| Step | Hyp | Ref
| Expression |
| 1 | | fvex 6889 |
. . . 4
⊢
(2nd ‘(𝑓‘(𝐴‘𝑛))) ∈ V |
| 2 | | axcc2lem.3 |
. . . 4
⊢ 𝐺 = (𝑛 ∈ ω ↦ (2nd
‘(𝑓‘(𝐴‘𝑛)))) |
| 3 | 1, 2 | fnmpti 6681 |
. . 3
⊢ 𝐺 Fn ω |
| 4 | | vsnex 5404 |
. . . . . . . . . . . . . . 15
⊢ {𝑛} ∈ V |
| 5 | | fvex 6889 |
. . . . . . . . . . . . . . 15
⊢ (𝐾‘𝑛) ∈ V |
| 6 | 4, 5 | xpex 7747 |
. . . . . . . . . . . . . 14
⊢ ({𝑛} × (𝐾‘𝑛)) ∈ V |
| 7 | | axcc2lem.2 |
. . . . . . . . . . . . . . 15
⊢ 𝐴 = (𝑛 ∈ ω ↦ ({𝑛} × (𝐾‘𝑛))) |
| 8 | 7 | fvmpt2 6997 |
. . . . . . . . . . . . . 14
⊢ ((𝑛 ∈ ω ∧ ({𝑛} × (𝐾‘𝑛)) ∈ V) → (𝐴‘𝑛) = ({𝑛} × (𝐾‘𝑛))) |
| 9 | 6, 8 | mpan2 691 |
. . . . . . . . . . . . 13
⊢ (𝑛 ∈ ω → (𝐴‘𝑛) = ({𝑛} × (𝐾‘𝑛))) |
| 10 | | vex 3463 |
. . . . . . . . . . . . . . 15
⊢ 𝑛 ∈ V |
| 11 | 10 | snnz 4752 |
. . . . . . . . . . . . . 14
⊢ {𝑛} ≠ ∅ |
| 12 | | 0ex 5277 |
. . . . . . . . . . . . . . . . . 18
⊢ ∅
∈ V |
| 13 | 12 | snnz 4752 |
. . . . . . . . . . . . . . . . 17
⊢ {∅}
≠ ∅ |
| 14 | | iftrue 4506 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝐹‘𝑛) = ∅ → if((𝐹‘𝑛) = ∅, {∅}, (𝐹‘𝑛)) = {∅}) |
| 15 | 14 | neeq1d 2991 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝐹‘𝑛) = ∅ → (if((𝐹‘𝑛) = ∅, {∅}, (𝐹‘𝑛)) ≠ ∅ ↔ {∅} ≠
∅)) |
| 16 | 13, 15 | mpbiri 258 |
. . . . . . . . . . . . . . . 16
⊢ ((𝐹‘𝑛) = ∅ → if((𝐹‘𝑛) = ∅, {∅}, (𝐹‘𝑛)) ≠ ∅) |
| 17 | | iffalse 4509 |
. . . . . . . . . . . . . . . . 17
⊢ (¬
(𝐹‘𝑛) = ∅ → if((𝐹‘𝑛) = ∅, {∅}, (𝐹‘𝑛)) = (𝐹‘𝑛)) |
| 18 | | neqne 2940 |
. . . . . . . . . . . . . . . . 17
⊢ (¬
(𝐹‘𝑛) = ∅ → (𝐹‘𝑛) ≠ ∅) |
| 19 | 17, 18 | eqnetrd 2999 |
. . . . . . . . . . . . . . . 16
⊢ (¬
(𝐹‘𝑛) = ∅ → if((𝐹‘𝑛) = ∅, {∅}, (𝐹‘𝑛)) ≠ ∅) |
| 20 | 16, 19 | pm2.61i 182 |
. . . . . . . . . . . . . . 15
⊢ if((𝐹‘𝑛) = ∅, {∅}, (𝐹‘𝑛)) ≠ ∅ |
| 21 | | p0ex 5354 |
. . . . . . . . . . . . . . . . . 18
⊢ {∅}
∈ V |
| 22 | | fvex 6889 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝐹‘𝑛) ∈ V |
| 23 | 21, 22 | ifex 4551 |
. . . . . . . . . . . . . . . . 17
⊢ if((𝐹‘𝑛) = ∅, {∅}, (𝐹‘𝑛)) ∈ V |
| 24 | | axcc2lem.1 |
. . . . . . . . . . . . . . . . . 18
⊢ 𝐾 = (𝑛 ∈ ω ↦ if((𝐹‘𝑛) = ∅, {∅}, (𝐹‘𝑛))) |
| 25 | 24 | fvmpt2 6997 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑛 ∈ ω ∧ if((𝐹‘𝑛) = ∅, {∅}, (𝐹‘𝑛)) ∈ V) → (𝐾‘𝑛) = if((𝐹‘𝑛) = ∅, {∅}, (𝐹‘𝑛))) |
| 26 | 23, 25 | mpan2 691 |
. . . . . . . . . . . . . . . 16
⊢ (𝑛 ∈ ω → (𝐾‘𝑛) = if((𝐹‘𝑛) = ∅, {∅}, (𝐹‘𝑛))) |
| 27 | 26 | neeq1d 2991 |
. . . . . . . . . . . . . . 15
⊢ (𝑛 ∈ ω → ((𝐾‘𝑛) ≠ ∅ ↔ if((𝐹‘𝑛) = ∅, {∅}, (𝐹‘𝑛)) ≠ ∅)) |
| 28 | 20, 27 | mpbiri 258 |
. . . . . . . . . . . . . 14
⊢ (𝑛 ∈ ω → (𝐾‘𝑛) ≠ ∅) |
| 29 | | xpnz 6148 |
. . . . . . . . . . . . . . 15
⊢ (({𝑛} ≠ ∅ ∧ (𝐾‘𝑛) ≠ ∅) ↔ ({𝑛} × (𝐾‘𝑛)) ≠ ∅) |
| 30 | 29 | biimpi 216 |
. . . . . . . . . . . . . 14
⊢ (({𝑛} ≠ ∅ ∧ (𝐾‘𝑛) ≠ ∅) → ({𝑛} × (𝐾‘𝑛)) ≠ ∅) |
