Mathbox for Glauco Siliprandi < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  axccd Structured version   Visualization version   GIF version

Theorem axccd 41848
 Description: An alternative version of the axiom of countable choice. (Contributed by Glauco Siliprandi, 26-Jun-2021.)
Hypotheses
Ref Expression
axccd.1 (𝜑𝐴 ≈ ω)
axccd.2 ((𝜑𝑥𝐴) → 𝑥 ≠ ∅)
Assertion
Ref Expression
axccd (𝜑 → ∃𝑓𝑥𝐴 (𝑓𝑥) ∈ 𝑥)
Distinct variable groups:   𝐴,𝑓,𝑥   𝜑,𝑓,𝑥

Proof of Theorem axccd
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 axccd.1 . . 3 (𝜑𝐴 ≈ ω)
2 encv 8504 . . . . 5 (𝐴 ≈ ω → (𝐴 ∈ V ∧ ω ∈ V))
32simpld 498 . . . 4 (𝐴 ≈ ω → 𝐴 ∈ V)
4 breq1 5036 . . . . . 6 (𝑦 = 𝐴 → (𝑦 ≈ ω ↔ 𝐴 ≈ ω))
5 raleq 3361 . . . . . . 7 (𝑦 = 𝐴 → (∀𝑥𝑦 (𝑥 ≠ ∅ → (𝑓𝑥) ∈ 𝑥) ↔ ∀𝑥𝐴 (𝑥 ≠ ∅ → (𝑓𝑥) ∈ 𝑥)))
65exbidv 1922 . . . . . 6 (𝑦 = 𝐴 → (∃𝑓𝑥𝑦 (𝑥 ≠ ∅ → (𝑓𝑥) ∈ 𝑥) ↔ ∃𝑓𝑥𝐴 (𝑥 ≠ ∅ → (𝑓𝑥) ∈ 𝑥)))
74, 6imbi12d 348 . . . . 5 (𝑦 = 𝐴 → ((𝑦 ≈ ω → ∃𝑓𝑥𝑦 (𝑥 ≠ ∅ → (𝑓𝑥) ∈ 𝑥)) ↔ (𝐴 ≈ ω → ∃𝑓𝑥𝐴 (𝑥 ≠ ∅ → (𝑓𝑥) ∈ 𝑥))))
8 ax-cc 9850 . . . . 5 (𝑦 ≈ ω → ∃𝑓𝑥𝑦 (𝑥 ≠ ∅ → (𝑓𝑥) ∈ 𝑥))
97, 8vtoclg 3518 . . . 4 (𝐴 ∈ V → (𝐴 ≈ ω → ∃𝑓𝑥𝐴 (𝑥 ≠ ∅ → (𝑓𝑥) ∈ 𝑥)))
101, 3, 93syl 18 . . 3 (𝜑 → (𝐴 ≈ ω → ∃𝑓𝑥𝐴 (𝑥 ≠ ∅ → (𝑓𝑥) ∈ 𝑥)))
111, 10mpd 15 . 2 (𝜑 → ∃𝑓𝑥𝐴 (𝑥 ≠ ∅ → (𝑓𝑥) ∈ 𝑥))
12 nfv 1915 . . . . . 6 𝑥𝜑
13 nfra1 3186 . . . . . 6 𝑥𝑥𝐴 (𝑥 ≠ ∅ → (𝑓𝑥) ∈ 𝑥)
1412, 13nfan 1900 . . . . 5 𝑥(𝜑 ∧ ∀𝑥𝐴 (𝑥 ≠ ∅ → (𝑓𝑥) ∈ 𝑥))
15 axccd.2 . . . . . . 7 ((𝜑𝑥𝐴) → 𝑥 ≠ ∅)
1615adantlr 714 . . . . . 6 (((𝜑 ∧ ∀𝑥𝐴 (𝑥 ≠ ∅ → (𝑓𝑥) ∈ 𝑥)) ∧ 𝑥𝐴) → 𝑥 ≠ ∅)
17 rspa 3174 . . . . . . 7 ((∀𝑥𝐴 (𝑥 ≠ ∅ → (𝑓𝑥) ∈ 𝑥) ∧ 𝑥𝐴) → (𝑥 ≠ ∅ → (𝑓𝑥) ∈ 𝑥))
1817adantll 713 . . . . . 6 (((𝜑 ∧ ∀𝑥𝐴 (𝑥 ≠ ∅ → (𝑓𝑥) ∈ 𝑥)) ∧ 𝑥𝐴) → (𝑥 ≠ ∅ → (𝑓𝑥) ∈ 𝑥))
1916, 18mpd 15 . . . . 5 (((𝜑 ∧ ∀𝑥𝐴 (𝑥 ≠ ∅ → (𝑓𝑥) ∈ 𝑥)) ∧ 𝑥𝐴) → (𝑓𝑥) ∈ 𝑥)
2014, 19ralrimia 41754 . . . 4 ((𝜑 ∧ ∀𝑥𝐴 (𝑥 ≠ ∅ → (𝑓𝑥) ∈ 𝑥)) → ∀𝑥𝐴 (𝑓𝑥) ∈ 𝑥)
2120ex 416 . . 3 (𝜑 → (∀𝑥𝐴 (𝑥 ≠ ∅ → (𝑓𝑥) ∈ 𝑥) → ∀𝑥𝐴 (𝑓𝑥) ∈ 𝑥))
2221eximdv 1918 . 2 (𝜑 → (∃𝑓𝑥𝐴 (𝑥 ≠ ∅ → (𝑓𝑥) ∈ 𝑥) → ∃𝑓𝑥𝐴 (𝑓𝑥) ∈ 𝑥))
2311, 22mpd 15 1 (𝜑 → ∃𝑓𝑥𝐴 (𝑓𝑥) ∈ 𝑥)
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ wa 399   = wceq 1538  ∃wex 1781   ∈ wcel 2112   ≠ wne 2990  ∀wral 3109  Vcvv 3444  ∅c0 4246   class class class wbr 5033  ‘cfv 6328  ωcom 7564   ≈ cen 8493 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2159  ax-12 2176  ax-ext 2773  ax-sep 5170  ax-nul 5177  ax-pr 5298  ax-cc 9850 This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-clab 2780  df-cleq 2794  df-clel 2873  df-nfc 2941  df-ral 3114  df-rex 3115  df-v 3446  df-dif 3887  df-un 3889  df-in 3891  df-ss 3901  df-nul 4247  df-if 4429  df-sn 4529  df-pr 4531  df-op 4535  df-br 5034  df-opab 5096  df-xp 5529  df-rel 5530  df-en 8497 This theorem is referenced by:  axccd2  41849
 Copyright terms: Public domain W3C validator