Step | Hyp | Ref
| Expression |
1 | | fvex 6769 |
. . . 4
⊢
(2nd ‘(𝑓‘(𝐴‘𝑛))) ∈ V |
2 | | axcc2lem.3 |
. . . 4
⊢ 𝐺 = (𝑛 ∈ ω ↦ (2nd
‘(𝑓‘(𝐴‘𝑛)))) |
3 | 1, 2 | fnmpti 6560 |
. . 3
⊢ 𝐺 Fn ω |
4 | | snex 5349 |
. . . . . . . . . . . . . . 15
⊢ {𝑛} ∈ V |
5 | | fvex 6769 |
. . . . . . . . . . . . . . 15
⊢ (𝐾‘𝑛) ∈ V |
6 | 4, 5 | xpex 7581 |
. . . . . . . . . . . . . 14
⊢ ({𝑛} × (𝐾‘𝑛)) ∈ V |
7 | | axcc2lem.2 |
. . . . . . . . . . . . . . 15
⊢ 𝐴 = (𝑛 ∈ ω ↦ ({𝑛} × (𝐾‘𝑛))) |
8 | 7 | fvmpt2 6868 |
. . . . . . . . . . . . . 14
⊢ ((𝑛 ∈ ω ∧ ({𝑛} × (𝐾‘𝑛)) ∈ V) → (𝐴‘𝑛) = ({𝑛} × (𝐾‘𝑛))) |
9 | 6, 8 | mpan2 687 |
. . . . . . . . . . . . 13
⊢ (𝑛 ∈ ω → (𝐴‘𝑛) = ({𝑛} × (𝐾‘𝑛))) |
10 | | vex 3426 |
. . . . . . . . . . . . . . 15
⊢ 𝑛 ∈ V |
11 | 10 | snnz 4709 |
. . . . . . . . . . . . . 14
⊢ {𝑛} ≠ ∅ |
12 | | 0ex 5226 |
. . . . . . . . . . . . . . . . . 18
⊢ ∅
∈ V |
13 | 12 | snnz 4709 |
. . . . . . . . . . . . . . . . 17
⊢ {∅}
≠ ∅ |
14 | | iftrue 4462 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝐹‘𝑛) = ∅ → if((𝐹‘𝑛) = ∅, {∅}, (𝐹‘𝑛)) = {∅}) |
15 | 14 | neeq1d 3002 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝐹‘𝑛) = ∅ → (if((𝐹‘𝑛) = ∅, {∅}, (𝐹‘𝑛)) ≠ ∅ ↔ {∅} ≠
∅)) |
16 | 13, 15 | mpbiri 257 |
. . . . . . . . . . . . . . . 16
⊢ ((𝐹‘𝑛) = ∅ → if((𝐹‘𝑛) = ∅, {∅}, (𝐹‘𝑛)) ≠ ∅) |
17 | | iffalse 4465 |
. . . . . . . . . . . . . . . . 17
⊢ (¬
(𝐹‘𝑛) = ∅ → if((𝐹‘𝑛) = ∅, {∅}, (𝐹‘𝑛)) = (𝐹‘𝑛)) |
18 | | neqne 2950 |
. . . . . . . . . . . . . . . . 17
⊢ (¬
(𝐹‘𝑛) = ∅ → (𝐹‘𝑛) ≠ ∅) |
19 | 17, 18 | eqnetrd 3010 |
. . . . . . . . . . . . . . . 16
⊢ (¬
(𝐹‘𝑛) = ∅ → if((𝐹‘𝑛) = ∅, {∅}, (𝐹‘𝑛)) ≠ ∅) |
20 | 16, 19 | pm2.61i 182 |
. . . . . . . . . . . . . . 15
⊢ if((𝐹‘𝑛) = ∅, {∅}, (𝐹‘𝑛)) ≠ ∅ |
21 | | p0ex 5302 |
. . . . . . . . . . . . . . . . . 18
⊢ {∅}
∈ V |
22 | | fvex 6769 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝐹‘𝑛) ∈ V |
23 | 21, 22 | ifex 4506 |
. . . . . . . . . . . . . . . . 17
⊢ if((𝐹‘𝑛) = ∅, {∅}, (𝐹‘𝑛)) ∈ V |
24 | | axcc2lem.1 |
. . . . . . . . . . . . . . . . . 18
⊢ 𝐾 = (𝑛 ∈ ω ↦ if((𝐹‘𝑛) = ∅, {∅}, (𝐹‘𝑛))) |
25 | 24 | fvmpt2 6868 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑛 ∈ ω ∧ if((𝐹‘𝑛) = ∅, {∅}, (𝐹‘𝑛)) ∈ V) → (𝐾‘𝑛) = if((𝐹‘𝑛) = ∅, {∅}, (𝐹‘𝑛))) |
26 | 23, 25 | mpan2 687 |
. . . . . . . . . . . . . . . 16
⊢ (𝑛 ∈ ω → (𝐾‘𝑛) = if((𝐹‘𝑛) = ∅, {∅}, (𝐹‘𝑛))) |
27 | 26 | neeq1d 3002 |
. . . . . . . . . . . . . . 15
⊢ (𝑛 ∈ ω → ((𝐾‘𝑛) ≠ ∅ ↔ if((𝐹‘𝑛) = ∅, {∅}, (𝐹‘𝑛)) ≠ ∅)) |
28 | 20, 27 | mpbiri 257 |
. . . . . . . . . . . . . 14
⊢ (𝑛 ∈ ω → (𝐾‘𝑛) ≠ ∅) |
29 | | xpnz 6051 |
. . . . . . . . . . . . . . 15
⊢ (({𝑛} ≠ ∅ ∧ (𝐾‘𝑛) ≠ ∅) ↔ ({𝑛} × (𝐾‘𝑛)) ≠ ∅) |
30 | 29 | biimpi 215 |
. . . . . . . . . . . . . 14
⊢ (({𝑛} ≠ ∅ ∧ (𝐾‘𝑛) ≠ ∅) → ({𝑛} × (𝐾‘𝑛)) ≠ ∅) |
31 | 11, 28, 30 | sylancr 586 |
. . . . . . . . . . . . 13
⊢ (𝑛 ∈ ω → ({𝑛} × (𝐾‘𝑛)) ≠ ∅) |
32 | 9, 31 | eqnetrd 3010 |
. . . . . . . . . . . 12
⊢ (𝑛 ∈ ω → (𝐴‘𝑛) ≠ ∅) |
33 | 6, 7 | fnmpti 6560 |
. . . . . . . . . . . . . 14
⊢ 𝐴 Fn ω |
34 | | fnfvelrn 6940 |
. . . . . . . . . . . . . 14
⊢ ((𝐴 Fn ω ∧ 𝑛 ∈ ω) → (𝐴‘𝑛) ∈ ran 𝐴) |
35 | 33, 34 | mpan 686 |
. . . . . . . . . . . . 13
⊢ (𝑛 ∈ ω → (𝐴‘𝑛) ∈ ran 𝐴) |
36 | | neeq1 3005 |
. . . . . . . . . . . . . . 15
⊢ (𝑧 = (𝐴‘𝑛) → (𝑧 ≠ ∅ ↔ (𝐴‘𝑛) ≠ ∅)) |
37 | | fveq2 6756 |
. . . . . . . . . . . . . . . 16
⊢ (𝑧 = (𝐴‘𝑛) → (𝑓‘𝑧) = (𝑓‘(𝐴‘𝑛))) |
38 | | id 22 |
. . . . . . . . . . . . . . . 16
⊢ (𝑧 = (𝐴‘𝑛) → 𝑧 = (𝐴‘𝑛)) |
39 | 37, 38 | eleq12d 2833 |
. . . . . . . . . . . . . . 15
⊢ (𝑧 = (𝐴‘𝑛) → ((𝑓‘𝑧) ∈ 𝑧 ↔ (𝑓‘(𝐴‘𝑛)) ∈ (𝐴‘𝑛))) |
40 | 36, 39 | imbi12d 344 |
. . . . . . . . . . . . . 14
⊢ (𝑧 = (𝐴‘𝑛) → ((𝑧 ≠ ∅ → (𝑓‘𝑧) ∈ 𝑧) ↔ ((𝐴‘𝑛) ≠ ∅ → (𝑓‘(𝐴‘𝑛)) ∈ (𝐴‘𝑛)))) |
41 | 40 | rspccv 3549 |
. . . . . . . . . . . . 13
⊢
(∀𝑧 ∈
ran 𝐴(𝑧 ≠ ∅ → (𝑓‘𝑧) ∈ 𝑧) → ((𝐴‘𝑛) ∈ ran 𝐴 → ((𝐴‘𝑛) ≠ ∅ → (𝑓‘(𝐴‘𝑛)) ∈ (𝐴‘𝑛)))) |
42 | 35, 41 | syl5 34 |
. . . . . . . . . . . 12
⊢
(∀𝑧 ∈
ran 𝐴(𝑧 ≠ ∅ → (𝑓‘𝑧) ∈ 𝑧) → (𝑛 ∈ ω → ((𝐴‘𝑛) ≠ ∅ → (𝑓‘(𝐴‘𝑛)) ∈ (𝐴‘𝑛)))) |
43 | 32, 42 | mpdi 45 |
. . . . . . . . . . 11
⊢
(∀𝑧 ∈
ran 𝐴(𝑧 ≠ ∅ → (𝑓‘𝑧) ∈ 𝑧) → (𝑛 ∈ ω → (𝑓‘(𝐴‘𝑛)) ∈ (𝐴‘𝑛))) |
44 | 43 | impcom 407 |
. . . . . . . . . 10
⊢ ((𝑛 ∈ ω ∧
∀𝑧 ∈ ran 𝐴(𝑧 ≠ ∅ → (𝑓‘𝑧) ∈ 𝑧)) → (𝑓‘(𝐴‘𝑛)) ∈ (𝐴‘𝑛)) |
45 | 9 | eleq2d 2824 |
. . . . . . . . . . 11
⊢ (𝑛 ∈ ω → ((𝑓‘(𝐴‘𝑛)) ∈ (𝐴‘𝑛) ↔ (𝑓‘(𝐴‘𝑛)) ∈ ({𝑛} × (𝐾‘𝑛)))) |
46 | 45 | adantr 480 |
. . . . . . . . . 10
⊢ ((𝑛 ∈ ω ∧
∀𝑧 ∈ ran 𝐴(𝑧 ≠ ∅ → (𝑓‘𝑧) ∈ 𝑧)) → ((𝑓‘(𝐴‘𝑛)) ∈ (𝐴‘𝑛) ↔ (𝑓‘(𝐴‘𝑛)) ∈ ({𝑛} × (𝐾‘𝑛)))) |
47 | 44, 46 | mpbid 231 |
. . . . . . . . 9
⊢ ((𝑛 ∈ ω ∧
∀𝑧 ∈ ran 𝐴(𝑧 ≠ ∅ → (𝑓‘𝑧) ∈ 𝑧)) → (𝑓‘(𝐴‘𝑛)) ∈ ({𝑛} × (𝐾‘𝑛))) |
48 | | xp2nd 7837 |
. . . . . . . . 9
⊢ ((𝑓‘(𝐴‘𝑛)) ∈ ({𝑛} × (𝐾‘𝑛)) → (2nd ‘(𝑓‘(𝐴‘𝑛))) ∈ (𝐾‘𝑛)) |
49 | 47, 48 | syl 17 |
. . . . . . . 8
⊢ ((𝑛 ∈ ω ∧
∀𝑧 ∈ ran 𝐴(𝑧 ≠ ∅ → (𝑓‘𝑧) ∈ 𝑧)) → (2nd ‘(𝑓‘(𝐴‘𝑛))) ∈ (𝐾‘𝑛)) |
50 | 49 | 3adant3 1130 |
. . . . . . 7
⊢ ((𝑛 ∈ ω ∧
∀𝑧 ∈ ran 𝐴(𝑧 ≠ ∅ → (𝑓‘𝑧) ∈ 𝑧) ∧ (𝐹‘𝑛) ≠ ∅) → (2nd
‘(𝑓‘(𝐴‘𝑛))) ∈ (𝐾‘𝑛)) |
51 | 2 | fvmpt2 6868 |
. . . . . . . . . 10
⊢ ((𝑛 ∈ ω ∧
(2nd ‘(𝑓‘(𝐴‘𝑛))) ∈ V) → (𝐺‘𝑛) = (2nd ‘(𝑓‘(𝐴‘𝑛)))) |
52 | 1, 51 | mpan2 687 |
. . . . . . . . 9
⊢ (𝑛 ∈ ω → (𝐺‘𝑛) = (2nd ‘(𝑓‘(𝐴‘𝑛)))) |
53 | 52 | 3ad2ant1 1131 |
. . . . . . . 8
⊢ ((𝑛 ∈ ω ∧
∀𝑧 ∈ ran 𝐴(𝑧 ≠ ∅ → (𝑓‘𝑧) ∈ 𝑧) ∧ (𝐹‘𝑛) ≠ ∅) → (𝐺‘𝑛) = (2nd ‘(𝑓‘(𝐴‘𝑛)))) |
54 | 53 | eqcomd 2744 |
. . . . . . 7
⊢ ((𝑛 ∈ ω ∧
∀𝑧 ∈ ran 𝐴(𝑧 ≠ ∅ → (𝑓‘𝑧) ∈ 𝑧) ∧ (𝐹‘𝑛) ≠ ∅) → (2nd
‘(𝑓‘(𝐴‘𝑛))) = (𝐺‘𝑛)) |
55 | 26 | 3ad2ant1 1131 |
. . . . . . . 8
⊢ ((𝑛 ∈ ω ∧
∀𝑧 ∈ ran 𝐴(𝑧 ≠ ∅ → (𝑓‘𝑧) ∈ 𝑧) ∧ (𝐹‘𝑛) ≠ ∅) → (𝐾‘𝑛) = if((𝐹‘𝑛) = ∅, {∅}, (𝐹‘𝑛))) |
56 | | ifnefalse 4468 |
. . . . . . . . 9
⊢ ((𝐹‘𝑛) ≠ ∅ → if((𝐹‘𝑛) = ∅, {∅}, (𝐹‘𝑛)) = (𝐹‘𝑛)) |
57 | 56 | 3ad2ant3 1133 |
. . . . . . . 8
⊢ ((𝑛 ∈ ω ∧
∀𝑧 ∈ ran 𝐴(𝑧 ≠ ∅ → (𝑓‘𝑧) ∈ 𝑧) ∧ (𝐹‘𝑛) ≠ ∅) → if((𝐹‘𝑛) = ∅, {∅}, (𝐹‘𝑛)) = (𝐹‘𝑛)) |
58 | 55, 57 | eqtrd 2778 |
. . . . . . 7
⊢ ((𝑛 ∈ ω ∧
∀𝑧 ∈ ran 𝐴(𝑧 ≠ ∅ → (𝑓‘𝑧) ∈ 𝑧) ∧ (𝐹‘𝑛) ≠ ∅) → (𝐾‘𝑛) = (𝐹‘𝑛)) |
59 | 50, 54, 58 | 3eltr3d 2853 |
. . . . . 6
⊢ ((𝑛 ∈ ω ∧
∀𝑧 ∈ ran 𝐴(𝑧 ≠ ∅ → (𝑓‘𝑧) ∈ 𝑧) ∧ (𝐹‘𝑛) ≠ ∅) → (𝐺‘𝑛) ∈ (𝐹‘𝑛)) |
60 | 59 | 3expia 1119 |
. . . . 5
⊢ ((𝑛 ∈ ω ∧
∀𝑧 ∈ ran 𝐴(𝑧 ≠ ∅ → (𝑓‘𝑧) ∈ 𝑧)) → ((𝐹‘𝑛) ≠ ∅ → (𝐺‘𝑛) ∈ (𝐹‘𝑛))) |
61 | 60 | expcom 413 |
. . . 4
⊢
(∀𝑧 ∈
ran 𝐴(𝑧 ≠ ∅ → (𝑓‘𝑧) ∈ 𝑧) → (𝑛 ∈ ω → ((𝐹‘𝑛) ≠ ∅ → (𝐺‘𝑛) ∈ (𝐹‘𝑛)))) |
62 | 61 | ralrimiv 3106 |
. . 3
⊢
(∀𝑧 ∈
ran 𝐴(𝑧 ≠ ∅ → (𝑓‘𝑧) ∈ 𝑧) → ∀𝑛 ∈ ω ((𝐹‘𝑛) ≠ ∅ → (𝐺‘𝑛) ∈ (𝐹‘𝑛))) |
63 | | omex 9331 |
. . . . 5
⊢ ω
∈ V |
64 | | fnex 7075 |
. . . . 5
⊢ ((𝐺 Fn ω ∧ ω ∈
V) → 𝐺 ∈
V) |
65 | 3, 63, 64 | mp2an 688 |
. . . 4
⊢ 𝐺 ∈ V |
66 | | fneq1 6508 |
. . . . 5
⊢ (𝑔 = 𝐺 → (𝑔 Fn ω ↔ 𝐺 Fn ω)) |
67 | | fveq1 6755 |
. . . . . . . 8
⊢ (𝑔 = 𝐺 → (𝑔‘𝑛) = (𝐺‘𝑛)) |
68 | 67 | eleq1d 2823 |
. . . . . . 7
⊢ (𝑔 = 𝐺 → ((𝑔‘𝑛) ∈ (𝐹‘𝑛) ↔ (𝐺‘𝑛) ∈ (𝐹‘𝑛))) |
69 | 68 | imbi2d 340 |
. . . . . 6
⊢ (𝑔 = 𝐺 → (((𝐹‘𝑛) ≠ ∅ → (𝑔‘𝑛) ∈ (𝐹‘𝑛)) ↔ ((𝐹‘𝑛) ≠ ∅ → (𝐺‘𝑛) ∈ (𝐹‘𝑛)))) |
70 | 69 | ralbidv 3120 |
. . . . 5
⊢ (𝑔 = 𝐺 → (∀𝑛 ∈ ω ((𝐹‘𝑛) ≠ ∅ → (𝑔‘𝑛) ∈ (𝐹‘𝑛)) ↔ ∀𝑛 ∈ ω ((𝐹‘𝑛) ≠ ∅ → (𝐺‘𝑛) ∈ (𝐹‘𝑛)))) |
71 | 66, 70 | anbi12d 630 |
. . . 4
⊢ (𝑔 = 𝐺 → ((𝑔 Fn ω ∧ ∀𝑛 ∈ ω ((𝐹‘𝑛) ≠ ∅ → (𝑔‘𝑛) ∈ (𝐹‘𝑛))) ↔ (𝐺 Fn ω ∧ ∀𝑛 ∈ ω ((𝐹‘𝑛) ≠ ∅ → (𝐺‘𝑛) ∈ (𝐹‘𝑛))))) |
72 | 65, 71 | spcev 3535 |
. . 3
⊢ ((𝐺 Fn ω ∧ ∀𝑛 ∈ ω ((𝐹‘𝑛) ≠ ∅ → (𝐺‘𝑛) ∈ (𝐹‘𝑛))) → ∃𝑔(𝑔 Fn ω ∧ ∀𝑛 ∈ ω ((𝐹‘𝑛) ≠ ∅ → (𝑔‘𝑛) ∈ (𝐹‘𝑛)))) |
73 | 3, 62, 72 | sylancr 586 |
. 2
⊢
(∀𝑧 ∈
ran 𝐴(𝑧 ≠ ∅ → (𝑓‘𝑧) ∈ 𝑧) → ∃𝑔(𝑔 Fn ω ∧ ∀𝑛 ∈ ω ((𝐹‘𝑛) ≠ ∅ → (𝑔‘𝑛) ∈ (𝐹‘𝑛)))) |
74 | 6 | a1i 11 |
. . . . . 6
⊢ ((ω
∈ V ∧ 𝑛 ∈
ω) → ({𝑛}
× (𝐾‘𝑛)) ∈ V) |
75 | 74, 7 | fmptd 6970 |
. . . . 5
⊢ (ω
∈ V → 𝐴:ω⟶V) |
76 | 63, 75 | ax-mp 5 |
. . . 4
⊢ 𝐴:ω⟶V |
77 | | sneq 4568 |
. . . . . . . . . 10
⊢ (𝑛 = 𝑘 → {𝑛} = {𝑘}) |
78 | | fveq2 6756 |
. . . . . . . . . 10
⊢ (𝑛 = 𝑘 → (𝐾‘𝑛) = (𝐾‘𝑘)) |
79 | 77, 78 | xpeq12d 5611 |
. . . . . . . . 9
⊢ (𝑛 = 𝑘 → ({𝑛} × (𝐾‘𝑛)) = ({𝑘} × (𝐾‘𝑘))) |
80 | 79, 7, 6 | fvmpt3i 6862 |
. . . . . . . 8
⊢ (𝑘 ∈ ω → (𝐴‘𝑘) = ({𝑘} × (𝐾‘𝑘))) |
81 | 80 | adantl 481 |
. . . . . . 7
⊢ ((𝑛 ∈ ω ∧ 𝑘 ∈ ω) → (𝐴‘𝑘) = ({𝑘} × (𝐾‘𝑘))) |
82 | 81 | eqeq2d 2749 |
. . . . . 6
⊢ ((𝑛 ∈ ω ∧ 𝑘 ∈ ω) → ((𝐴‘𝑛) = (𝐴‘𝑘) ↔ (𝐴‘𝑛) = ({𝑘} × (𝐾‘𝑘)))) |
83 | 9 | adantr 480 |
. . . . . . . 8
⊢ ((𝑛 ∈ ω ∧ 𝑘 ∈ ω) → (𝐴‘𝑛) = ({𝑛} × (𝐾‘𝑛))) |
84 | 83 | eqeq1d 2740 |
. . . . . . 7
⊢ ((𝑛 ∈ ω ∧ 𝑘 ∈ ω) → ((𝐴‘𝑛) = ({𝑘} × (𝐾‘𝑘)) ↔ ({𝑛} × (𝐾‘𝑛)) = ({𝑘} × (𝐾‘𝑘)))) |
85 | | xp11 6067 |
. . . . . . . . . 10
⊢ (({𝑛} ≠ ∅ ∧ (𝐾‘𝑛) ≠ ∅) → (({𝑛} × (𝐾‘𝑛)) = ({𝑘} × (𝐾‘𝑘)) ↔ ({𝑛} = {𝑘} ∧ (𝐾‘𝑛) = (𝐾‘𝑘)))) |
86 | 11, 28, 85 | sylancr 586 |
. . . . . . . . 9
⊢ (𝑛 ∈ ω → (({𝑛} × (𝐾‘𝑛)) = ({𝑘} × (𝐾‘𝑘)) ↔ ({𝑛} = {𝑘} ∧ (𝐾‘𝑛) = (𝐾‘𝑘)))) |
87 | 10 | sneqr 4768 |
. . . . . . . . . 10
⊢ ({𝑛} = {𝑘} → 𝑛 = 𝑘) |
88 | 87 | adantr 480 |
. . . . . . . . 9
⊢ (({𝑛} = {𝑘} ∧ (𝐾‘𝑛) = (𝐾‘𝑘)) → 𝑛 = 𝑘) |
89 | 86, 88 | syl6bi 252 |
. . . . . . . 8
⊢ (𝑛 ∈ ω → (({𝑛} × (𝐾‘𝑛)) = ({𝑘} × (𝐾‘𝑘)) → 𝑛 = 𝑘)) |
90 | 89 | adantr 480 |
. . . . . . 7
⊢ ((𝑛 ∈ ω ∧ 𝑘 ∈ ω) → (({𝑛} × (𝐾‘𝑛)) = ({𝑘} × (𝐾‘𝑘)) → 𝑛 = 𝑘)) |
91 | 84, 90 | sylbid 239 |
. . . . . 6
⊢ ((𝑛 ∈ ω ∧ 𝑘 ∈ ω) → ((𝐴‘𝑛) = ({𝑘} × (𝐾‘𝑘)) → 𝑛 = 𝑘)) |
92 | 82, 91 | sylbid 239 |
. . . . 5
⊢ ((𝑛 ∈ ω ∧ 𝑘 ∈ ω) → ((𝐴‘𝑛) = (𝐴‘𝑘) → 𝑛 = 𝑘)) |
93 | 92 | rgen2 3126 |
. . . 4
⊢
∀𝑛 ∈
ω ∀𝑘 ∈
ω ((𝐴‘𝑛) = (𝐴‘𝑘) → 𝑛 = 𝑘) |
94 | | dff13 7109 |
. . . 4
⊢ (𝐴:ω–1-1→V ↔ (𝐴:ω⟶V ∧ ∀𝑛 ∈ ω ∀𝑘 ∈ ω ((𝐴‘𝑛) = (𝐴‘𝑘) → 𝑛 = 𝑘))) |
95 | 76, 93, 94 | mpbir2an 707 |
. . 3
⊢ 𝐴:ω–1-1→V |
96 | | f1f1orn 6711 |
. . . 4
⊢ (𝐴:ω–1-1→V → 𝐴:ω–1-1-onto→ran
𝐴) |
97 | 63 | f1oen 8716 |
. . . 4
⊢ (𝐴:ω–1-1-onto→ran
𝐴 → ω ≈
ran 𝐴) |
98 | | ensym 8744 |
. . . 4
⊢ (ω
≈ ran 𝐴 → ran
𝐴 ≈
ω) |
99 | 96, 97, 98 | 3syl 18 |
. . 3
⊢ (𝐴:ω–1-1→V → ran 𝐴 ≈ ω) |
100 | 7 | rneqi 5835 |
. . . . 5
⊢ ran 𝐴 = ran (𝑛 ∈ ω ↦ ({𝑛} × (𝐾‘𝑛))) |
101 | | dmmptg 6134 |
. . . . . . . 8
⊢
(∀𝑛 ∈
ω ({𝑛} × (𝐾‘𝑛)) ∈ V → dom (𝑛 ∈ ω ↦ ({𝑛} × (𝐾‘𝑛))) = ω) |
102 | 6 | a1i 11 |
. . . . . . . 8
⊢ (𝑛 ∈ ω → ({𝑛} × (𝐾‘𝑛)) ∈ V) |
103 | 101, 102 | mprg 3077 |
. . . . . . 7
⊢ dom
(𝑛 ∈ ω ↦
({𝑛} × (𝐾‘𝑛))) = ω |
104 | 103, 63 | eqeltri 2835 |
. . . . . 6
⊢ dom
(𝑛 ∈ ω ↦
({𝑛} × (𝐾‘𝑛))) ∈ V |
105 | | funmpt 6456 |
. . . . . 6
⊢ Fun
(𝑛 ∈ ω ↦
({𝑛} × (𝐾‘𝑛))) |
106 | | funrnex 7770 |
. . . . . 6
⊢ (dom
(𝑛 ∈ ω ↦
({𝑛} × (𝐾‘𝑛))) ∈ V → (Fun (𝑛 ∈ ω ↦ ({𝑛} × (𝐾‘𝑛))) → ran (𝑛 ∈ ω ↦ ({𝑛} × (𝐾‘𝑛))) ∈ V)) |
107 | 104, 105,
106 | mp2 9 |
. . . . 5
⊢ ran
(𝑛 ∈ ω ↦
({𝑛} × (𝐾‘𝑛))) ∈ V |
108 | 100, 107 | eqeltri 2835 |
. . . 4
⊢ ran 𝐴 ∈ V |
109 | | breq1 5073 |
. . . . 5
⊢ (𝑎 = ran 𝐴 → (𝑎 ≈ ω ↔ ran 𝐴 ≈ ω)) |
110 | | raleq 3333 |
. . . . . 6
⊢ (𝑎 = ran 𝐴 → (∀𝑧 ∈ 𝑎 (𝑧 ≠ ∅ → (𝑓‘𝑧) ∈ 𝑧) ↔ ∀𝑧 ∈ ran 𝐴(𝑧 ≠ ∅ → (𝑓‘𝑧) ∈ 𝑧))) |
111 | 110 | exbidv 1925 |
. . . . 5
⊢ (𝑎 = ran 𝐴 → (∃𝑓∀𝑧 ∈ 𝑎 (𝑧 ≠ ∅ → (𝑓‘𝑧) ∈ 𝑧) ↔ ∃𝑓∀𝑧 ∈ ran 𝐴(𝑧 ≠ ∅ → (𝑓‘𝑧) ∈ 𝑧))) |
112 | 109, 111 | imbi12d 344 |
. . . 4
⊢ (𝑎 = ran 𝐴 → ((𝑎 ≈ ω → ∃𝑓∀𝑧 ∈ 𝑎 (𝑧 ≠ ∅ → (𝑓‘𝑧) ∈ 𝑧)) ↔ (ran 𝐴 ≈ ω → ∃𝑓∀𝑧 ∈ ran 𝐴(𝑧 ≠ ∅ → (𝑓‘𝑧) ∈ 𝑧)))) |
113 | | ax-cc 10122 |
. . . 4
⊢ (𝑎 ≈ ω →
∃𝑓∀𝑧 ∈ 𝑎 (𝑧 ≠ ∅ → (𝑓‘𝑧) ∈ 𝑧)) |
114 | 108, 112,
113 | vtocl 3488 |
. . 3
⊢ (ran
𝐴 ≈ ω →
∃𝑓∀𝑧 ∈ ran 𝐴(𝑧 ≠ ∅ → (𝑓‘𝑧) ∈ 𝑧)) |
115 | 95, 99, 114 | mp2b 10 |
. 2
⊢
∃𝑓∀𝑧 ∈ ran 𝐴(𝑧 ≠ ∅ → (𝑓‘𝑧) ∈ 𝑧) |
116 | 73, 115 | exlimiiv 1935 |
1
⊢
∃𝑔(𝑔 Fn ω ∧ ∀𝑛 ∈ ω ((𝐹‘𝑛) ≠ ∅ → (𝑔‘𝑛) ∈ (𝐹‘𝑛))) |