Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > axcc | Structured version Visualization version GIF version |
Description: Although CC can be proven trivially using ac5 10139, we prove it here using DC. (New usage is discouraged.) (Contributed by Mario Carneiro, 2-Feb-2013.) |
Ref | Expression |
---|---|
axcc | ⊢ (𝑥 ≈ ω → ∃𝑓∀𝑧 ∈ 𝑥 (𝑧 ≠ ∅ → (𝑓‘𝑧) ∈ 𝑧)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2739 | . 2 ⊢ (𝑥 ∖ {∅}) = (𝑥 ∖ {∅}) | |
2 | eqid 2739 | . 2 ⊢ (𝑡 ∈ ω, 𝑦 ∈ ∪ (𝑥 ∖ {∅}) ↦ (𝑣‘𝑡)) = (𝑡 ∈ ω, 𝑦 ∈ ∪ (𝑥 ∖ {∅}) ↦ (𝑣‘𝑡)) | |
3 | eqid 2739 | . 2 ⊢ (𝑤 ∈ (𝑥 ∖ {∅}) ↦ (𝑢‘suc (◡𝑣‘𝑤))) = (𝑤 ∈ (𝑥 ∖ {∅}) ↦ (𝑢‘suc (◡𝑣‘𝑤))) | |
4 | 1, 2, 3 | axcclem 10119 | 1 ⊢ (𝑥 ≈ ω → ∃𝑓∀𝑧 ∈ 𝑥 (𝑧 ≠ ∅ → (𝑓‘𝑧) ∈ 𝑧)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∃wex 1787 ∈ wcel 2112 ≠ wne 2943 ∀wral 3064 ∖ cdif 3881 ∅c0 4254 {csn 4558 ∪ cuni 4836 class class class wbr 5070 ↦ cmpt 5152 ◡ccnv 5578 suc csuc 6250 ‘cfv 6415 ∈ cmpo 7254 ωcom 7684 ≈ cen 8665 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1803 ax-4 1817 ax-5 1918 ax-6 1976 ax-7 2016 ax-8 2114 ax-9 2122 ax-10 2143 ax-11 2160 ax-12 2177 ax-ext 2710 ax-sep 5216 ax-nul 5223 ax-pow 5282 ax-pr 5346 ax-un 7563 ax-dc 10108 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 848 df-3or 1090 df-3an 1091 df-tru 1546 df-fal 1556 df-ex 1788 df-nf 1792 df-sb 2073 df-mo 2541 df-eu 2570 df-clab 2717 df-cleq 2731 df-clel 2818 df-nfc 2889 df-ne 2944 df-ral 3069 df-rex 3070 df-reu 3071 df-rab 3073 df-v 3425 df-sbc 3713 df-csb 3830 df-dif 3887 df-un 3889 df-in 3891 df-ss 3901 df-pss 3903 df-nul 4255 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-int 4877 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5153 df-tr 5186 df-id 5479 df-eprel 5485 df-po 5493 df-so 5494 df-fr 5534 df-we 5536 df-xp 5585 df-rel 5586 df-cnv 5587 df-co 5588 df-dm 5589 df-rn 5590 df-res 5591 df-ima 5592 df-pred 6189 df-ord 6251 df-on 6252 df-lim 6253 df-suc 6254 df-iota 6373 df-fun 6417 df-fn 6418 df-f 6419 df-f1 6420 df-fo 6421 df-f1o 6422 df-fv 6423 df-ov 7255 df-oprab 7256 df-mpo 7257 df-om 7685 df-1st 7801 df-2nd 7802 df-wrecs 8089 df-recs 8150 df-rdg 8188 df-1o 8244 df-er 8433 df-en 8669 df-dom 8670 df-sdom 8671 df-fin 8672 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |