![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ac5 | Structured version Visualization version GIF version |
Description: An Axiom of Choice equivalent: there exists a function 𝑓 (called a choice function) with domain 𝐴 that maps each nonempty member of the domain to an element of that member. Axiom AC of [BellMachover] p. 488. Note that the assertion that 𝑓 be a function is not necessary; see ac4 10466. (Contributed by NM, 29-Aug-1999.) |
Ref | Expression |
---|---|
ac5.1 | ⊢ 𝐴 ∈ V |
Ref | Expression |
---|---|
ac5 | ⊢ ∃𝑓(𝑓 Fn 𝐴 ∧ ∀𝑥 ∈ 𝐴 (𝑥 ≠ ∅ → (𝑓‘𝑥) ∈ 𝑥)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ac5.1 | . 2 ⊢ 𝐴 ∈ V | |
2 | fneq2 6631 | . . . 4 ⊢ (𝑦 = 𝐴 → (𝑓 Fn 𝑦 ↔ 𝑓 Fn 𝐴)) | |
3 | raleq 3314 | . . . 4 ⊢ (𝑦 = 𝐴 → (∀𝑥 ∈ 𝑦 (𝑥 ≠ ∅ → (𝑓‘𝑥) ∈ 𝑥) ↔ ∀𝑥 ∈ 𝐴 (𝑥 ≠ ∅ → (𝑓‘𝑥) ∈ 𝑥))) | |
4 | 2, 3 | anbi12d 630 | . . 3 ⊢ (𝑦 = 𝐴 → ((𝑓 Fn 𝑦 ∧ ∀𝑥 ∈ 𝑦 (𝑥 ≠ ∅ → (𝑓‘𝑥) ∈ 𝑥)) ↔ (𝑓 Fn 𝐴 ∧ ∀𝑥 ∈ 𝐴 (𝑥 ≠ ∅ → (𝑓‘𝑥) ∈ 𝑥)))) |
5 | 4 | exbidv 1916 | . 2 ⊢ (𝑦 = 𝐴 → (∃𝑓(𝑓 Fn 𝑦 ∧ ∀𝑥 ∈ 𝑦 (𝑥 ≠ ∅ → (𝑓‘𝑥) ∈ 𝑥)) ↔ ∃𝑓(𝑓 Fn 𝐴 ∧ ∀𝑥 ∈ 𝐴 (𝑥 ≠ ∅ → (𝑓‘𝑥) ∈ 𝑥)))) |
6 | dfac4 10113 | . . 3 ⊢ (CHOICE ↔ ∀𝑦∃𝑓(𝑓 Fn 𝑦 ∧ ∀𝑥 ∈ 𝑦 (𝑥 ≠ ∅ → (𝑓‘𝑥) ∈ 𝑥))) | |
7 | 6 | axaci 10459 | . 2 ⊢ ∃𝑓(𝑓 Fn 𝑦 ∧ ∀𝑥 ∈ 𝑦 (𝑥 ≠ ∅ → (𝑓‘𝑥) ∈ 𝑥)) |
8 | 1, 5, 7 | vtocl 3538 | 1 ⊢ ∃𝑓(𝑓 Fn 𝐴 ∧ ∀𝑥 ∈ 𝐴 (𝑥 ≠ ∅ → (𝑓‘𝑥) ∈ 𝑥)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1533 ∃wex 1773 ∈ wcel 2098 ≠ wne 2932 ∀wral 3053 Vcvv 3466 ∅c0 4314 Fn wfn 6528 ‘cfv 6533 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2695 ax-rep 5275 ax-sep 5289 ax-nul 5296 ax-pow 5353 ax-pr 5417 ax-un 7718 ax-ac2 10454 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2526 df-eu 2555 df-clab 2702 df-cleq 2716 df-clel 2802 df-nfc 2877 df-ne 2933 df-ral 3054 df-rex 3063 df-rab 3425 df-v 3468 df-sbc 3770 df-csb 3886 df-dif 3943 df-un 3945 df-in 3947 df-ss 3957 df-nul 4315 df-if 4521 df-pw 4596 df-sn 4621 df-pr 4623 df-op 4627 df-uni 4900 df-iun 4989 df-br 5139 df-opab 5201 df-mpt 5222 df-id 5564 df-xp 5672 df-rel 5673 df-cnv 5674 df-co 5675 df-dm 5676 df-rn 5677 df-res 5678 df-ima 5679 df-iota 6485 df-fun 6535 df-fn 6536 df-f 6537 df-fv 6541 df-ac 10107 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |