![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > axcc | Structured version Visualization version GIF version |
Description: Although CC can be proven trivially using ac5 10468, we prove it here using DC. (New usage is discouraged.) (Contributed by Mario Carneiro, 2-Feb-2013.) |
Ref | Expression |
---|---|
axcc | ⊢ (𝑥 ≈ ω → ∃𝑓∀𝑧 ∈ 𝑥 (𝑧 ≠ ∅ → (𝑓‘𝑧) ∈ 𝑧)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2732 | . 2 ⊢ (𝑥 ∖ {∅}) = (𝑥 ∖ {∅}) | |
2 | eqid 2732 | . 2 ⊢ (𝑡 ∈ ω, 𝑦 ∈ ∪ (𝑥 ∖ {∅}) ↦ (𝑣‘𝑡)) = (𝑡 ∈ ω, 𝑦 ∈ ∪ (𝑥 ∖ {∅}) ↦ (𝑣‘𝑡)) | |
3 | eqid 2732 | . 2 ⊢ (𝑤 ∈ (𝑥 ∖ {∅}) ↦ (𝑢‘suc (◡𝑣‘𝑤))) = (𝑤 ∈ (𝑥 ∖ {∅}) ↦ (𝑢‘suc (◡𝑣‘𝑤))) | |
4 | 1, 2, 3 | axcclem 10448 | 1 ⊢ (𝑥 ≈ ω → ∃𝑓∀𝑧 ∈ 𝑥 (𝑧 ≠ ∅ → (𝑓‘𝑧) ∈ 𝑧)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∃wex 1781 ∈ wcel 2106 ≠ wne 2940 ∀wral 3061 ∖ cdif 3944 ∅c0 4321 {csn 4627 ∪ cuni 4907 class class class wbr 5147 ↦ cmpt 5230 ◡ccnv 5674 suc csuc 6363 ‘cfv 6540 ∈ cmpo 7407 ωcom 7851 ≈ cen 8932 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-sep 5298 ax-nul 5305 ax-pow 5362 ax-pr 5426 ax-un 7721 ax-dc 10437 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-ral 3062 df-rex 3071 df-reu 3377 df-rab 3433 df-v 3476 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-pss 3966 df-nul 4322 df-if 4528 df-pw 4603 df-sn 4628 df-pr 4630 df-op 4634 df-uni 4908 df-int 4950 df-iun 4998 df-br 5148 df-opab 5210 df-mpt 5231 df-tr 5265 df-id 5573 df-eprel 5579 df-po 5587 df-so 5588 df-fr 5630 df-we 5632 df-xp 5681 df-rel 5682 df-cnv 5683 df-co 5684 df-dm 5685 df-rn 5686 df-res 5687 df-ima 5688 df-pred 6297 df-ord 6364 df-on 6365 df-lim 6366 df-suc 6367 df-iota 6492 df-fun 6542 df-fn 6543 df-f 6544 df-f1 6545 df-fo 6546 df-f1o 6547 df-fv 6548 df-ov 7408 df-oprab 7409 df-mpo 7410 df-om 7852 df-1st 7971 df-2nd 7972 df-frecs 8262 df-wrecs 8293 df-recs 8367 df-rdg 8406 df-1o 8462 df-er 8699 df-en 8936 df-dom 8937 df-sdom 8938 df-fin 8939 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |