| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ac5 | Structured version Visualization version GIF version | ||
| Description: An Axiom of Choice equivalent: there exists a function 𝑓 (called a choice function) with domain 𝐴 that maps each nonempty member of the domain to an element of that member. Axiom AC of [BellMachover] p. 488. Note that the assertion that 𝑓 be a function is not necessary; see ac4 10515. (Contributed by NM, 29-Aug-1999.) |
| Ref | Expression |
|---|---|
| ac5.1 | ⊢ 𝐴 ∈ V |
| Ref | Expression |
|---|---|
| ac5 | ⊢ ∃𝑓(𝑓 Fn 𝐴 ∧ ∀𝑥 ∈ 𝐴 (𝑥 ≠ ∅ → (𝑓‘𝑥) ∈ 𝑥)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ac5.1 | . 2 ⊢ 𝐴 ∈ V | |
| 2 | fneq2 6660 | . . . 4 ⊢ (𝑦 = 𝐴 → (𝑓 Fn 𝑦 ↔ 𝑓 Fn 𝐴)) | |
| 3 | raleq 3323 | . . . 4 ⊢ (𝑦 = 𝐴 → (∀𝑥 ∈ 𝑦 (𝑥 ≠ ∅ → (𝑓‘𝑥) ∈ 𝑥) ↔ ∀𝑥 ∈ 𝐴 (𝑥 ≠ ∅ → (𝑓‘𝑥) ∈ 𝑥))) | |
| 4 | 2, 3 | anbi12d 632 | . . 3 ⊢ (𝑦 = 𝐴 → ((𝑓 Fn 𝑦 ∧ ∀𝑥 ∈ 𝑦 (𝑥 ≠ ∅ → (𝑓‘𝑥) ∈ 𝑥)) ↔ (𝑓 Fn 𝐴 ∧ ∀𝑥 ∈ 𝐴 (𝑥 ≠ ∅ → (𝑓‘𝑥) ∈ 𝑥)))) |
| 5 | 4 | exbidv 1921 | . 2 ⊢ (𝑦 = 𝐴 → (∃𝑓(𝑓 Fn 𝑦 ∧ ∀𝑥 ∈ 𝑦 (𝑥 ≠ ∅ → (𝑓‘𝑥) ∈ 𝑥)) ↔ ∃𝑓(𝑓 Fn 𝐴 ∧ ∀𝑥 ∈ 𝐴 (𝑥 ≠ ∅ → (𝑓‘𝑥) ∈ 𝑥)))) |
| 6 | dfac4 10162 | . . 3 ⊢ (CHOICE ↔ ∀𝑦∃𝑓(𝑓 Fn 𝑦 ∧ ∀𝑥 ∈ 𝑦 (𝑥 ≠ ∅ → (𝑓‘𝑥) ∈ 𝑥))) | |
| 7 | 6 | axaci 10508 | . 2 ⊢ ∃𝑓(𝑓 Fn 𝑦 ∧ ∀𝑥 ∈ 𝑦 (𝑥 ≠ ∅ → (𝑓‘𝑥) ∈ 𝑥)) |
| 8 | 1, 5, 7 | vtocl 3558 | 1 ⊢ ∃𝑓(𝑓 Fn 𝐴 ∧ ∀𝑥 ∈ 𝐴 (𝑥 ≠ ∅ → (𝑓‘𝑥) ∈ 𝑥)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∃wex 1779 ∈ wcel 2108 ≠ wne 2940 ∀wral 3061 Vcvv 3480 ∅c0 4333 Fn wfn 6556 ‘cfv 6561 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2708 ax-rep 5279 ax-sep 5296 ax-nul 5306 ax-pow 5365 ax-pr 5432 ax-un 7755 ax-ac2 10503 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3an 1089 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2892 df-ne 2941 df-ral 3062 df-rex 3071 df-rab 3437 df-v 3482 df-sbc 3789 df-csb 3900 df-dif 3954 df-un 3956 df-in 3958 df-ss 3968 df-nul 4334 df-if 4526 df-pw 4602 df-sn 4627 df-pr 4629 df-op 4633 df-uni 4908 df-iun 4993 df-br 5144 df-opab 5206 df-mpt 5226 df-id 5578 df-xp 5691 df-rel 5692 df-cnv 5693 df-co 5694 df-dm 5695 df-rn 5696 df-res 5697 df-ima 5698 df-iota 6514 df-fun 6563 df-fn 6564 df-f 6565 df-fv 6569 df-ac 10156 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |