (2nd ‘(𝑓‘(𝐴𝑛))) ∈ V
2 axcc2lem.3 . . . 4 𝐺 = (𝑛 ∈ ω ↦ (2nd ‘(𝑓‘(𝐴𝑛))))
31, 2fnmpti 6632 . . 3 𝐺 Fn ω
4 vsnex 5376 . . . . . . . . . . . . . . 15 {𝑛} ∈ V
5 fvex 6844 . . . . . . . . . . . . . . 15 (𝐾𝑛) ∈ V
64, 5xpex 7695 . . . . . . . . . . . . . 14 ({𝑛} × (𝐾𝑛)) ∈ V
7 axcc2lem.2 . . . . . . . . . . . . . . 15 𝐴 = (𝑛 ∈ ω ↦ ({𝑛} × (𝐾𝑛)))
87fvmpt2 6949 . . . . . . . . . . . . . 14 ((𝑛 ∈ ω ∧ ({𝑛} × (𝐾𝑛)) ∈ V) → (𝐴𝑛) = ({𝑛} × (𝐾𝑛)))
96, 8mpan2 691 . . . . . . . . . . . . 13 (𝑛 ∈ ω → (𝐴𝑛) = ({𝑛} × (𝐾𝑛)))
10 vex 3442 . . . . . . . . . . . . . . 15 𝑛 ∈ V
1110snnz 4730 . . . . . . . . . . . . . 14 {𝑛} ≠ ∅
12 0ex 5249 . . . . . . . . . . . . . . . . . 18 ∅ ∈ V
1312snnz 4730 . . . . . . . . . . . . . . . . 17 {∅} ≠ ∅
14 iftrue 4482 . . . . . . . . . . . . . . . . . 18 ((𝐹𝑛) = ∅ → if((𝐹𝑛) = ∅, {∅}, (𝐹𝑛)) = {∅})
1514neeq1d 2989 . . . . . . . . . . . . . . . . 17 ((𝐹𝑛) = ∅ → (if((𝐹𝑛) = ∅, {∅}, (𝐹𝑛)) ≠ ∅ ↔ {∅} ≠ ∅))
1613, 15mpbiri 258 . . . . . . . . . . . . . . . 16 ((𝐹𝑛) = ∅ → if((𝐹𝑛) = ∅, {∅}, (𝐹𝑛)) ≠ ∅)
17 iffalse 4485 . . . . . . . . . . . . . . . . 17 (¬ (𝐹𝑛) = ∅ → if((𝐹𝑛) = ∅, {∅}, (𝐹𝑛)) = (𝐹𝑛))
18 neqne 2938 . . . . . . . . . . . . . . . . 17 (¬ (𝐹𝑛) = ∅ → (𝐹𝑛) ≠ ∅)
1917, 18eqnetrd 2997 . . . . . . . . . . . . . . . 16 (¬ (𝐹𝑛) = ∅ → if((𝐹𝑛) = ∅, {∅}, (𝐹𝑛)) ≠ ∅)
2016, 19pm2.61i 182 . . . . . . . . . . . . . . 15 if((𝐹𝑛) = ∅, {∅}, (𝐹𝑛)) ≠ ∅
21 p0ex 5326 . . . . . . . . . . . . . . . . . 18 {∅} ∈ V
22 fvex 6844 . . . . . . . . . . . . . . . . . 18 (𝐹𝑛) ∈ V
2321, 22ifex 4527 . . . . . . . . . . . . . . . . 17 if((𝐹𝑛) = ∅, {∅}, (𝐹𝑛)) ∈ V
24 axcc2lem.1 . . . . . . . . . . . . . . . . . 18 𝐾 = (𝑛 ∈ ω ↦ if((𝐹𝑛) = ∅, {∅}, (𝐹𝑛)))
2524fvmpt2 6949 . . . . . . . . . . . . . . . . 17 ((𝑛 ∈ ω ∧ if((𝐹𝑛) = ∅, {∅}, (𝐹𝑛)) ∈ V) → (𝐾𝑛) = if((𝐹𝑛) = ∅, {∅}, (𝐹𝑛)))
2623, 25mpan2 691 . . . . . . . . . . . . . . . 16 (𝑛 ∈ ω → (𝐾𝑛) = if((𝐹𝑛) = ∅, {∅}, (𝐹𝑛)))
2726neeq1d 2989 . . . . . . . . . . . . . . 15 (𝑛 ∈ ω → ((𝐾𝑛) ≠ ∅ ↔ if((𝐹𝑛) = ∅, {∅}, (𝐹𝑛)) ≠ ∅))
2820, 27mpbiri 258 . . . . . . . . . . . . . 14 (𝑛 ∈ ω → (𝐾𝑛) ≠ ∅)
29 xpnz 6114 . . . . . . . . . . . . . . 15 (({𝑛} ≠ ∅ ∧ (𝐾𝑛) ≠ ∅) ↔ ({𝑛} × (𝐾𝑛)) ≠ ∅)
3029biimpi 216 . . . . . . . . . . . . . 14 (({𝑛} ≠ ∅ ∧ (𝐾𝑛) ≠ ∅) → ({𝑛} × (𝐾𝑛)) ≠ ∅)
3111, 28, 30sylancr 587 . . . . . . . . . . . . 13 (𝑛 ∈ ω → ({𝑛} × (𝐾𝑛)) ≠ ∅)
329, 31eqnetrd 2997 . . . . . . . . . . . 12 (𝑛 ∈ ω → (𝐴𝑛) ≠ ∅)
336, 7fnmpti 6632 . . . . . . . . . . . . . 14 𝐴 Fn ω
34 fnfvelrn 7022 . . . . . . . . . . . . . 14 ((𝐴 Fn ω ∧ 𝑛 ∈ ω) → (𝐴𝑛) ∈ ran 𝐴)
3533, 34mpan 690 . . . . . . . . . . . . 13 (𝑛 ∈ ω → (𝐴𝑛) ∈ ran 𝐴)
36 neeq1 2992 . . . . . . . . . . . . . . 15 (𝑧 = (𝐴𝑛) → (𝑧 ≠ ∅ ↔ (𝐴𝑛) ≠ ∅))
37 fveq2 6831 . . . . . . . . . . . . . . . 16 (𝑧 = (𝐴𝑛) → (𝑓𝑧) = (𝑓‘(𝐴𝑛)))
38 id 22 . . . . . . . . . . . . . . . 16 (𝑧 = (𝐴𝑛) → 𝑧 = (𝐴𝑛))
3937, 38eleq12d 2827 . . . . . . . . . . . . . . 15 (𝑧 = (𝐴𝑛) → ((𝑓𝑧) ∈ 𝑧 ↔ (𝑓‘(𝐴𝑛)) ∈ (𝐴𝑛)))
4036, 39imbi12d 344 . . . . . . . . . . . . . 14 (𝑧 = (𝐴𝑛) → ((𝑧 ≠ ∅ → (𝑓𝑧) ∈ 𝑧) ↔ ((𝐴𝑛) ≠ ∅ → (𝑓‘(𝐴𝑛)) ∈ (𝐴𝑛))))
4140rspccv 3571 . . . . . . . . . . . . 13 (∀𝑧 ∈ ran 𝐴(𝑧 ≠ ∅ → (𝑓𝑧) ∈ 𝑧) → ((𝐴𝑛) ∈ ran 𝐴 → ((𝐴𝑛) ≠ ∅ → (𝑓‘(𝐴𝑛)) ∈ (𝐴𝑛))))
4235, 41syl5 34 . . . . . . . . . . . 12 (∀𝑧 ∈ ran 𝐴(𝑧 ≠ ∅ → (𝑓𝑧) ∈ 𝑧) → (𝑛 ∈ ω → ((𝐴𝑛) ≠ ∅ → (𝑓‘(𝐴𝑛)) ∈ (𝐴𝑛))))
4332, 42mpdi 45 . . . . . . . . . . 11 (∀𝑧 ∈ ran 𝐴(𝑧 ≠ ∅ → (𝑓𝑧) ∈ 𝑧) → (𝑛 ∈ ω → (𝑓‘(𝐴𝑛)) ∈ (𝐴𝑛)))
4443impcom 407 . . . . . . . . . 10 ((𝑛 ∈ ω ∧ ∀𝑧 ∈ ran 𝐴(𝑧 ≠ ∅ → (𝑓𝑧) ∈ 𝑧)) → (𝑓‘(𝐴𝑛)) ∈ (𝐴𝑛))
459eleq2d 2819 . . . . . . . . . . 11 (𝑛 ∈ ω → ((𝑓‘(𝐴𝑛)) ∈ (𝐴𝑛) ↔ (𝑓‘(𝐴𝑛)) ∈ ({𝑛} × (𝐾𝑛))))
4645adantr 480 . . . . . . . . . 10 ((𝑛 ∈ ω ∧ ∀𝑧 ∈ ran 𝐴(𝑧 ≠ ∅ → (𝑓𝑧) ∈ 𝑧)) → ((𝑓‘(𝐴𝑛)) ∈ (𝐴𝑛) ↔ (𝑓‘(𝐴𝑛)) ∈ ({𝑛} × (𝐾𝑛))))
4744, 46mpbid 232 . . . . . . . . 9 ((𝑛 ∈ ω ∧ ∀𝑧 ∈ ran 𝐴(𝑧 ≠ ∅ → (𝑓𝑧) ∈ 𝑧)) → (𝑓‘(𝐴𝑛)) ∈ ({𝑛} × (𝐾𝑛)))
48 xp2nd 7963 . . . . . . . . 9 ((𝑓‘(𝐴𝑛)) ∈ ({𝑛} × (𝐾𝑛)) → (2nd ‘(𝑓‘(𝐴𝑛))) ∈ (𝐾𝑛))
4947, 48syl 17 . . . . . . . 8 ((𝑛 ∈ ω ∧ ∀𝑧 ∈ ran 𝐴(𝑧 ≠ ∅ → (𝑓𝑧) ∈ 𝑧)) → (2nd ‘(𝑓‘(𝐴𝑛))) ∈ (𝐾𝑛))
50493adant3 1132 . . . . . . 7 ((𝑛 ∈ ω ∧ ∀𝑧 ∈ ran 𝐴(𝑧 ≠ ∅ → (𝑓𝑧) ∈ 𝑧) ∧ (𝐹𝑛) ≠ ∅) → (2nd ‘(𝑓‘(𝐴𝑛))) ∈ (𝐾𝑛))
512fvmpt2 6949 . . . . . . . . . 10 ((𝑛 ∈ ω ∧ (2nd ‘(𝑓‘(𝐴𝑛))) ∈ V) → (𝐺𝑛) = (2nd ‘(𝑓‘(𝐴𝑛))))
521, 51mpan2 691 . . . . . . . . 9 (𝑛 ∈ ω → (𝐺𝑛) = (2nd ‘(𝑓‘(𝐴𝑛))))
53523ad2ant1 1133 . . . . . . . 8 ((𝑛 ∈ ω ∧ ∀𝑧 ∈ ran 𝐴(𝑧 ≠ ∅ → (𝑓𝑧) ∈ 𝑧) ∧ (𝐹𝑛) ≠ ∅) → (𝐺𝑛) = (2nd ‘(𝑓‘(𝐴𝑛))))
5453eqcomd 2739 . . . . . . 7 ((𝑛 ∈ ω ∧ ∀𝑧 ∈ ran 𝐴(𝑧 ≠ ∅ → (𝑓𝑧) ∈ 𝑧) ∧ (𝐹𝑛) ≠ ∅) → (2nd ‘(𝑓‘(𝐴𝑛))) = (𝐺𝑛))
55263ad2ant1 1133 . . . . . . . 8 ((𝑛 ∈ ω ∧ ∀𝑧 ∈ ran 𝐴(𝑧 ≠ ∅ → (𝑓𝑧) ∈ 𝑧) ∧ (𝐹𝑛) ≠ ∅) → (𝐾𝑛) = if((𝐹𝑛) = ∅, {∅}, (𝐹𝑛)))
56 ifnefalse 4488 . . . . . . . . 9 ((𝐹𝑛) ≠ ∅ → if((𝐹𝑛) = ∅, {∅}, (𝐹𝑛)) = (𝐹𝑛))
57563ad2ant3 1135 . . . . . . . 8 ((𝑛 ∈ ω ∧ ∀𝑧 ∈ ran 𝐴(𝑧 ≠ ∅ → (𝑓𝑧) ∈ 𝑧) ∧ (𝐹𝑛) ≠ ∅) → if((𝐹𝑛) = ∅, {∅}, (𝐹𝑛)) = (𝐹𝑛))
5855, 57eqtrd 2768 . . . . . . 7 ((𝑛 ∈ ω ∧ ∀𝑧 ∈ ran 𝐴(𝑧 ≠ ∅ → (𝑓𝑧) ∈ 𝑧) ∧ (𝐹𝑛) ≠ ∅) → (𝐾𝑛) = (𝐹𝑛))
5950, 54, 583eltr3d 2847 . . . . . 6 ((𝑛 ∈ ω ∧ ∀𝑧 ∈ ran 𝐴(𝑧 ≠ ∅ → (𝑓𝑧) ∈ 𝑧) ∧ (𝐹𝑛) ≠ ∅) → (𝐺𝑛) ∈ (𝐹𝑛))
60593expia 1121 . . . . 5 ((𝑛 ∈ ω ∧ ∀𝑧 ∈ ran 𝐴(𝑧 ≠ ∅ → (𝑓𝑧) ∈ 𝑧)) → ((𝐹𝑛) ≠ ∅ → (𝐺𝑛) ∈ (𝐹𝑛)))
6160expcom 413 . . . 4 (∀𝑧 ∈ ran 𝐴(𝑧 ≠ ∅ → (𝑓𝑧) ∈ 𝑧) → (𝑛 ∈ ω → ((𝐹𝑛) ≠ ∅ → (𝐺𝑛) ∈ (𝐹𝑛))))
6261ralrimiv 3125 . . 3 (∀𝑧 ∈ ran 𝐴(𝑧 ≠ ∅ → (𝑓𝑧) ∈ 𝑧) → ∀𝑛 ∈ ω ((𝐹𝑛) ≠ ∅ → (𝐺𝑛) ∈ (𝐹𝑛)))
63 omex 9543 . . . . 5 ω ∈ V
64 fnex 7160 . . . . 5 ((𝐺 Fn ω ∧ ω ∈ V) → 𝐺 ∈ V)
653, 63, 64mp2an 692 . . . 4 𝐺 ∈ V
66 fneq1 6580 . . . . 5 (𝑔 = 𝐺 → (𝑔 Fn ω ↔ 𝐺 Fn ω))
67 fveq1 6830 . . . . . . . 8 (𝑔 = 𝐺 → (𝑔𝑛) = (𝐺𝑛))
6867eleq1d 2818 . . . . . . 7 (𝑔 = 𝐺 → ((𝑔𝑛) ∈ (𝐹𝑛) ↔ (𝐺𝑛) ∈ (𝐹𝑛)))
6968imbi2d 340 . . . . . 6 (𝑔 = 𝐺 → (((𝐹𝑛) ≠ ∅ → (𝑔𝑛) ∈ (𝐹𝑛)) ↔ ((𝐹𝑛) ≠ ∅ → (𝐺𝑛) ∈ (𝐹𝑛))))
7069ralbidv 3157 . . . . 5 (𝑔 = 𝐺 → (∀𝑛 ∈ ω ((𝐹𝑛) ≠ ∅ → (𝑔𝑛) ∈ (𝐹𝑛)) ↔ ∀𝑛 ∈ ω ((𝐹𝑛) ≠ ∅ → (𝐺𝑛) ∈ (𝐹𝑛))))
7166, 70anbi12d 632 . . . 4 (𝑔 = 𝐺 → ((𝑔 Fn ω ∧ ∀𝑛 ∈ ω ((𝐹𝑛) ≠ ∅ → (𝑔𝑛) ∈ (𝐹𝑛))) ↔ (𝐺 Fn ω ∧ ∀𝑛 ∈ ω ((𝐹𝑛) ≠ ∅ → (𝐺𝑛) ∈ (𝐹𝑛)))))
7265, 71spcev 3558 . . 3 ((𝐺 Fn ω ∧ ∀𝑛 ∈ ω ((𝐹𝑛) ≠ ∅ → (𝐺𝑛) ∈ (𝐹𝑛))) → ∃𝑔(𝑔 Fn ω ∧ ∀𝑛 ∈ ω ((𝐹𝑛) ≠ ∅ → (𝑔𝑛) ∈ (𝐹𝑛))))
733, 62, 72sylancr 587 . 2 (∀𝑧 ∈ ran 𝐴(𝑧 ≠ ∅ → (𝑓𝑧) ∈ 𝑧) → ∃𝑔(𝑔 Fn ω ∧ ∀𝑛 ∈ ω ((𝐹𝑛) ≠ ∅ → (𝑔𝑛) ∈ (𝐹𝑛))))
746a1i 11 . . . . . 6 ((ω ∈ V ∧ 𝑛 ∈ ω) → ({𝑛} × (𝐾𝑛)) ∈ V)
7574, 7fmptd 7056 . . . . 5 (ω ∈ V → 𝐴:ω⟶V)
7663, 75ax-mp 5 . . . 4 𝐴:ω⟶V
77 sneq 4587 . . . . . . . . . 10 (𝑛 = 𝑘 → {𝑛} = {𝑘})
78 fveq2 6831 . . . . . . . . . 10 (𝑛 = 𝑘 → (𝐾𝑛) = (𝐾𝑘))
7977, 78xpeq12d 5652 . . . . . . . . 9 (𝑛 = 𝑘 → ({𝑛} × (𝐾𝑛)) = ({𝑘} × (𝐾𝑘)))
8079, 7, 6fvmpt3i 6943 . . . . . . . 8 (𝑘 ∈ ω → (𝐴𝑘) = ({𝑘} × (𝐾𝑘)))
8180adantl 481 . . . . . . 7 ((𝑛 ∈ ω ∧ 𝑘 ∈ ω) → (𝐴𝑘) = ({𝑘} × (𝐾𝑘)))
8281eqeq2d 2744 . . . . . 6 ((𝑛 ∈ ω ∧ 𝑘 ∈ ω) → ((𝐴𝑛) = (𝐴𝑘) ↔ (𝐴𝑛) = ({𝑘} × (𝐾𝑘))))
839adantr 480 . . . . . . . 8 ((𝑛 ∈ ω ∧ 𝑘 ∈ ω) → (𝐴𝑛) = ({𝑛} × (𝐾𝑛)))
8483eqeq1d 2735 . . . . . . 7 ((𝑛 ∈ ω ∧ 𝑘 ∈ ω) → ((𝐴𝑛) = ({𝑘} × (𝐾𝑘)) ↔ ({𝑛} × (𝐾𝑛)) = ({𝑘} × (𝐾𝑘))))
85 xp11 6130 . . . . . . . . . 10 (({𝑛} ≠ ∅ ∧ (𝐾𝑛) ≠ ∅) → (({𝑛} × (𝐾𝑛)) = ({𝑘} × (𝐾𝑘)) ↔ ({𝑛} = {𝑘} ∧ (𝐾𝑛) = (𝐾𝑘))))
8611, 28, 85sylancr 587 . . . . . . . . 9 (𝑛 ∈ ω → (({𝑛} × (𝐾𝑛)) = ({𝑘} × (𝐾𝑘)) ↔ ({𝑛} = {𝑘} ∧ (𝐾𝑛) = (𝐾𝑘))))
8710sneqr 4793 . . . . . . . . . 10 ({𝑛} = {𝑘} → 𝑛 = 𝑘)
8887adantr 480 . . . . . . . . 9 (({𝑛} = {𝑘} ∧ (𝐾𝑛) = (𝐾𝑘)) → 𝑛 = 𝑘)
8986, 88biimtrdi 253 . . . . . . . 8 (𝑛 ∈ ω → (({𝑛} × (𝐾𝑛)) = ({𝑘} × (𝐾𝑘)) → 𝑛 = 𝑘))
9089adantr 480 . . . . . . 7 ((𝑛 ∈ ω ∧ 𝑘 ∈ ω) → (({𝑛} × (𝐾𝑛)) = ({𝑘} × (𝐾𝑘)) → 𝑛 = 𝑘))
9184, 90sylbid 240 . . . . . 6 ((𝑛 ∈ ω ∧ 𝑘 ∈ ω) → ((𝐴𝑛) = ({𝑘} × (𝐾𝑘)) → 𝑛 = 𝑘))