| 31 | 11, 28, 30 | sylancr 587 |
. . . . . . . . . . . . 13
⊢ (𝑛 ∈ ω → ({𝑛} × (𝐾‘𝑛)) ≠ ∅) |
| 32 | 9, 31 | eqnetrd 2999 |
. . . . . . . . . . . 12
⊢ (𝑛 ∈ ω → (𝐴‘𝑛) ≠ ∅) |
| 33 | 6, 7 | fnmpti 6681 |
. . . . . . . . . . . . . 14
⊢ 𝐴 Fn ω |
| 34 | | fnfvelrn 7070 |
. . . . . . . . . . . . . 14
⊢ ((𝐴 Fn ω ∧ 𝑛 ∈ ω) → (𝐴‘𝑛) ∈ ran 𝐴) |
| 35 | 33, 34 | mpan 690 |
. . . . . . . . . . . . 13
⊢ (𝑛 ∈ ω → (𝐴‘𝑛) ∈ ran 𝐴) |
| 36 | | neeq1 2994 |
. . . . . . . . . . . . . . 15
⊢ (𝑧 = (𝐴‘𝑛) → (𝑧 ≠ ∅ ↔ (𝐴‘𝑛) ≠ ∅)) |
| 37 | | fveq2 6876 |
. . . . . . . . . . . . . . . 16
⊢ (𝑧 = (𝐴‘𝑛) → (𝑓‘𝑧) = (𝑓‘(𝐴‘𝑛))) |
| 38 | | id 22 |
. . . . . . . . . . . . . . . 16
⊢ (𝑧 = (𝐴‘𝑛) → 𝑧 = (𝐴‘𝑛)) |
| 39 | 37, 38 | eleq12d 2828 |
. . . . . . . . . . . . . . 15
⊢ (𝑧 = (𝐴‘𝑛) → ((𝑓‘𝑧) ∈ 𝑧 ↔ (𝑓‘(𝐴‘𝑛)) ∈ (𝐴‘𝑛))) |
| 40 | 36, 39 | imbi12d 344 |
. . . . . . . . . . . . . 14
⊢ (𝑧 = (𝐴‘𝑛) → ((𝑧 ≠ ∅ → (𝑓‘𝑧) ∈ 𝑧) ↔ ((𝐴‘𝑛) ≠ ∅ → (𝑓‘(𝐴‘𝑛)) ∈ (𝐴‘𝑛)))) |
| 41 | 40 | rspccv 3598 |
. . . . . . . . . . . . 13
⊢
(∀𝑧 ∈
ran 𝐴(𝑧 ≠ ∅ → (𝑓‘𝑧) ∈ 𝑧) → ((𝐴‘𝑛) ∈ ran 𝐴 → ((𝐴‘𝑛) ≠ ∅ → (𝑓‘(𝐴‘𝑛)) ∈ (𝐴‘𝑛)))) |
| 42 | 35, 41 | syl5 34 |
. . . . . . . . . . . 12
⊢
(∀𝑧 ∈
ran 𝐴(𝑧 ≠ ∅ → (𝑓‘𝑧) ∈ 𝑧) → (𝑛 ∈ ω → ((𝐴‘𝑛) ≠ ∅ → (𝑓‘(𝐴‘𝑛)) ∈ (𝐴‘𝑛)))) |
| 43 | 32, 42 | mpdi 45 |
. . . . . . . . . . 11
⊢
(∀𝑧 ∈
ran 𝐴(𝑧 ≠ ∅ → (𝑓‘𝑧) ∈ 𝑧) → (𝑛 ∈ ω → (𝑓‘(𝐴‘𝑛)) ∈ (𝐴‘𝑛))) |
| 44 | 43 | impcom 407 |
. . . . . . . . . 10
⊢ ((𝑛 ∈ ω ∧
∀𝑧 ∈ ran 𝐴(𝑧 ≠ ∅ → (𝑓‘𝑧) ∈ 𝑧)) → (𝑓‘(𝐴‘𝑛)) ∈ (𝐴‘𝑛)) |
| 45 | 9 | eleq2d 2820 |
. . . . . . . . . . 11
⊢ (𝑛 ∈ ω → ((𝑓‘(𝐴‘𝑛)) ∈ (𝐴‘𝑛) ↔ (𝑓‘(𝐴‘𝑛)) ∈ ({𝑛} × (𝐾‘𝑛)))) |
| 46 | 45 | adantr 480 |
. . . . . . . . . 10
⊢ ((𝑛 ∈ ω ∧
∀𝑧 ∈ ran 𝐴(𝑧 ≠ ∅ → (𝑓‘𝑧) ∈ 𝑧)) → ((𝑓‘(𝐴‘𝑛)) ∈ (𝐴‘𝑛) ↔ (𝑓‘(𝐴‘𝑛)) ∈ ({𝑛} × (𝐾‘𝑛)))) |
| 47 | 44, 46 | mpbid 232 |
. . . . . . . . 9
⊢ ((𝑛 ∈ ω ∧
∀𝑧 ∈ ran 𝐴(𝑧 ≠ ∅ → (𝑓‘𝑧) ∈ 𝑧)) → (𝑓‘(𝐴‘𝑛)) ∈ ({𝑛} × (𝐾‘𝑛))) |
| 48 | | xp2nd 8021 |
. . . . . . . . 9
⊢ ((𝑓‘(𝐴‘𝑛)) ∈ ({𝑛} × (𝐾‘𝑛)) → (2nd ‘(𝑓‘(𝐴‘𝑛))) ∈ (𝐾‘𝑛)) |
| 49 | 47, 48 | syl 17 |
. . . . . . . 8
⊢ ((𝑛 ∈ ω ∧
∀𝑧 ∈ ran 𝐴(𝑧 ≠ ∅ → (𝑓‘𝑧) ∈ 𝑧)) → (2nd ‘(𝑓‘(𝐴‘𝑛))) ∈ (𝐾‘𝑛)) |
| 50 | 49 | 3adant3 1132 |
. . . . . . 7
⊢ ((𝑛 ∈ ω ∧
∀𝑧 ∈ ran 𝐴(𝑧 ≠ ∅ → (𝑓‘𝑧) ∈ 𝑧) ∧ (𝐹‘𝑛) ≠ ∅) → (2nd
‘(𝑓‘(𝐴‘𝑛))) ∈ (𝐾‘𝑛)) |
| 51 | 2 | fvmpt2 6997 |
. . . . . . . . . 10
⊢ ((𝑛 ∈ ω ∧
(2nd ‘(𝑓‘(𝐴‘𝑛))) ∈ V) → (𝐺‘𝑛) = (2nd ‘(𝑓‘(𝐴‘𝑛)))) |
| 52 | 1, 51 | mpan2 691 |
. . . . . . . . 9
⊢ (𝑛 ∈ ω → (𝐺‘𝑛) = (2nd ‘(𝑓‘(𝐴‘𝑛)))) |
| 53 | 52 | 3ad2ant1 1133 |
. . . . . . . 8
⊢ ((𝑛 ∈ ω ∧
∀𝑧 ∈ ran 𝐴(𝑧 ≠ ∅ → (𝑓‘𝑧) ∈ 𝑧) ∧ (𝐹‘𝑛) ≠ ∅) → (𝐺‘𝑛) = (2nd ‘(𝑓‘(𝐴‘𝑛)))) |
| 54 | 53 | eqcomd 2741 |
. . . . . . 7
⊢ ((𝑛 ∈ ω ∧
∀𝑧 ∈ ran 𝐴(𝑧 ≠ ∅ → (𝑓‘𝑧) ∈ 𝑧) ∧ (𝐹‘𝑛) ≠ ∅) → (2nd
‘(𝑓‘(𝐴‘𝑛))) = (𝐺‘𝑛)) |
| 55 | 26 | 3ad2ant1 1133 |
. . . . . . . 8
⊢ ((𝑛 ∈ ω ∧
∀𝑧 ∈ ran 𝐴(𝑧 ≠ ∅ → (𝑓‘𝑧) ∈ 𝑧) ∧ (𝐹‘𝑛) ≠ ∅) → (𝐾‘𝑛) = if((𝐹‘𝑛) = ∅, {∅}, (𝐹‘𝑛))) |
| 56 | | ifnefalse 4512 |
. . . . . . . . 9
⊢ ((𝐹‘𝑛) ≠ ∅ → if((𝐹‘𝑛) = ∅, {∅}, (𝐹‘𝑛)) = (𝐹‘𝑛)) |
| 57 | 56 | 3ad2ant3 1135 |
. . . . . . . 8
⊢ ((𝑛 ∈ ω ∧
∀𝑧 ∈ ran 𝐴(𝑧 ≠ ∅ → (𝑓‘𝑧) ∈ 𝑧) ∧ (𝐹‘𝑛) ≠ ∅) → if((𝐹‘𝑛) = ∅, {∅}, (𝐹‘𝑛)) = (𝐹‘𝑛)) |
| 58 | 55, 57 | eqtrd 2770 |
. . . . . . 7
⊢ ((𝑛 ∈ ω ∧
∀𝑧 ∈ ran 𝐴(𝑧 ≠ ∅ → (𝑓‘𝑧) ∈ 𝑧) ∧ (𝐹‘𝑛) ≠ ∅) → (𝐾‘𝑛) = (𝐹‘𝑛)) |
| 59 | 50, 54, 58 | 3eltr3d 2848 |
. . . . . 6
⊢ ((𝑛 ∈ ω ∧
∀𝑧 ∈ ran 𝐴(𝑧 ≠ ∅ → (𝑓‘𝑧) ∈ 𝑧) ∧ (𝐹‘𝑛) ≠ ∅) → (𝐺‘𝑛) ∈ (𝐹‘𝑛)) |
| 60 | 59 | 3expia 1121 |
. . . . 5
⊢ ((𝑛 ∈ ω ∧
∀𝑧 ∈ ran 𝐴(𝑧 ≠ ∅ → (𝑓‘𝑧) ∈ 𝑧)) → ((𝐹‘𝑛) ≠ ∅ → (𝐺‘𝑛) ∈ (𝐹‘𝑛))) |
| 61 | 60 | expcom 413 |
. . . 4
⊢
(∀𝑧 ∈
ran 𝐴(𝑧 ≠ ∅ → (𝑓‘𝑧) ∈ 𝑧) → (𝑛 ∈ ω → ((𝐹‘𝑛) ≠ ∅ → (𝐺‘𝑛) ∈ (𝐹‘𝑛)))) |
| 62 | 61 | ralrimiv 3131 |
. . 3
⊢
(∀𝑧 ∈
ran 𝐴(𝑧 ≠ ∅ → (𝑓‘𝑧) ∈ 𝑧) → ∀𝑛 ∈ ω ((𝐹‘𝑛) ≠ ∅ → (𝐺‘𝑛) ∈ (𝐹‘𝑛))) |
| 63 | | omex 9657 |
. . . . 5
⊢ ω
∈ V |
| 64 | | fnex 7209 |
. . . . 5
⊢ ((𝐺 Fn ω ∧ ω ∈
V) → 𝐺 ∈
V) |
| 65 | 3, 63, 64 | mp2an 692 |
. . . 4
⊢ 𝐺 ∈ V |
| 66 | | fneq1 6629 |
. . . . 5
⊢ (𝑔 = 𝐺 → (𝑔 Fn ω ↔ 𝐺 Fn ω)) |
| 67 | | fveq1 6875 |
. . . . . . . 8
⊢ (𝑔 = 𝐺 → (𝑔‘𝑛) = (𝐺‘𝑛)) |
| 68 | 67 | eleq1d 2819 |
. . . . . . 7
⊢ (𝑔 = 𝐺 → ((𝑔‘𝑛) ∈ (𝐹‘𝑛) ↔ (𝐺‘𝑛) ∈ (𝐹‘𝑛))) |
| 69 | 68 | imbi2d 340 |
. . . . . 6
⊢ (𝑔 = 𝐺 → (((𝐹‘𝑛) ≠ ∅ → (𝑔‘𝑛) ∈ (𝐹‘𝑛)) ↔ ((𝐹‘𝑛) ≠ ∅ → (𝐺‘𝑛) ∈ (𝐹‘𝑛)))) |
| 70 | 69 | ralbidv 3163 |
. . . . 5
⊢ (𝑔 = 𝐺 → (∀𝑛 ∈ ω ((𝐹‘𝑛) ≠ ∅ → (𝑔‘𝑛) ∈ (𝐹‘𝑛)) ↔ ∀𝑛 ∈ ω ((𝐹‘𝑛) ≠ ∅ → (𝐺‘𝑛) ∈ (𝐹‘𝑛)))) |
