Step | Hyp | Ref
| Expression |
1 | | axccd.1 |
. . 3
⊢ (𝜑 → 𝐴 ≈ ω) |
2 | | encv 8741 |
. . . . 5
⊢ (𝐴 ≈ ω → (𝐴 ∈ V ∧ ω ∈
V)) |
3 | 2 | simpld 495 |
. . . 4
⊢ (𝐴 ≈ ω → 𝐴 ∈ V) |
4 | | breq1 5077 |
. . . . . 6
⊢ (𝑦 = 𝐴 → (𝑦 ≈ ω ↔ 𝐴 ≈ ω)) |
5 | | raleq 3342 |
. . . . . . 7
⊢ (𝑦 = 𝐴 → (∀𝑥 ∈ 𝑦 (𝑥 ≠ ∅ → (𝑓‘𝑥) ∈ 𝑥) ↔ ∀𝑥 ∈ 𝐴 (𝑥 ≠ ∅ → (𝑓‘𝑥) ∈ 𝑥))) |
6 | 5 | exbidv 1924 |
. . . . . 6
⊢ (𝑦 = 𝐴 → (∃𝑓∀𝑥 ∈ 𝑦 (𝑥 ≠ ∅ → (𝑓‘𝑥) ∈ 𝑥) ↔ ∃𝑓∀𝑥 ∈ 𝐴 (𝑥 ≠ ∅ → (𝑓‘𝑥) ∈ 𝑥))) |
7 | 4, 6 | imbi12d 345 |
. . . . 5
⊢ (𝑦 = 𝐴 → ((𝑦 ≈ ω → ∃𝑓∀𝑥 ∈ 𝑦 (𝑥 ≠ ∅ → (𝑓‘𝑥) ∈ 𝑥)) ↔ (𝐴 ≈ ω → ∃𝑓∀𝑥 ∈ 𝐴 (𝑥 ≠ ∅ → (𝑓‘𝑥) ∈ 𝑥)))) |
8 | | ax-cc 10191 |
. . . . 5
⊢ (𝑦 ≈ ω →
∃𝑓∀𝑥 ∈ 𝑦 (𝑥 ≠ ∅ → (𝑓‘𝑥) ∈ 𝑥)) |
9 | 7, 8 | vtoclg 3505 |
. . . 4
⊢ (𝐴 ∈ V → (𝐴 ≈ ω →
∃𝑓∀𝑥 ∈ 𝐴 (𝑥 ≠ ∅ → (𝑓‘𝑥) ∈ 𝑥))) |
10 | 1, 3, 9 | 3syl 18 |
. . 3
⊢ (𝜑 → (𝐴 ≈ ω → ∃𝑓∀𝑥 ∈ 𝐴 (𝑥 ≠ ∅ → (𝑓‘𝑥) ∈ 𝑥))) |
11 | 1, 10 | mpd 15 |
. 2
⊢ (𝜑 → ∃𝑓∀𝑥 ∈ 𝐴 (𝑥 ≠ ∅ → (𝑓‘𝑥) ∈ 𝑥)) |
12 | | nfv 1917 |
. . . . . 6
⊢
Ⅎ𝑥𝜑 |
13 | | nfra1 3144 |
. . . . . 6
⊢
Ⅎ𝑥∀𝑥 ∈ 𝐴 (𝑥 ≠ ∅ → (𝑓‘𝑥) ∈ 𝑥) |
14 | 12, 13 | nfan 1902 |
. . . . 5
⊢
Ⅎ𝑥(𝜑 ∧ ∀𝑥 ∈ 𝐴 (𝑥 ≠ ∅ → (𝑓‘𝑥) ∈ 𝑥)) |
15 | | axccd.2 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝑥 ≠ ∅) |
16 | 15 | adantlr 712 |
. . . . . 6
⊢ (((𝜑 ∧ ∀𝑥 ∈ 𝐴 (𝑥 ≠ ∅ → (𝑓‘𝑥) ∈ 𝑥)) ∧ 𝑥 ∈ 𝐴) → 𝑥 ≠ ∅) |
17 | | rspa 3132 |
. . . . . . 7
⊢
((∀𝑥 ∈
𝐴 (𝑥 ≠ ∅ → (𝑓‘𝑥) ∈ 𝑥) ∧ 𝑥 ∈ 𝐴) → (𝑥 ≠ ∅ → (𝑓‘𝑥) ∈ 𝑥)) |
18 | 17 | adantll 711 |
. . . . . 6
⊢ (((𝜑 ∧ ∀𝑥 ∈ 𝐴 (𝑥 ≠ ∅ → (𝑓‘𝑥) ∈ 𝑥)) ∧ 𝑥 ∈ 𝐴) → (𝑥 ≠ ∅ → (𝑓‘𝑥) ∈ 𝑥)) |
19 | 16, 18 | mpd 15 |
. . . . 5
⊢ (((𝜑 ∧ ∀𝑥 ∈ 𝐴 (𝑥 ≠ ∅ → (𝑓‘𝑥) ∈ 𝑥)) ∧ 𝑥 ∈ 𝐴) → (𝑓‘𝑥) ∈ 𝑥) |
20 | 14, 19 | ralrimia 3430 |
. . . 4
⊢ ((𝜑 ∧ ∀𝑥 ∈ 𝐴 (𝑥 ≠ ∅ → (𝑓‘𝑥) ∈ 𝑥)) → ∀𝑥 ∈ 𝐴 (𝑓‘𝑥) ∈ 𝑥) |
21 | 20 | ex 413 |
. . 3
⊢ (𝜑 → (∀𝑥 ∈ 𝐴 (𝑥 ≠ ∅ → (𝑓‘𝑥) ∈ 𝑥) → ∀𝑥 ∈ 𝐴 (𝑓‘𝑥) ∈ 𝑥)) |
22 | 21 | eximdv 1920 |
. 2
⊢ (𝜑 → (∃𝑓∀𝑥 ∈ 𝐴 (𝑥 ≠ ∅ → (𝑓‘𝑥) ∈ 𝑥) → ∃𝑓∀𝑥 ∈ 𝐴 (𝑓‘𝑥) ∈ 𝑥)) |
23 | 11, 22 | mpd 15 |
1
⊢ (𝜑 → ∃𝑓∀𝑥 ∈ 𝐴 (𝑓‘𝑥) ∈ 𝑥) |