Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  axccd Structured version   Visualization version   GIF version

Theorem axccd 45223
Description: An alternative version of the axiom of countable choice. (Contributed by Glauco Siliprandi, 26-Jun-2021.)
Hypotheses
Ref Expression
axccd.1 (𝜑𝐴 ≈ ω)
axccd.2 ((𝜑𝑥𝐴) → 𝑥 ≠ ∅)
Assertion
Ref Expression
axccd (𝜑 → ∃𝑓𝑥𝐴 (𝑓𝑥) ∈ 𝑥)
Distinct variable groups:   𝐴,𝑓,𝑥   𝜑,𝑓,𝑥

Proof of Theorem axccd
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 axccd.1 . . 3 (𝜑𝐴 ≈ ω)
2 encv 8926 . . . . 5 (𝐴 ≈ ω → (𝐴 ∈ V ∧ ω ∈ V))
32simpld 494 . . . 4 (𝐴 ≈ ω → 𝐴 ∈ V)
4 breq1 5110 . . . . . 6 (𝑦 = 𝐴 → (𝑦 ≈ ω ↔ 𝐴 ≈ ω))
5 raleq 3296 . . . . . . 7 (𝑦 = 𝐴 → (∀𝑥𝑦 (𝑥 ≠ ∅ → (𝑓𝑥) ∈ 𝑥) ↔ ∀𝑥𝐴 (𝑥 ≠ ∅ → (𝑓𝑥) ∈ 𝑥)))
65exbidv 1921 . . . . . 6 (𝑦 = 𝐴 → (∃𝑓𝑥𝑦 (𝑥 ≠ ∅ → (𝑓𝑥) ∈ 𝑥) ↔ ∃𝑓𝑥𝐴 (𝑥 ≠ ∅ → (𝑓𝑥) ∈ 𝑥)))
74, 6imbi12d 344 . . . . 5 (𝑦 = 𝐴 → ((𝑦 ≈ ω → ∃𝑓𝑥𝑦 (𝑥 ≠ ∅ → (𝑓𝑥) ∈ 𝑥)) ↔ (𝐴 ≈ ω → ∃𝑓𝑥𝐴 (𝑥 ≠ ∅ → (𝑓𝑥) ∈ 𝑥))))
8 ax-cc 10388 . . . . 5 (𝑦 ≈ ω → ∃𝑓𝑥𝑦 (𝑥 ≠ ∅ → (𝑓𝑥) ∈ 𝑥))
97, 8vtoclg 3520 . . . 4 (𝐴 ∈ V → (𝐴 ≈ ω → ∃𝑓𝑥𝐴 (𝑥 ≠ ∅ → (𝑓𝑥) ∈ 𝑥)))
101, 3, 93syl 18 . . 3 (𝜑 → (𝐴 ≈ ω → ∃𝑓𝑥𝐴 (𝑥 ≠ ∅ → (𝑓𝑥) ∈ 𝑥)))
111, 10mpd 15 . 2 (𝜑 → ∃𝑓𝑥𝐴 (𝑥 ≠ ∅ → (𝑓𝑥) ∈ 𝑥))
12 nfv 1914 . . . . . 6 𝑥𝜑
13 nfra1 3261 . . . . . 6 𝑥𝑥𝐴 (𝑥 ≠ ∅ → (𝑓𝑥) ∈ 𝑥)
1412, 13nfan 1899 . . . . 5 𝑥(𝜑 ∧ ∀𝑥𝐴 (𝑥 ≠ ∅ → (𝑓𝑥) ∈ 𝑥))
15 axccd.2 . . . . . . 7 ((𝜑𝑥𝐴) → 𝑥 ≠ ∅)
1615adantlr 715 . . . . . 6 (((𝜑 ∧ ∀𝑥𝐴 (𝑥 ≠ ∅ → (𝑓𝑥) ∈ 𝑥)) ∧ 𝑥𝐴) → 𝑥 ≠ ∅)
17 rspa 3226 . . . . . . 7 ((∀𝑥𝐴 (𝑥 ≠ ∅ → (𝑓𝑥) ∈ 𝑥) ∧ 𝑥𝐴) → (𝑥 ≠ ∅ → (𝑓𝑥) ∈ 𝑥))
1817adantll 714 . . . . . 6 (((𝜑 ∧ ∀𝑥𝐴 (𝑥 ≠ ∅ → (𝑓𝑥) ∈ 𝑥)) ∧ 𝑥𝐴) → (𝑥 ≠ ∅ → (𝑓𝑥) ∈ 𝑥))
1916, 18mpd 15 . . . . 5 (((𝜑 ∧ ∀𝑥𝐴 (𝑥 ≠ ∅ → (𝑓𝑥) ∈ 𝑥)) ∧ 𝑥𝐴) → (𝑓𝑥) ∈ 𝑥)
2014, 19ralrimia 3236 . . . 4 ((𝜑 ∧ ∀𝑥𝐴 (𝑥 ≠ ∅ → (𝑓𝑥) ∈ 𝑥)) → ∀𝑥𝐴 (𝑓𝑥) ∈ 𝑥)
2120ex 412 . . 3 (𝜑 → (∀𝑥𝐴 (𝑥 ≠ ∅ → (𝑓𝑥) ∈ 𝑥) → ∀𝑥𝐴 (𝑓𝑥) ∈ 𝑥))
2221eximdv 1917 . 2 (𝜑 → (∃𝑓𝑥𝐴 (𝑥 ≠ ∅ → (𝑓𝑥) ∈ 𝑥) → ∃𝑓𝑥𝐴 (𝑓𝑥) ∈ 𝑥))
2311, 22mpd 15 1 (𝜑 → ∃𝑓𝑥𝐴 (𝑓𝑥) ∈ 𝑥)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wex 1779  wcel 2109  wne 2925  wral 3044  Vcvv 3447  c0 4296   class class class wbr 5107  cfv 6511  ωcom 7842  cen 8915
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-12 2178  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pr 5387  ax-cc 10388
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-ral 3045  df-rex 3054  df-rab 3406  df-v 3449  df-dif 3917  df-un 3919  df-ss 3931  df-nul 4297  df-if 4489  df-sn 4590  df-pr 4592  df-op 4596  df-br 5108  df-opab 5170  df-xp 5644  df-rel 5645  df-en 8919
This theorem is referenced by:  axccd2  45224
  Copyright terms: Public domain W3C validator