| 71 | 66, 70 | anbi12d 632 |
. . . 4
⊢ (𝑔 = 𝐺 → ((𝑔 Fn ω ∧ ∀𝑛 ∈ ω ((𝐹‘𝑛) ≠ ∅ → (𝑔‘𝑛) ∈ (𝐹‘𝑛))) ↔ (𝐺 Fn ω ∧ ∀𝑛 ∈ ω ((𝐹‘𝑛) ≠ ∅ → (𝐺‘𝑛) ∈ (𝐹‘𝑛))))) |
| 72 | 65, 71 | spcev 3585 |
. . 3
⊢ ((𝐺 Fn ω ∧ ∀𝑛 ∈ ω ((𝐹‘𝑛) ≠ ∅ → (𝐺‘𝑛) ∈ (𝐹‘𝑛))) → ∃𝑔(𝑔 Fn ω ∧ ∀𝑛 ∈ ω ((𝐹‘𝑛) ≠ ∅ → (𝑔‘𝑛) ∈ (𝐹‘𝑛)))) |
| 73 | 3, 62, 72 | sylancr 587 |
. 2
⊢
(∀𝑧 ∈
ran 𝐴(𝑧 ≠ ∅ → (𝑓‘𝑧) ∈ 𝑧) → ∃𝑔(𝑔 Fn ω ∧ ∀𝑛 ∈ ω ((𝐹‘𝑛) ≠ ∅ → (𝑔‘𝑛) ∈ (𝐹‘𝑛)))) |
| 74 | 6 | a1i 11 |
. . . . . 6
⊢ ((ω
∈ V ∧ 𝑛 ∈
ω) → ({𝑛}
× (𝐾‘𝑛)) ∈ V) |
| 75 | 74, 7 | fmptd 7104 |
. . . . 5
⊢ (ω
∈ V → 𝐴:ω⟶V) |
| 76 | 63, 75 | ax-mp 5 |
. . . 4
⊢ 𝐴:ω⟶V |
| 77 | | sneq 4611 |
. . . . . . . . . 10
⊢ (𝑛 = 𝑘 → {𝑛} = {𝑘}) |
| 78 | | fveq2 6876 |
. . . . . . . . . 10
⊢ (𝑛 = 𝑘 → (𝐾‘𝑛) = (𝐾‘𝑘)) |
| 79 | 77, 78 | xpeq12d 5685 |
. . . . . . . . 9
⊢ (𝑛 = 𝑘 → ({𝑛} × (𝐾‘𝑛)) = ({𝑘} × (𝐾‘𝑘))) |
| 80 | 79, 7, 6 | fvmpt3i 6991 |
. . . . . . . 8
⊢ (𝑘 ∈ ω → (𝐴‘𝑘) = ({𝑘} × (𝐾‘𝑘))) |
| 81 | 80 | adantl 481 |
. . . . . . 7
⊢ ((𝑛 ∈ ω ∧ 𝑘 ∈ ω) → (𝐴‘𝑘) = ({𝑘} × (𝐾‘𝑘))) |
| 82 | 81 | eqeq2d 2746 |
. . . . . 6
⊢ ((𝑛 ∈ ω ∧ 𝑘 ∈ ω) → ((𝐴‘𝑛) = (𝐴‘𝑘) ↔ (𝐴‘𝑛) = ({𝑘} × (𝐾‘𝑘)))) |
| 83 | 9 | adantr 480 |
. . . . . . . 8
⊢ ((𝑛 ∈ ω ∧ 𝑘 ∈ ω) → (𝐴‘𝑛) = ({𝑛} × (𝐾‘𝑛))) |
| 84 | 83 | eqeq1d 2737 |
. . . . . . 7
⊢ ((𝑛 ∈ ω ∧ 𝑘 ∈ ω) → ((𝐴‘𝑛) = ({𝑘} × (𝐾‘𝑘)) ↔ ({𝑛} × (𝐾‘𝑛)) = ({𝑘} × (𝐾‘𝑘)))) |
| 85 | | xp11 6164 |
. . . . . . . . . 10
⊢ (({𝑛} ≠ ∅ ∧ (𝐾‘𝑛) ≠ ∅) → (({𝑛} × (𝐾‘𝑛)) = ({𝑘} × (𝐾‘𝑘)) ↔ ({𝑛} = {𝑘} ∧ (𝐾‘𝑛) = (𝐾‘𝑘)))) |
| 86 | 11, 28, 85 | sylancr 587 |
. . . . . . . . 9
⊢ (𝑛 ∈ ω → (({𝑛} × (𝐾‘𝑛)) = ({𝑘} × (𝐾‘𝑘)) ↔ ({𝑛} = {𝑘} ∧ (𝐾‘𝑛) = (𝐾‘𝑘)))) |
| 87 | 10 | sneqr 4816 |
. . . . . . . . . 10
⊢ ({𝑛} = {𝑘} → 𝑛 = 𝑘) |
| 88 | 87 | adantr 480 |
. . . . . . . . 9
⊢ (({𝑛} = {𝑘} ∧ (𝐾‘𝑛) = (𝐾‘𝑘)) → 𝑛 = 𝑘) |
| 89 | 86, 88 | biimtrdi 253 |
. . . . . . . 8
⊢ (𝑛 ∈ ω → (({𝑛} × (𝐾‘𝑛)) = ({𝑘} × (𝐾‘𝑘)) → 𝑛 = 𝑘)) |
| 90 | 89 | adantr 480 |
. . . . . . 7
⊢ ((𝑛 ∈ ω ∧ 𝑘 ∈ ω) → (({𝑛} × (𝐾‘𝑛)) = ({𝑘} × (𝐾‘𝑘)) → 𝑛 = 𝑘)) |
| 91 | 84, 90 | sylbid 240 |
. . . . . 6
⊢ ((𝑛 ∈ ω ∧ 𝑘 ∈ ω) → ((𝐴‘𝑛) = ({𝑘} × (𝐾‘𝑘)) → 𝑛 = 𝑘)) |
| 92 | 82, 91 | sylbid 240 |
. . . . 5
⊢ ((𝑛 ∈ ω ∧ 𝑘 ∈ ω) → ((𝐴‘𝑛) = (𝐴‘𝑘) → 𝑛 = 𝑘)) |
| 93 | 92 | rgen2 3184 |
. . . 4
⊢
∀𝑛 ∈
ω ∀𝑘 ∈
ω ((𝐴‘𝑛) = (𝐴‘𝑘) → 𝑛 = 𝑘) |
| 94 | | dff13 7247 |
. . . 4
⊢ (𝐴:ω–1-1→V ↔ (𝐴:ω⟶V ∧ ∀𝑛 ∈ ω ∀𝑘 ∈ ω ((𝐴‘𝑛) = (𝐴‘𝑘) → 𝑛 = 𝑘))) |
| 95 | 76, 93, 94 | mpbir2an 711 |
. . 3
⊢ 𝐴:ω–1-1→V |
| 96 | | f1f1orn 6829 |
. . . 4
⊢ (𝐴:ω–1-1→V → 𝐴:ω–1-1-onto→ran
𝐴) |
| 97 | 63 | f1oen 8987 |
. . . 4
⊢ (𝐴:ω–1-1-onto→ran
𝐴 → ω ≈
ran 𝐴) |
| 98 | | ensym 9017 |
. . . 4
⊢ (ω
≈ ran 𝐴 → ran
𝐴 ≈
ω) |
| 99 | 96, 97, 98 | 3syl 18 |
. . 3
⊢ (𝐴:ω–1-1→V → ran 𝐴 ≈ ω) |
| 100 | 7 | rneqi 5917 |
. . . . 5
⊢ ran 𝐴 = ran (𝑛 ∈ ω ↦ ({𝑛} × (𝐾‘𝑛))) |
| 101 | | dmmptg 6231 |
. . . . . . . 8
⊢
(∀𝑛 ∈
ω ({𝑛} × (𝐾‘𝑛)) ∈ V → dom (𝑛 ∈ ω ↦ ({𝑛} × (𝐾‘𝑛))) = ω) |
| 102 | 6 | a1i 11 |
. . . . . . . 8
⊢ (𝑛 ∈ ω → ({𝑛} × (𝐾‘𝑛)) ∈ V) |
| 103 | 101, 102 | mprg 3057 |
. . . . . . 7
⊢ dom
(𝑛 ∈ ω ↦
({𝑛} × (𝐾‘𝑛))) = ω |
| 104 | 103, 63 | eqeltri 2830 |
. . . . . 6
⊢ dom
(𝑛 ∈ ω ↦
({𝑛} × (𝐾‘𝑛))) ∈ V |
| 105 | | funmpt 6574 |
. . . . . 6
⊢ Fun
(𝑛 ∈ ω ↦
({𝑛} × (𝐾‘𝑛))) |
| 106 | | funrnex 7952 |
. . . . . 6
⊢ (dom
(𝑛 ∈ ω ↦
({𝑛} × (𝐾‘𝑛))) ∈ V → (Fun (𝑛 ∈ ω ↦ ({𝑛} × (𝐾‘𝑛))) → ran (𝑛 ∈ ω ↦ ({𝑛} × (𝐾‘𝑛))) ∈ V)) |
| 107 | 104, 105,
106 | mp2 9 |
. . . . 5
⊢ ran
(𝑛 ∈ ω ↦
({𝑛} × (𝐾‘𝑛))) ∈ V |
| 108 | 100, 107 | eqeltri 2830 |
. . . 4
⊢ ran 𝐴 ∈ V |
| 109 | | breq1 5122 |
. . . . 5
⊢ (𝑎 = ran 𝐴 → (𝑎 ≈ ω ↔ ran 𝐴 ≈ ω)) |
| 110 | | raleq 3302 |
. . . . . 6
⊢ (𝑎 = ran 𝐴 → (∀𝑧 ∈ 𝑎 (𝑧 ≠ ∅ → (𝑓‘𝑧) ∈ 𝑧) ↔ ∀𝑧 ∈ ran 𝐴(𝑧 ≠ ∅ → (𝑓‘𝑧) ∈ 𝑧))) |
| 111 | 110 | exbidv 1921 |
. . . . 5
⊢ (𝑎 = ran 𝐴 → (∃𝑓∀𝑧 ∈ 𝑎 (𝑧 ≠ ∅ → (𝑓‘𝑧) ∈ 𝑧) ↔ ∃𝑓∀𝑧 ∈ ran 𝐴(𝑧 ≠ ∅ → (𝑓‘𝑧) ∈ 𝑧))) |
| 112 | 109, 111 | imbi12d 344 |
. . . 4
⊢ (𝑎 = ran 𝐴 → ((𝑎 ≈ ω → ∃𝑓∀𝑧 ∈ 𝑎 (𝑧 ≠ ∅ → (𝑓‘𝑧) ∈ 𝑧)) ↔ (ran 𝐴 ≈ ω → ∃𝑓∀𝑧 ∈ ran 𝐴(𝑧 ≠ ∅ → (𝑓‘𝑧) ∈ 𝑧)))) |
| 113 | | ax-cc 10449 |
. . . 4
⊢ (𝑎 ≈ ω →
∃𝑓∀𝑧 ∈ 𝑎 (𝑧 ≠ ∅ → (𝑓‘𝑧) ∈ 𝑧)) |
| 114 | 108, 112,
113 | vtocl 3537 |
. . 3
⊢ (ran
𝐴 ≈ ω →
∃𝑓∀𝑧 ∈ ran 𝐴(𝑧 ≠ ∅ → (𝑓‘𝑧) ∈ 𝑧)) |
| 115 | 95, 99, 114 | mp2b 10 |
. 2
⊢
∃𝑓∀𝑧 ∈ ran 𝐴(𝑧 ≠ ∅ → (𝑓‘𝑧) ∈ 𝑧) |
| 116 | 73, 115 | exlimiiv 1931 |
1
⊢
∃𝑔(𝑔 Fn ω ∧ ∀𝑛 ∈ ω ((𝐹‘𝑛) ≠ ∅ → (𝑔‘𝑛) ∈ (𝐹‘𝑛))) |