Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  axcc2lem Structured version   Visualization version   GIF version

Theorem axcc2lem 9909
 Description: Lemma for axcc2 9910. (Contributed by Mario Carneiro, 8-Feb-2013.)
Hypotheses
Ref Expression
axcc2lem.1 𝐾 = (𝑛 ∈ ω ↦ if((𝐹𝑛) = ∅, {∅}, (𝐹𝑛)))
axcc2lem.2 𝐴 = (𝑛 ∈ ω ↦ ({𝑛} × (𝐾𝑛)))
axcc2lem.3 𝐺 = (𝑛 ∈ ω ↦ (2nd ‘(𝑓‘(𝐴𝑛))))
Assertion
Ref Expression
axcc2lem 𝑔(𝑔 Fn ω ∧ ∀𝑛 ∈ ω ((𝐹𝑛) ≠ ∅ → (𝑔𝑛) ∈ (𝐹𝑛)))
Distinct variable groups:   𝐴,𝑓,𝑛   𝑓,𝐹,𝑔   𝑔,𝐺,𝑛   𝑛,𝐾
Allowed substitution hints:   𝐴(𝑔)   𝐹(𝑛)   𝐺(𝑓)   𝐾(𝑓,𝑔)

Proof of Theorem axcc2lem
Dummy variables 𝑎 𝑧 𝑘 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fvex 6676 . . . 4 (2nd ‘(𝑓‘(𝐴𝑛))) ∈ V
2 axcc2lem.3 . . . 4 𝐺 = (𝑛 ∈ ω ↦ (2nd ‘(𝑓‘(𝐴𝑛))))
31, 2fnmpti 6479 . . 3 𝐺 Fn ω
4 snex 5304 . . . . . . . . . . . . . . 15 {𝑛} ∈ V
5 fvex 6676 . . . . . . . . . . . . . . 15 (𝐾𝑛) ∈ V
64, 5xpex 7480 . . . . . . . . . . . . . 14 ({𝑛} × (𝐾𝑛)) ∈ V
7 axcc2lem.2 . . . . . . . . . . . . . . 15 𝐴 = (𝑛 ∈ ω ↦ ({𝑛} × (𝐾𝑛)))
87fvmpt2 6775 . . . . . . . . . . . . . 14 ((𝑛 ∈ ω ∧ ({𝑛} × (𝐾𝑛)) ∈ V) → (𝐴𝑛) = ({𝑛} × (𝐾𝑛)))
96, 8mpan2 690 . . . . . . . . . . . . 13 (𝑛 ∈ ω → (𝐴𝑛) = ({𝑛} × (𝐾𝑛)))
10 vex 3413 . . . . . . . . . . . . . . 15 𝑛 ∈ V
1110snnz 4672 . . . . . . . . . . . . . 14 {𝑛} ≠ ∅
12 0ex 5181 . . . . . . . . . . . . . . . . . 18 ∅ ∈ V
1312snnz 4672 . . . . . . . . . . . . . . . . 17 {∅} ≠ ∅
14 iftrue 4429 . . . . . . . . . . . . . . . . . 18 ((𝐹𝑛) = ∅ → if((𝐹𝑛) = ∅, {∅}, (𝐹𝑛)) = {∅})
1514neeq1d 3010 . . . . . . . . . . . . . . . . 17 ((𝐹𝑛) = ∅ → (if((𝐹𝑛) = ∅, {∅}, (𝐹𝑛)) ≠ ∅ ↔ {∅} ≠ ∅))
1613, 15mpbiri 261 . . . . . . . . . . . . . . . 16 ((𝐹𝑛) = ∅ → if((𝐹𝑛) = ∅, {∅}, (𝐹𝑛)) ≠ ∅)
17 iffalse 4432 . . . . . . . . . . . . . . . . 17 (¬ (𝐹𝑛) = ∅ → if((𝐹𝑛) = ∅, {∅}, (𝐹𝑛)) = (𝐹𝑛))
18 neqne 2959 . . . . . . . . . . . . . . . . 17 (¬ (𝐹𝑛) = ∅ → (𝐹𝑛) ≠ ∅)
1917, 18eqnetrd 3018 . . . . . . . . . . . . . . . 16 (¬ (𝐹𝑛) = ∅ → if((𝐹𝑛) = ∅, {∅}, (𝐹𝑛)) ≠ ∅)
2016, 19pm2.61i 185 . . . . . . . . . . . . . . 15 if((𝐹𝑛) = ∅, {∅}, (𝐹𝑛)) ≠ ∅
21 p0ex 5257 . . . . . . . . . . . . . . . . . 18 {∅} ∈ V
22 fvex 6676 . . . . . . . . . . . . . . . . . 18 (𝐹𝑛) ∈ V
2321, 22ifex 4473 . . . . . . . . . . . . . . . . 17 if((𝐹𝑛) = ∅, {∅}, (𝐹𝑛)) ∈ V
24 axcc2lem.1 . . . . . . . . . . . . . . . . . 18 𝐾 = (𝑛 ∈ ω ↦ if((𝐹𝑛) = ∅, {∅}, (𝐹𝑛)))
2524fvmpt2 6775 . . . . . . . . . . . . . . . . 17 ((𝑛 ∈ ω ∧ if((𝐹𝑛) = ∅, {∅}, (𝐹𝑛)) ∈ V) → (𝐾𝑛) = if((𝐹𝑛) = ∅, {∅}, (𝐹𝑛)))
2623, 25mpan2 690 . . . . . . . . . . . . . . . 16 (𝑛 ∈ ω → (𝐾𝑛) = if((𝐹𝑛) = ∅, {∅}, (𝐹𝑛)))
2726neeq1d 3010 . . . . . . . . . . . . . . 15 (𝑛 ∈ ω → ((𝐾𝑛) ≠ ∅ ↔ if((𝐹𝑛) = ∅, {∅}, (𝐹𝑛)) ≠ ∅))
2820, 27mpbiri 261 . . . . . . . . . . . . . 14 (𝑛 ∈ ω → (𝐾𝑛) ≠ ∅)
29 xpnz 5993 . . . . . . . . . . . . . . 15 (({𝑛} ≠ ∅ ∧ (𝐾𝑛) ≠ ∅) ↔ ({𝑛} × (𝐾𝑛)) ≠ ∅)
3029biimpi 219 . . . . . . . . . . . . . 14 (({𝑛} ≠ ∅ ∧ (𝐾𝑛) ≠ ∅) → ({𝑛} × (𝐾𝑛)) ≠ ∅)
3111, 28, 30sylancr 590 . . . . . . . . . . . . 13 (𝑛 ∈ ω → ({𝑛} × (𝐾𝑛)) ≠ ∅)
329, 31eqnetrd 3018 . . . . . . . . . . . 12 (𝑛 ∈ ω → (𝐴𝑛) ≠ ∅)
336, 7fnmpti 6479 . . . . . . . . . . . . . 14 𝐴 Fn ω
34 fnfvelrn 6845 . . . . . . . . . . . . . 14 ((𝐴 Fn ω ∧ 𝑛 ∈ ω) → (𝐴𝑛) ∈ ran 𝐴)
3533, 34mpan 689 . . . . . . . . . . . . 13 (𝑛 ∈ ω → (𝐴𝑛) ∈ ran 𝐴)
36 neeq1 3013 . . . . . . . . . . . . . . 15 (𝑧 = (𝐴𝑛) → (𝑧 ≠ ∅ ↔ (𝐴𝑛) ≠ ∅))
37 fveq2 6663 . . . . . . . . . . . . . . . 16 (𝑧 = (𝐴𝑛) → (𝑓𝑧) = (𝑓‘(𝐴𝑛)))
38 id 22 . . . . . . . . . . . . . . . 16 (𝑧 = (𝐴𝑛) → 𝑧 = (𝐴𝑛))
3937, 38eleq12d 2846 . . . . . . . . . . . . . . 15 (𝑧 = (𝐴𝑛) → ((𝑓𝑧) ∈ 𝑧 ↔ (𝑓‘(𝐴𝑛)) ∈ (𝐴𝑛)))
4036, 39imbi12d 348 . . . . . . . . . . . . . 14 (𝑧 = (𝐴𝑛) → ((𝑧 ≠ ∅ → (𝑓𝑧) ∈ 𝑧) ↔ ((𝐴𝑛) ≠ ∅ → (𝑓‘(𝐴𝑛)) ∈ (𝐴𝑛))))
4140rspccv 3540 . . . . . . . . . . . . 13 (∀𝑧 ∈ ran 𝐴(𝑧 ≠ ∅ → (𝑓𝑧) ∈ 𝑧) → ((𝐴𝑛) ∈ ran 𝐴 → ((𝐴𝑛) ≠ ∅ → (𝑓‘(𝐴𝑛)) ∈ (𝐴𝑛))))
4235, 41syl5 34 . . . . . . . . . . . 12 (∀𝑧 ∈ ran 𝐴(𝑧 ≠ ∅ → (𝑓𝑧) ∈ 𝑧) → (𝑛 ∈ ω → ((𝐴𝑛) ≠ ∅ → (𝑓‘(𝐴𝑛)) ∈ (𝐴𝑛))))
4332, 42mpdi 45 . . . . . . . . . . 11 (∀𝑧 ∈ ran 𝐴(𝑧 ≠ ∅ → (𝑓𝑧) ∈ 𝑧) → (𝑛 ∈ ω → (𝑓‘(𝐴𝑛)) ∈ (𝐴𝑛)))
4443impcom 411 . . . . . . . . . 10 ((𝑛 ∈ ω ∧ ∀𝑧 ∈ ran 𝐴(𝑧 ≠ ∅ → (𝑓𝑧) ∈ 𝑧)) → (𝑓‘(𝐴𝑛)) ∈ (𝐴𝑛))
459eleq2d 2837 . . . . . . . . . . 11 (𝑛 ∈ ω → ((𝑓‘(𝐴𝑛)) ∈ (𝐴𝑛) ↔ (𝑓‘(𝐴𝑛)) ∈ ({𝑛} × (𝐾𝑛))))
4645adantr 484 . . . . . . . . . 10 ((𝑛 ∈ ω ∧ ∀𝑧 ∈ ran 𝐴(𝑧 ≠ ∅ → (𝑓𝑧) ∈ 𝑧)) → ((𝑓‘(𝐴𝑛)) ∈ (𝐴𝑛) ↔ (𝑓‘(𝐴𝑛)) ∈ ({𝑛} × (𝐾𝑛))))
4744, 46mpbid 235 . . . . . . . . 9 ((𝑛 ∈ ω ∧ ∀𝑧 ∈ ran 𝐴(𝑧 ≠ ∅ → (𝑓𝑧) ∈ 𝑧)) → (𝑓‘(𝐴𝑛)) ∈ ({𝑛} × (𝐾𝑛)))
48 xp2nd 7732 . . . . . . . . 9 ((𝑓‘(𝐴𝑛)) ∈ ({𝑛} × (𝐾𝑛)) → (2nd ‘(𝑓‘(𝐴𝑛))) ∈ (𝐾𝑛))
4947, 48syl 17 . . . . . . . 8 ((𝑛 ∈ ω ∧ ∀𝑧 ∈ ran 𝐴(𝑧 ≠ ∅ → (𝑓𝑧) ∈ 𝑧)) → (2nd ‘(𝑓‘(𝐴𝑛))) ∈ (𝐾𝑛))
50493adant3 1129 . . . . . . 7 ((𝑛 ∈ ω ∧ ∀𝑧 ∈ ran 𝐴(𝑧 ≠ ∅ → (𝑓𝑧) ∈ 𝑧) ∧ (𝐹𝑛) ≠ ∅) → (2nd ‘(𝑓‘(𝐴𝑛))) ∈ (𝐾𝑛))
512fvmpt2 6775 . . . . . . . . . 10 ((𝑛 ∈ ω ∧ (2nd ‘(𝑓‘(𝐴𝑛))) ∈ V) → (𝐺𝑛) = (2nd ‘(𝑓‘(𝐴𝑛))))
521, 51mpan2 690 . . . . . . . . 9 (𝑛 ∈ ω → (𝐺𝑛) = (2nd ‘(𝑓‘(𝐴𝑛))))
53523ad2ant1 1130 . . . . . . . 8 ((𝑛 ∈ ω ∧ ∀𝑧 ∈ ran 𝐴(𝑧 ≠ ∅ → (𝑓𝑧) ∈ 𝑧) ∧ (𝐹𝑛) ≠ ∅) → (𝐺𝑛) = (2nd ‘(𝑓‘(𝐴𝑛))))
5453eqcomd 2764 . . . . . . 7 ((𝑛 ∈ ω ∧ ∀𝑧 ∈ ran 𝐴(𝑧 ≠ ∅ → (𝑓𝑧) ∈ 𝑧) ∧ (𝐹𝑛) ≠ ∅) → (2nd ‘(𝑓‘(𝐴𝑛))) = (𝐺𝑛))
55263ad2ant1 1130 . . . . . . . 8 ((𝑛 ∈ ω ∧ ∀𝑧 ∈ ran 𝐴(𝑧 ≠ ∅ → (𝑓𝑧) ∈ 𝑧) ∧ (𝐹𝑛) ≠ ∅) → (𝐾𝑛) = if((𝐹𝑛) = ∅, {∅}, (𝐹𝑛)))
56 ifnefalse 4435 . . . . . . . . 9 ((𝐹𝑛) ≠ ∅ → if((𝐹𝑛) = ∅, {∅}, (𝐹𝑛)) = (𝐹𝑛))
57563ad2ant3 1132 . . . . . . . 8 ((𝑛 ∈ ω ∧ ∀𝑧 ∈ ran 𝐴(𝑧 ≠ ∅ → (𝑓𝑧) ∈ 𝑧) ∧ (𝐹𝑛) ≠ ∅) → if((𝐹𝑛) = ∅, {∅}, (𝐹𝑛)) = (𝐹𝑛))
5855, 57eqtrd 2793 . . . . . . 7 ((𝑛 ∈ ω ∧ ∀𝑧 ∈ ran 𝐴(𝑧 ≠ ∅ → (𝑓𝑧) ∈ 𝑧) ∧ (𝐹𝑛) ≠ ∅) → (𝐾𝑛) = (𝐹𝑛))
5950, 54, 583eltr3d 2866 . . . . . 6 ((𝑛 ∈ ω ∧ ∀𝑧 ∈ ran 𝐴(𝑧 ≠ ∅ → (𝑓𝑧) ∈ 𝑧) ∧ (𝐹𝑛) ≠ ∅) → (𝐺𝑛) ∈ (𝐹𝑛))
60593expia 1118 . . . . 5 ((𝑛 ∈ ω ∧ ∀𝑧 ∈ ran 𝐴(𝑧 ≠ ∅ → (𝑓𝑧) ∈ 𝑧)) → ((𝐹𝑛) ≠ ∅ → (𝐺𝑛) ∈ (𝐹𝑛)))
6160expcom 417 . . . 4 (∀𝑧 ∈ ran 𝐴(𝑧 ≠ ∅ → (𝑓𝑧) ∈ 𝑧) → (𝑛 ∈ ω → ((𝐹𝑛) ≠ ∅ → (𝐺𝑛) ∈ (𝐹𝑛))))
6261ralrimiv 3112 . . 3 (∀𝑧 ∈ ran 𝐴(𝑧 ≠ ∅ → (𝑓𝑧) ∈ 𝑧) → ∀𝑛 ∈ ω ((𝐹𝑛) ≠ ∅ → (𝐺𝑛) ∈ (𝐹𝑛)))
63 omex 9152 . . . . 5 ω ∈ V
64 fnex 6977 . . . . 5 ((𝐺 Fn ω ∧ ω ∈ V) → 𝐺 ∈ V)
653, 63, 64mp2an 691 . . . 4 𝐺 ∈ V
66 fneq1 6430 . . . . 5 (𝑔 = 𝐺 → (𝑔 Fn ω ↔ 𝐺 Fn ω))
67 fveq1 6662 . . . . . . . 8 (𝑔 = 𝐺 → (𝑔𝑛) = (𝐺𝑛))
6867eleq1d 2836 . . . . . . 7 (𝑔 = 𝐺 → ((𝑔𝑛) ∈ (𝐹𝑛) ↔ (𝐺𝑛) ∈ (𝐹𝑛)))
6968imbi2d 344 . . . . . 6 (𝑔 = 𝐺 → (((𝐹𝑛) ≠ ∅ → (𝑔𝑛) ∈ (𝐹𝑛)) ↔ ((𝐹𝑛) ≠ ∅ → (𝐺𝑛) ∈ (𝐹𝑛))))
7069ralbidv 3126 . . . . 5 (𝑔 = 𝐺 → (∀𝑛 ∈ ω ((𝐹𝑛) ≠ ∅ → (𝑔𝑛) ∈ (𝐹𝑛)) ↔ ∀𝑛 ∈ ω ((𝐹𝑛) ≠ ∅ → (𝐺𝑛) ∈ (𝐹𝑛))))
7166, 70anbi12d 633 . . . 4 (𝑔 = 𝐺 → ((𝑔 Fn ω ∧ ∀𝑛 ∈ ω ((𝐹𝑛) ≠ ∅ → (𝑔𝑛) ∈ (𝐹𝑛))) ↔ (𝐺 Fn ω ∧ ∀𝑛 ∈ ω ((𝐹𝑛) ≠ ∅ → (𝐺𝑛) ∈ (𝐹𝑛)))))
7265, 71spcev 3527 . . 3 ((𝐺 Fn ω ∧ ∀𝑛 ∈ ω ((𝐹𝑛) ≠ ∅ → (𝐺𝑛) ∈ (𝐹𝑛))) → ∃𝑔(𝑔 Fn ω ∧ ∀𝑛 ∈ ω ((𝐹𝑛) ≠ ∅ → (𝑔𝑛) ∈ (𝐹𝑛))))
733, 62, 72sylancr 590 . 2 (∀𝑧 ∈ ran 𝐴(𝑧 ≠ ∅ → (𝑓𝑧) ∈ 𝑧) → ∃𝑔(𝑔 Fn ω ∧ ∀𝑛 ∈ ω ((𝐹𝑛) ≠ ∅ → (𝑔𝑛) ∈ (𝐹𝑛))))
746a1i 11 . . . . . 6 ((ω ∈ V ∧ 𝑛 ∈ ω) → ({𝑛} × (𝐾𝑛)) ∈ V)
7574, 7fmptd 6875 . . . . 5 (ω ∈ V → 𝐴:ω⟶V)
7663, 75ax-mp 5 . . . 4 𝐴:ω⟶V
77 sneq 4535 . . . . . . . . . 10 (𝑛 = 𝑘 → {𝑛} = {𝑘})
78 fveq2 6663 . . . . . . . . . 10 (𝑛 = 𝑘 → (𝐾𝑛) = (𝐾𝑘))
7977, 78xpeq12d 5559 . . . . . . . . 9 (𝑛 = 𝑘 → ({𝑛} × (𝐾𝑛)) = ({𝑘} × (𝐾𝑘)))
8079, 7, 6fvmpt3i 6769 . . . . . . . 8 (𝑘 ∈ ω → (𝐴𝑘) = ({𝑘} × (𝐾𝑘)))
8180adantl 485 . . . . . . 7 ((𝑛 ∈ ω ∧ 𝑘 ∈ ω) → (𝐴𝑘) = ({𝑘} × (𝐾𝑘)))
8281eqeq2d 2769 . . . . . 6 ((𝑛 ∈ ω ∧ 𝑘 ∈ ω) → ((𝐴𝑛) = (𝐴𝑘) ↔ (𝐴𝑛) = ({𝑘} × (𝐾𝑘))))
839adantr 484 . . . . . . . 8 ((𝑛 ∈ ω ∧ 𝑘 ∈ ω) → (𝐴𝑛) = ({𝑛} × (𝐾𝑛)))
8483eqeq1d 2760 . . . . . . 7 ((𝑛 ∈ ω ∧ 𝑘 ∈ ω) → ((𝐴𝑛) = ({𝑘} × (𝐾𝑘)) ↔ ({𝑛} × (𝐾𝑛)) = ({𝑘} × (𝐾𝑘))))
85 xp11 6009 . . . . . . . . . 10 (({𝑛} ≠ ∅ ∧ (𝐾𝑛) ≠ ∅) → (({𝑛} × (𝐾𝑛)) = ({𝑘} × (𝐾𝑘)) ↔ ({𝑛} = {𝑘} ∧ (𝐾𝑛) = (𝐾𝑘))))
8611, 28, 85sylancr 590 . . . . . . . . 9 (𝑛 ∈ ω → (({𝑛} × (𝐾𝑛)) = ({𝑘} × (𝐾𝑘)) ↔ ({𝑛} = {𝑘} ∧ (𝐾𝑛) = (𝐾𝑘))))
8710sneqr 4731 . . . . . . . . . 10 ({𝑛} = {𝑘} → 𝑛 = 𝑘)
8887adantr 484 . . . . . . . . 9 (({𝑛} = {𝑘} ∧ (𝐾𝑛) = (𝐾𝑘)) → 𝑛 = 𝑘)
8986, 88syl6bi 256 . . . . . . . 8 (𝑛 ∈ ω → (({𝑛} × (𝐾𝑛)) = ({𝑘} × (𝐾𝑘)) → 𝑛 = 𝑘))
9089adantr 484 . . . . . . 7 ((𝑛 ∈ ω ∧ 𝑘 ∈ ω) → (({𝑛} × (𝐾𝑛)) = ({𝑘} × (𝐾𝑘)) → 𝑛 = 𝑘))
9184, 90sylbid 243 . . . . . 6 ((𝑛 ∈ ω ∧ 𝑘 ∈ ω) → ((𝐴𝑛) = ({𝑘} × (𝐾𝑘)) → 𝑛 = 𝑘))
9282, 91sylbid 243 . . . . 5 ((𝑛 ∈ ω ∧ 𝑘 ∈ ω) → ((𝐴𝑛) = (𝐴𝑘) → 𝑛 = 𝑘))
9392rgen2 3132 . . . 4 𝑛 ∈ ω ∀𝑘 ∈ ω ((𝐴𝑛) = (𝐴𝑘) → 𝑛 = 𝑘)
94 dff13 7011 . . . 4 (𝐴:ω–1-1→V ↔ (𝐴:ω⟶V ∧ ∀𝑛 ∈ ω ∀𝑘 ∈ ω ((𝐴𝑛) = (𝐴𝑘) → 𝑛 = 𝑘)))
9576, 93, 94mpbir2an 710 . . 3 𝐴:ω–1-1→V
96 f1f1orn 6618 . . . 4 (𝐴:ω–1-1→V → 𝐴:ω–1-1-onto→ran 𝐴)
9763f1oen 8561 . . . 4 (𝐴:ω–1-1-onto→ran 𝐴 → ω ≈ ran 𝐴)
98 ensym 8589 . . . 4 (ω ≈ ran 𝐴 → ran 𝐴 ≈ ω)
9996, 97, 983syl 18 . . 3 (𝐴:ω–1-1→V → ran 𝐴 ≈ ω)
1007rneqi 5783 . . . . 5 ran 𝐴 = ran (𝑛 ∈ ω ↦ ({𝑛} × (𝐾𝑛)))
101 dmmptg 6076 . . . . . . . 8 (∀𝑛 ∈ ω ({𝑛} × (𝐾𝑛)) ∈ V → dom (𝑛 ∈ ω ↦ ({𝑛} × (𝐾𝑛))) = ω)
1026a1i 11 . . . . . . . 8 (𝑛 ∈ ω → ({𝑛} × (𝐾𝑛)) ∈ V)
103101, 102mprg 3084 . . . . . . 7 dom (𝑛 ∈ ω ↦ ({𝑛} × (𝐾𝑛))) = ω
104103, 63eqeltri 2848 . . . . . 6 dom (𝑛 ∈ ω ↦ ({𝑛} × (𝐾𝑛))) ∈ V
105 funmpt 6378 . . . . . 6 Fun (𝑛 ∈ ω ↦ ({𝑛} × (𝐾𝑛)))
106 funrnex 7665 . . . . . 6 (dom (𝑛 ∈ ω ↦ ({𝑛} × (𝐾𝑛))) ∈ V → (Fun (𝑛 ∈ ω ↦ ({𝑛} × (𝐾𝑛))) → ran (𝑛 ∈ ω ↦ ({𝑛} × (𝐾𝑛))) ∈ V))
107104, 105, 106mp2 9 . . . . 5 ran (𝑛 ∈ ω ↦ ({𝑛} × (𝐾𝑛))) ∈ V
108100, 107eqeltri 2848 . . . 4 ran 𝐴 ∈ V
109 breq1 5039 . . . . 5 (𝑎 = ran 𝐴 → (𝑎 ≈ ω ↔ ran 𝐴 ≈ ω))
110 raleq 3323 . . . . . 6 (𝑎 = ran 𝐴 → (∀𝑧𝑎 (𝑧 ≠ ∅ → (𝑓𝑧) ∈ 𝑧) ↔ ∀𝑧 ∈ ran 𝐴(𝑧 ≠ ∅ → (𝑓𝑧) ∈ 𝑧)))
111110exbidv 1922 . . . . 5 (𝑎 = ran 𝐴 → (∃𝑓𝑧𝑎 (𝑧 ≠ ∅ → (𝑓𝑧) ∈ 𝑧) ↔ ∃𝑓𝑧 ∈ ran 𝐴(𝑧 ≠ ∅ → (𝑓𝑧) ∈ 𝑧)))
112109, 111imbi12d 348 . . . 4 (𝑎 = ran 𝐴 → ((𝑎 ≈ ω → ∃𝑓𝑧𝑎 (𝑧 ≠ ∅ → (𝑓𝑧) ∈ 𝑧)) ↔ (ran 𝐴 ≈ ω → ∃𝑓𝑧 ∈ ran 𝐴(𝑧 ≠ ∅ → (𝑓𝑧) ∈ 𝑧))))
113 ax-cc 9908 . . . 4 (𝑎 ≈ ω → ∃𝑓𝑧𝑎 (𝑧 ≠ ∅ → (𝑓𝑧) ∈ 𝑧))
114108, 112, 113vtocl 3479 . . 3 (ran 𝐴 ≈ ω → ∃𝑓𝑧 ∈ ran 𝐴(𝑧 ≠ ∅ → (𝑓𝑧) ∈ 𝑧))
11595, 99, 114mp2b 10 . 2 𝑓𝑧 ∈ ran 𝐴(𝑧 ≠ ∅ → (𝑓𝑧) ∈ 𝑧)
11673, 115exlimiiv 1932 1 𝑔(𝑔 Fn ω ∧ ∀𝑛 ∈ ω ((𝐹𝑛) ≠ ∅ → (𝑔𝑛) ∈ (𝐹𝑛)))
 Colors of variables: wff setvar class Syntax hints:  ¬ wn 3   → wi 4   ↔ wb 209   ∧ wa 399   ∧ w3a 1084   = wceq 1538  ∃wex 1781   ∈ wcel 2111   ≠ wne 2951  ∀wral 3070  Vcvv 3409  ∅c0 4227  ifcif 4423  {csn 4525   class class class wbr 5036   ↦ cmpt 5116   × cxp 5526  dom cdm 5528  ran crn 5529  Fun wfun 6334   Fn wfn 6335  ⟶wf 6336  –1-1→wf1 6337  –1-1-onto→wf1o 6339  ‘cfv 6340  ωcom 7585  2nd c2nd 7698   ≈ cen 8537 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2729  ax-rep 5160  ax-sep 5173  ax-nul 5180  ax-pow 5238  ax-pr 5302  ax-un 7465  ax-inf2 9150  ax-cc 9908 This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-fal 1551  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2557  df-eu 2588  df-clab 2736  df-cleq 2750  df-clel 2830  df-nfc 2901  df-ne 2952  df-ral 3075  df-rex 3076  df-reu 3077  df-rab 3079  df-v 3411  df-sbc 3699  df-csb 3808  df-dif 3863  df-un 3865  df-in 3867  df-ss 3877  df-pss 3879  df-nul 4228  df-if 4424  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4802  df-iun 4888  df-br 5037  df-opab 5099  df-mpt 5117  df-tr 5143  df-id 5434  df-eprel 5439  df-po 5447  df-so 5448  df-fr 5487  df-we 5489  df-xp 5534  df-rel 5535  df-cnv 5536  df-co 5537  df-dm 5538  df-rn 5539  df-res 5540  df-ima 5541  df-ord 6177  df-on 6178  df-lim 6179  df-suc 6180  df-iota 6299  df-fun 6342  df-fn 6343  df-f 6344  df-f1 6345  df-fo 6346  df-f1o 6347  df-fv 6348  df-om 7586  df-2nd 7700  df-er 8305  df-en 8541 This theorem is referenced by:  axcc2  9910
 Copyright terms: Public domain W3C validator