Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  axccd Structured version   Visualization version   GIF version

Theorem axccd 45220
Description: An alternative version of the axiom of countable choice. (Contributed by Glauco Siliprandi, 26-Jun-2021.)
Hypotheses
Ref Expression
axccd.1 (𝜑𝐴 ≈ ω)
axccd.2 ((𝜑𝑥𝐴) → 𝑥 ≠ ∅)
Assertion
Ref Expression
axccd (𝜑 → ∃𝑓𝑥𝐴 (𝑓𝑥) ∈ 𝑥)
Distinct variable groups:   𝐴,𝑓,𝑥   𝜑,𝑓,𝑥

Proof of Theorem axccd
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 axccd.1 . . 3 (𝜑𝐴 ≈ ω)
2 encv 8972 . . . . 5 (𝐴 ≈ ω → (𝐴 ∈ V ∧ ω ∈ V))
32simpld 494 . . . 4 (𝐴 ≈ ω → 𝐴 ∈ V)
4 breq1 5127 . . . . . 6 (𝑦 = 𝐴 → (𝑦 ≈ ω ↔ 𝐴 ≈ ω))
5 raleq 3306 . . . . . . 7 (𝑦 = 𝐴 → (∀𝑥𝑦 (𝑥 ≠ ∅ → (𝑓𝑥) ∈ 𝑥) ↔ ∀𝑥𝐴 (𝑥 ≠ ∅ → (𝑓𝑥) ∈ 𝑥)))
65exbidv 1921 . . . . . 6 (𝑦 = 𝐴 → (∃𝑓𝑥𝑦 (𝑥 ≠ ∅ → (𝑓𝑥) ∈ 𝑥) ↔ ∃𝑓𝑥𝐴 (𝑥 ≠ ∅ → (𝑓𝑥) ∈ 𝑥)))
74, 6imbi12d 344 . . . . 5 (𝑦 = 𝐴 → ((𝑦 ≈ ω → ∃𝑓𝑥𝑦 (𝑥 ≠ ∅ → (𝑓𝑥) ∈ 𝑥)) ↔ (𝐴 ≈ ω → ∃𝑓𝑥𝐴 (𝑥 ≠ ∅ → (𝑓𝑥) ∈ 𝑥))))
8 ax-cc 10454 . . . . 5 (𝑦 ≈ ω → ∃𝑓𝑥𝑦 (𝑥 ≠ ∅ → (𝑓𝑥) ∈ 𝑥))
97, 8vtoclg 3538 . . . 4 (𝐴 ∈ V → (𝐴 ≈ ω → ∃𝑓𝑥𝐴 (𝑥 ≠ ∅ → (𝑓𝑥) ∈ 𝑥)))
101, 3, 93syl 18 . . 3 (𝜑 → (𝐴 ≈ ω → ∃𝑓𝑥𝐴 (𝑥 ≠ ∅ → (𝑓𝑥) ∈ 𝑥)))
111, 10mpd 15 . 2 (𝜑 → ∃𝑓𝑥𝐴 (𝑥 ≠ ∅ → (𝑓𝑥) ∈ 𝑥))
12 nfv 1914 . . . . . 6 𝑥𝜑
13 nfra1 3270 . . . . . 6 𝑥𝑥𝐴 (𝑥 ≠ ∅ → (𝑓𝑥) ∈ 𝑥)
1412, 13nfan 1899 . . . . 5 𝑥(𝜑 ∧ ∀𝑥𝐴 (𝑥 ≠ ∅ → (𝑓𝑥) ∈ 𝑥))
15 axccd.2 . . . . . . 7 ((𝜑𝑥𝐴) → 𝑥 ≠ ∅)
1615adantlr 715 . . . . . 6 (((𝜑 ∧ ∀𝑥𝐴 (𝑥 ≠ ∅ → (𝑓𝑥) ∈ 𝑥)) ∧ 𝑥𝐴) → 𝑥 ≠ ∅)
17 rspa 3235 . . . . . . 7 ((∀𝑥𝐴 (𝑥 ≠ ∅ → (𝑓𝑥) ∈ 𝑥) ∧ 𝑥𝐴) → (𝑥 ≠ ∅ → (𝑓𝑥) ∈ 𝑥))
1817adantll 714 . . . . . 6 (((𝜑 ∧ ∀𝑥𝐴 (𝑥 ≠ ∅ → (𝑓𝑥) ∈ 𝑥)) ∧ 𝑥𝐴) → (𝑥 ≠ ∅ → (𝑓𝑥) ∈ 𝑥))
1916, 18mpd 15 . . . . 5 (((𝜑 ∧ ∀𝑥𝐴 (𝑥 ≠ ∅ → (𝑓𝑥) ∈ 𝑥)) ∧ 𝑥𝐴) → (𝑓𝑥) ∈ 𝑥)
2014, 19ralrimia 3245 . . . 4 ((𝜑 ∧ ∀𝑥𝐴 (𝑥 ≠ ∅ → (𝑓𝑥) ∈ 𝑥)) → ∀𝑥𝐴 (𝑓𝑥) ∈ 𝑥)
2120ex 412 . . 3 (𝜑 → (∀𝑥𝐴 (𝑥 ≠ ∅ → (𝑓𝑥) ∈ 𝑥) → ∀𝑥𝐴 (𝑓𝑥) ∈ 𝑥))
2221eximdv 1917 . 2 (𝜑 → (∃𝑓𝑥𝐴 (𝑥 ≠ ∅ → (𝑓𝑥) ∈ 𝑥) → ∃𝑓𝑥𝐴 (𝑓𝑥) ∈ 𝑥))
2311, 22mpd 15 1 (𝜑 → ∃𝑓𝑥𝐴 (𝑓𝑥) ∈ 𝑥)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wex 1779  wcel 2109  wne 2933  wral 3052  Vcvv 3464  c0 4313   class class class wbr 5124  cfv 6536  ωcom 7866  cen 8961
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-12 2178  ax-ext 2708  ax-sep 5271  ax-nul 5281  ax-pr 5407  ax-cc 10454
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-clab 2715  df-cleq 2728  df-clel 2810  df-ral 3053  df-rex 3062  df-rab 3421  df-v 3466  df-dif 3934  df-un 3936  df-ss 3948  df-nul 4314  df-if 4506  df-sn 4607  df-pr 4609  df-op 4613  df-br 5125  df-opab 5187  df-xp 5665  df-rel 5666  df-en 8965
This theorem is referenced by:  axccd2  45221
  Copyright terms: Public domain W3C validator