| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ac5 | Structured version Visualization version GIF version | ||
| Description: An Axiom of Choice equivalent: there exists a function 𝑓 (called a choice function) with domain 𝐴 that maps each nonempty member of the domain to an element of that member. Axiom AC of [BellMachover] p. 488. Note that the assertion that 𝑓 be a function is not necessary; see ac4 10388. (Contributed by NM, 29-Aug-1999.) |
| Ref | Expression |
|---|---|
| ac5.1 | ⊢ 𝐴 ∈ V |
| Ref | Expression |
|---|---|
| ac5 | ⊢ ∃𝑓(𝑓 Fn 𝐴 ∧ ∀𝑥 ∈ 𝐴 (𝑥 ≠ ∅ → (𝑓‘𝑥) ∈ 𝑥)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ac5.1 | . 2 ⊢ 𝐴 ∈ V | |
| 2 | fneq2 6578 | . . . 4 ⊢ (𝑦 = 𝐴 → (𝑓 Fn 𝑦 ↔ 𝑓 Fn 𝐴)) | |
| 3 | raleq 3287 | . . . 4 ⊢ (𝑦 = 𝐴 → (∀𝑥 ∈ 𝑦 (𝑥 ≠ ∅ → (𝑓‘𝑥) ∈ 𝑥) ↔ ∀𝑥 ∈ 𝐴 (𝑥 ≠ ∅ → (𝑓‘𝑥) ∈ 𝑥))) | |
| 4 | 2, 3 | anbi12d 632 | . . 3 ⊢ (𝑦 = 𝐴 → ((𝑓 Fn 𝑦 ∧ ∀𝑥 ∈ 𝑦 (𝑥 ≠ ∅ → (𝑓‘𝑥) ∈ 𝑥)) ↔ (𝑓 Fn 𝐴 ∧ ∀𝑥 ∈ 𝐴 (𝑥 ≠ ∅ → (𝑓‘𝑥) ∈ 𝑥)))) |
| 5 | 4 | exbidv 1921 | . 2 ⊢ (𝑦 = 𝐴 → (∃𝑓(𝑓 Fn 𝑦 ∧ ∀𝑥 ∈ 𝑦 (𝑥 ≠ ∅ → (𝑓‘𝑥) ∈ 𝑥)) ↔ ∃𝑓(𝑓 Fn 𝐴 ∧ ∀𝑥 ∈ 𝐴 (𝑥 ≠ ∅ → (𝑓‘𝑥) ∈ 𝑥)))) |
| 6 | dfac4 10035 | . . 3 ⊢ (CHOICE ↔ ∀𝑦∃𝑓(𝑓 Fn 𝑦 ∧ ∀𝑥 ∈ 𝑦 (𝑥 ≠ ∅ → (𝑓‘𝑥) ∈ 𝑥))) | |
| 7 | 6 | axaci 10381 | . 2 ⊢ ∃𝑓(𝑓 Fn 𝑦 ∧ ∀𝑥 ∈ 𝑦 (𝑥 ≠ ∅ → (𝑓‘𝑥) ∈ 𝑥)) |
| 8 | 1, 5, 7 | vtocl 3515 | 1 ⊢ ∃𝑓(𝑓 Fn 𝐴 ∧ ∀𝑥 ∈ 𝐴 (𝑥 ≠ ∅ → (𝑓‘𝑥) ∈ 𝑥)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∃wex 1779 ∈ wcel 2109 ≠ wne 2925 ∀wral 3044 Vcvv 3438 ∅c0 4286 Fn wfn 6481 ‘cfv 6486 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5221 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7675 ax-ac2 10376 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3397 df-v 3440 df-sbc 3745 df-csb 3854 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-nul 4287 df-if 4479 df-pw 4555 df-sn 4580 df-pr 4582 df-op 4586 df-uni 4862 df-iun 4946 df-br 5096 df-opab 5158 df-mpt 5177 df-id 5518 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-rn 5634 df-res 5635 df-ima 5636 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-fv 6494 df-ac 10029 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |