| Step | Hyp | Ref
| Expression |
| 1 | | axccd.1 |
. . 3
⊢ (𝜑 → 𝐴 ≈ ω) |
| 2 | | encv 8993 |
. . . . 5
⊢ (𝐴 ≈ ω → (𝐴 ∈ V ∧ ω ∈
V)) |
| 3 | 2 | simpld 494 |
. . . 4
⊢ (𝐴 ≈ ω → 𝐴 ∈ V) |
| 4 | | breq1 5146 |
. . . . . 6
⊢ (𝑦 = 𝐴 → (𝑦 ≈ ω ↔ 𝐴 ≈ ω)) |
| 5 | | raleq 3323 |
. . . . . . 7
⊢ (𝑦 = 𝐴 → (∀𝑥 ∈ 𝑦 (𝑥 ≠ ∅ → (𝑓‘𝑥) ∈ 𝑥) ↔ ∀𝑥 ∈ 𝐴 (𝑥 ≠ ∅ → (𝑓‘𝑥) ∈ 𝑥))) |
| 6 | 5 | exbidv 1921 |
. . . . . 6
⊢ (𝑦 = 𝐴 → (∃𝑓∀𝑥 ∈ 𝑦 (𝑥 ≠ ∅ → (𝑓‘𝑥) ∈ 𝑥) ↔ ∃𝑓∀𝑥 ∈ 𝐴 (𝑥 ≠ ∅ → (𝑓‘𝑥) ∈ 𝑥))) |
| 7 | 4, 6 | imbi12d 344 |
. . . . 5
⊢ (𝑦 = 𝐴 → ((𝑦 ≈ ω → ∃𝑓∀𝑥 ∈ 𝑦 (𝑥 ≠ ∅ → (𝑓‘𝑥) ∈ 𝑥)) ↔ (𝐴 ≈ ω → ∃𝑓∀𝑥 ∈ 𝐴 (𝑥 ≠ ∅ → (𝑓‘𝑥) ∈ 𝑥)))) |
| 8 | | ax-cc 10475 |
. . . . 5
⊢ (𝑦 ≈ ω →
∃𝑓∀𝑥 ∈ 𝑦 (𝑥 ≠ ∅ → (𝑓‘𝑥) ∈ 𝑥)) |
| 9 | 7, 8 | vtoclg 3554 |
. . . 4
⊢ (𝐴 ∈ V → (𝐴 ≈ ω →
∃𝑓∀𝑥 ∈ 𝐴 (𝑥 ≠ ∅ → (𝑓‘𝑥) ∈ 𝑥))) |
| 10 | 1, 3, 9 | 3syl 18 |
. . 3
⊢ (𝜑 → (𝐴 ≈ ω → ∃𝑓∀𝑥 ∈ 𝐴 (𝑥 ≠ ∅ → (𝑓‘𝑥) ∈ 𝑥))) |
| 11 | 1, 10 | mpd 15 |
. 2
⊢ (𝜑 → ∃𝑓∀𝑥 ∈ 𝐴 (𝑥 ≠ ∅ → (𝑓‘𝑥) ∈ 𝑥)) |
| 12 | | nfv 1914 |
. . . . . 6
⊢
Ⅎ𝑥𝜑 |
| 13 | | nfra1 3284 |
. . . . . 6
⊢
Ⅎ𝑥∀𝑥 ∈ 𝐴 (𝑥 ≠ ∅ → (𝑓‘𝑥) ∈ 𝑥) |
| 14 | 12, 13 | nfan 1899 |
. . . . 5
⊢
Ⅎ𝑥(𝜑 ∧ ∀𝑥 ∈ 𝐴 (𝑥 ≠ ∅ → (𝑓‘𝑥) ∈ 𝑥)) |
| 15 | | axccd.2 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝑥 ≠ ∅) |
| 16 | 15 | adantlr 715 |
. . . . . 6
⊢ (((𝜑 ∧ ∀𝑥 ∈ 𝐴 (𝑥 ≠ ∅ → (𝑓‘𝑥) ∈ 𝑥)) ∧ 𝑥 ∈ 𝐴) → 𝑥 ≠ ∅) |
| 17 | | rspa 3248 |
. . . . . . 7
⊢
((∀𝑥 ∈
𝐴 (𝑥 ≠ ∅ → (𝑓‘𝑥) ∈ 𝑥) ∧ 𝑥 ∈ 𝐴) → (𝑥 ≠ ∅ → (𝑓‘𝑥) ∈ 𝑥)) |
| 18 | 17 | adantll 714 |
. . . . . 6
⊢ (((𝜑 ∧ ∀𝑥 ∈ 𝐴 (𝑥 ≠ ∅ → (𝑓‘𝑥) ∈ 𝑥)) ∧ 𝑥 ∈ 𝐴) → (𝑥 ≠ ∅ → (𝑓‘𝑥) ∈ 𝑥)) |
| 19 | 16, 18 | mpd 15 |
. . . . 5
⊢ (((𝜑 ∧ ∀𝑥 ∈ 𝐴 (𝑥 ≠ ∅ → (𝑓‘𝑥) ∈ 𝑥)) ∧ 𝑥 ∈ 𝐴) → (𝑓‘𝑥) ∈ 𝑥) |
| 20 | 14, 19 | ralrimia 3258 |
. . . 4
⊢ ((𝜑 ∧ ∀𝑥 ∈ 𝐴 (𝑥 ≠ ∅ → (𝑓‘𝑥) ∈ 𝑥)) → ∀𝑥 ∈ 𝐴 (𝑓‘𝑥) ∈ 𝑥) |
| 21 | 20 | ex 412 |
. . 3
⊢ (𝜑 → (∀𝑥 ∈ 𝐴 (𝑥 ≠ ∅ → (𝑓‘𝑥) ∈ 𝑥) → ∀𝑥 ∈ 𝐴 (𝑓‘𝑥) ∈ 𝑥)) |
| 22 | 21 | eximdv 1917 |
. 2
⊢ (𝜑 → (∃𝑓∀𝑥 ∈ 𝐴 (𝑥 ≠ ∅ → (𝑓‘𝑥) ∈ 𝑥) → ∃𝑓∀𝑥 ∈ 𝐴 (𝑓‘𝑥) ∈ 𝑥)) |
| 23 | 11, 22 | mpd 15 |
1
⊢ (𝜑 → ∃𝑓∀𝑥 ∈ 𝐴 (𝑓‘𝑥) ∈ 𝑥) |