9282, 91sylbid 240 . . . . 5 ((𝑛 ∈ ω ∧ 𝑘 ∈ ω) → ((𝐴𝑛) = (𝐴𝑘) → 𝑛 = 𝑘))
9392rgen2 3174 . . . 4 𝑛 ∈ ω ∀𝑘 ∈ ω ((𝐴𝑛) = (𝐴𝑘) → 𝑛 = 𝑘)
94 dff13 7197 . . . 4 (𝐴:ω–1-1→V ↔ (𝐴:ω⟶V ∧ ∀𝑛 ∈ ω ∀𝑘 ∈ ω ((𝐴𝑛) = (𝐴𝑘) → 𝑛 = 𝑘)))
9576, 93, 94mpbir2an 711 . . 3 𝐴:ω–1-1→V
96 f1f1orn 6782 . . . 4 (𝐴:ω–1-1→V → 𝐴:ω–1-1-onto→ran 𝐴)
9763f1oen 8904 . . . 4 (𝐴:ω–1-1-onto→ran 𝐴 → ω ≈ ran 𝐴)
98 ensym 8935 . . . 4 (ω ≈ ran 𝐴 → ran 𝐴 ≈ ω)
9996, 97, 983syl 18 . . 3 (𝐴:ω–1-1→V → ran 𝐴 ≈ ω)
1007rneqi 5884 . . . . 5 ran 𝐴 = ran (𝑛 ∈ ω ↦ ({𝑛} × (𝐾𝑛)))
101 dmmptg 6197 . . . . . . . 8 (∀𝑛 ∈ ω ({𝑛} × (𝐾𝑛)) ∈ V → dom (𝑛 ∈ ω ↦ ({𝑛} × (𝐾𝑛))) = ω)
1026a1i 11 . . . . . . . 8 (𝑛 ∈ ω → ({𝑛} × (𝐾𝑛)) ∈ V)
103101, 102mprg 3055 . . . . . . 7 dom (𝑛 ∈ ω ↦ ({𝑛} × (𝐾𝑛))) = ω
104103, 63eqeltri 2829 . . . . . 6 dom (𝑛 ∈ ω ↦ ({𝑛} × (𝐾𝑛))) ∈ V
105 funmpt 6527 . . . . . 6 Fun (𝑛 ∈ ω ↦ ({𝑛} × (𝐾𝑛)))
106 funrnex 7895 . . . . . 6 (dom (𝑛 ∈ ω ↦ ({𝑛} × (𝐾𝑛))) ∈ V → (Fun (𝑛 ∈ ω ↦ ({𝑛} × (𝐾𝑛))) → ran (𝑛 ∈ ω ↦ ({𝑛} × (𝐾𝑛))) ∈ V))
107104, 105, 106mp2 9 . . . . 5 ran (𝑛 ∈ ω ↦ ({𝑛} × (𝐾𝑛))) ∈ V
108100, 107eqeltri 2829 . . . 4 ran 𝐴 ∈ V
109 breq1 5098 . . . . 5 (𝑎 = ran 𝐴 → (𝑎 ≈ ω ↔ ran 𝐴 ≈ ω))
110 raleq 3291 . . . . . 6 (𝑎 = ran 𝐴 → (∀𝑧𝑎 (𝑧 ≠ ∅ → (𝑓𝑧) ∈ 𝑧) ↔ ∀𝑧 ∈ ran 𝐴(𝑧 ≠ ∅ → (𝑓𝑧) ∈ 𝑧)))
111110exbidv 1922 . . . . 5 (𝑎 = ran 𝐴 → (∃𝑓𝑧𝑎 (𝑧 ≠ ∅ → (𝑓𝑧) ∈ 𝑧) ↔ ∃𝑓𝑧 ∈ ran 𝐴(𝑧 ≠ ∅ → (𝑓𝑧) ∈ 𝑧)))
112109, 111imbi12d 344 . . . 4 (𝑎 = ran 𝐴 → ((𝑎 ≈ ω → ∃𝑓𝑧𝑎 (𝑧 ≠ ∅ → (𝑓𝑧) ∈ 𝑧)) ↔ (ran 𝐴 ≈ ω → ∃𝑓𝑧 ∈ ran 𝐴(𝑧 ≠ ∅ → (𝑓𝑧) ∈ 𝑧))))
113 ax-cc 10336 . . . 4 (𝑎 ≈ ω → ∃𝑓𝑧𝑎 (𝑧 ≠ ∅ → (𝑓𝑧) ∈ 𝑧))
114108, 112, 113vtocl 3513 . . 3 (ran 𝐴 ≈ ω → ∃𝑓𝑧 ∈ ran 𝐴(𝑧 ≠ ∅ → (𝑓𝑧) ∈ 𝑧))
11595, 99, 114mp2b 10 . 2 𝑓𝑧 ∈ ran 𝐴(𝑧 ≠ ∅ → (𝑓𝑧) ∈ 𝑧)
11673, 115exlimiiv 1932 1 𝑔(𝑔 Fn ω ∧ ∀𝑛 ∈ ω ((𝐹𝑛) ≠ ∅ → (𝑔𝑛) ∈ (𝐹𝑛)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3a 1086   = wceq 1541  wex 1780  wcel 2113  wne 2930  wral 3049  Vcvv 3438  c0 4284  ifcif 4476  {csn 4577   class class class wbr 5095  cmpt 5176   × cxp 5619  dom cdm 5621  ran crn 5622  Fun wfun 6483   Fn wfn 6484  wf 6485  1-1wf1 6486  1-1-ontowf1o 6488  cfv 6489  ωcom 7805  2nd c2nd 7929  cen 8875
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7677  ax-inf2 9541  ax-cc 10336
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2883  df-ne 2931  df-ral 3050  df-rex 3059  df-reu 3349  df-rab 3398  df-v 3440  df-sbc 3739  df-csb 3848  df-dif 3902  df-un 3904  df-in 3906  df-ss 3916  df-pss 3919  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4861  df-iun 4945  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5516  df-eprel 5521  df-po 5529  df-so 5530  df-fr 5574  df-we 5576  df-xp 5627  df-rel 5628  df-cnv 5629  df-co 5630  df-dm 5631  df-rn 5632  df-res 5633  df-ima 5634  df-ord 6317  df-on 6318  df-lim 6319  df-suc 6320  df-iota 6445  df-fun 6491  df-fn 6492  df-f 6493  df-f1 6494  df-fo 6495  df-f1o 6496  df-fv 6497  df-om 7806  df-2nd 7931  df-er 8631  df-en 8879
This theorem is referenced by:  axcc2  10338
  Copyright terms: Public domain W3C validator