Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  axccd Structured version   Visualization version   GIF version

Theorem axccd 45234
Description: An alternative version of the axiom of countable choice. (Contributed by Glauco Siliprandi, 26-Jun-2021.)
Hypotheses
Ref Expression
axccd.1 (𝜑𝐴 ≈ ω)
axccd.2 ((𝜑𝑥𝐴) → 𝑥 ≠ ∅)
Assertion
Ref Expression
axccd (𝜑 → ∃𝑓𝑥𝐴 (𝑓𝑥) ∈ 𝑥)
Distinct variable groups:   𝐴,𝑓,𝑥   𝜑,𝑓,𝑥

Proof of Theorem axccd
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 axccd.1 . . 3 (𝜑𝐴 ≈ ω)
2 encv 8993 . . . . 5 (𝐴 ≈ ω → (𝐴 ∈ V ∧ ω ∈ V))
32simpld 494 . . . 4 (𝐴 ≈ ω → 𝐴 ∈ V)
4 breq1 5146 . . . . . 6 (𝑦 = 𝐴 → (𝑦 ≈ ω ↔ 𝐴 ≈ ω))
5 raleq 3323 . . . . . . 7 (𝑦 = 𝐴 → (∀𝑥𝑦 (𝑥 ≠ ∅ → (𝑓𝑥) ∈ 𝑥) ↔ ∀𝑥𝐴 (𝑥 ≠ ∅ → (𝑓𝑥) ∈ 𝑥)))
65exbidv 1921 . . . . . 6 (𝑦 = 𝐴 → (∃𝑓𝑥𝑦 (𝑥 ≠ ∅ → (𝑓𝑥) ∈ 𝑥) ↔ ∃𝑓𝑥𝐴 (𝑥 ≠ ∅ → (𝑓𝑥) ∈ 𝑥)))
74, 6imbi12d 344 . . . . 5 (𝑦 = 𝐴 → ((𝑦 ≈ ω → ∃𝑓𝑥𝑦 (𝑥 ≠ ∅ → (𝑓𝑥) ∈ 𝑥)) ↔ (𝐴 ≈ ω → ∃𝑓𝑥𝐴 (𝑥 ≠ ∅ → (𝑓𝑥) ∈ 𝑥))))
8 ax-cc 10475 . . . . 5 (𝑦 ≈ ω → ∃𝑓𝑥𝑦 (𝑥 ≠ ∅ → (𝑓𝑥) ∈ 𝑥))
97, 8vtoclg 3554 . . . 4 (𝐴 ∈ V → (𝐴 ≈ ω → ∃𝑓𝑥𝐴 (𝑥 ≠ ∅ → (𝑓𝑥) ∈ 𝑥)))
101, 3, 93syl 18 . . 3 (𝜑 → (𝐴 ≈ ω → ∃𝑓𝑥𝐴 (𝑥 ≠ ∅ → (𝑓𝑥) ∈ 𝑥)))
111, 10mpd 15 . 2 (𝜑 → ∃𝑓𝑥𝐴 (𝑥 ≠ ∅ → (𝑓𝑥) ∈ 𝑥))
12 nfv 1914 . . . . . 6 𝑥𝜑
13 nfra1 3284 . . . . . 6 𝑥𝑥𝐴 (𝑥 ≠ ∅ → (𝑓𝑥) ∈ 𝑥)
1412, 13nfan 1899 . . . . 5 𝑥(𝜑 ∧ ∀𝑥𝐴 (𝑥 ≠ ∅ → (𝑓𝑥) ∈ 𝑥))
15 axccd.2 . . . . . . 7 ((𝜑𝑥𝐴) → 𝑥 ≠ ∅)
1615adantlr 715 . . . . . 6 (((𝜑 ∧ ∀𝑥𝐴 (𝑥 ≠ ∅ → (𝑓𝑥) ∈ 𝑥)) ∧ 𝑥𝐴) → 𝑥 ≠ ∅)
17 rspa 3248 . . . . . . 7 ((∀𝑥𝐴 (𝑥 ≠ ∅ → (𝑓𝑥) ∈ 𝑥) ∧ 𝑥𝐴) → (𝑥 ≠ ∅ → (𝑓𝑥) ∈ 𝑥))
1817adantll 714 . . . . . 6 (((𝜑 ∧ ∀𝑥𝐴 (𝑥 ≠ ∅ → (𝑓𝑥) ∈ 𝑥)) ∧ 𝑥𝐴) → (𝑥 ≠ ∅ → (𝑓𝑥) ∈ 𝑥))
1916, 18mpd 15 . . . . 5 (((𝜑 ∧ ∀𝑥𝐴 (𝑥 ≠ ∅ → (𝑓𝑥) ∈ 𝑥)) ∧ 𝑥𝐴) → (𝑓𝑥) ∈ 𝑥)
2014, 19ralrimia 3258 . . . 4 ((𝜑 ∧ ∀𝑥𝐴 (𝑥 ≠ ∅ → (𝑓𝑥) ∈ 𝑥)) → ∀𝑥𝐴 (𝑓𝑥) ∈ 𝑥)
2120ex 412 . . 3 (𝜑 → (∀𝑥𝐴 (𝑥 ≠ ∅ → (𝑓𝑥) ∈ 𝑥) → ∀𝑥𝐴 (𝑓𝑥) ∈ 𝑥))
2221eximdv 1917 . 2 (𝜑 → (∃𝑓𝑥𝐴 (𝑥 ≠ ∅ → (𝑓𝑥) ∈ 𝑥) → ∃𝑓𝑥𝐴 (𝑓𝑥) ∈ 𝑥))
2311, 22mpd 15 1 (𝜑 → ∃𝑓𝑥𝐴 (𝑓𝑥) ∈ 𝑥)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wex 1779  wcel 2108  wne 2940  wral 3061  Vcvv 3480  c0 4333   class class class wbr 5143  cfv 6561  ωcom 7887  cen 8982
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-12 2177  ax-ext 2708  ax-sep 5296  ax-nul 5306  ax-pr 5432  ax-cc 10475
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-clab 2715  df-cleq 2729  df-clel 2816  df-ral 3062  df-rex 3071  df-rab 3437  df-v 3482  df-dif 3954  df-un 3956  df-ss 3968  df-nul 4334  df-if 4526  df-sn 4627  df-pr 4629  df-op 4633  df-br 5144  df-opab 5206  df-xp 5691  df-rel 5692  df-en 8986
This theorem is referenced by:  axccd2  45235
  Copyright terms: Public domain W3C validator