Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > axcc | Structured version Visualization version GIF version |
Description: Although CC can be proven trivially using ac5 9977, we prove it here using DC. (New usage is discouraged.) (Contributed by Mario Carneiro, 2-Feb-2013.) |
Ref | Expression |
---|---|
axcc | ⊢ (𝑥 ≈ ω → ∃𝑓∀𝑧 ∈ 𝑥 (𝑧 ≠ ∅ → (𝑓‘𝑧) ∈ 𝑧)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2738 | . 2 ⊢ (𝑥 ∖ {∅}) = (𝑥 ∖ {∅}) | |
2 | eqid 2738 | . 2 ⊢ (𝑡 ∈ ω, 𝑦 ∈ ∪ (𝑥 ∖ {∅}) ↦ (𝑣‘𝑡)) = (𝑡 ∈ ω, 𝑦 ∈ ∪ (𝑥 ∖ {∅}) ↦ (𝑣‘𝑡)) | |
3 | eqid 2738 | . 2 ⊢ (𝑤 ∈ (𝑥 ∖ {∅}) ↦ (𝑢‘suc (◡𝑣‘𝑤))) = (𝑤 ∈ (𝑥 ∖ {∅}) ↦ (𝑢‘suc (◡𝑣‘𝑤))) | |
4 | 1, 2, 3 | axcclem 9957 | 1 ⊢ (𝑥 ≈ ω → ∃𝑓∀𝑧 ∈ 𝑥 (𝑧 ≠ ∅ → (𝑓‘𝑧) ∈ 𝑧)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∃wex 1786 ∈ wcel 2114 ≠ wne 2934 ∀wral 3053 ∖ cdif 3840 ∅c0 4211 {csn 4516 ∪ cuni 4796 class class class wbr 5030 ↦ cmpt 5110 ◡ccnv 5524 suc csuc 6174 ‘cfv 6339 ∈ cmpo 7172 ωcom 7599 ≈ cen 8552 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1917 ax-6 1975 ax-7 2020 ax-8 2116 ax-9 2124 ax-10 2145 ax-11 2162 ax-12 2179 ax-ext 2710 ax-sep 5167 ax-nul 5174 ax-pow 5232 ax-pr 5296 ax-un 7479 ax-dc 9946 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 847 df-3or 1089 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1787 df-nf 1791 df-sb 2075 df-mo 2540 df-eu 2570 df-clab 2717 df-cleq 2730 df-clel 2811 df-nfc 2881 df-ne 2935 df-ral 3058 df-rex 3059 df-reu 3060 df-rab 3062 df-v 3400 df-sbc 3681 df-csb 3791 df-dif 3846 df-un 3848 df-in 3850 df-ss 3860 df-pss 3862 df-nul 4212 df-if 4415 df-pw 4490 df-sn 4517 df-pr 4519 df-tp 4521 df-op 4523 df-uni 4797 df-int 4837 df-iun 4883 df-br 5031 df-opab 5093 df-mpt 5111 df-tr 5137 df-id 5429 df-eprel 5434 df-po 5442 df-so 5443 df-fr 5483 df-we 5485 df-xp 5531 df-rel 5532 df-cnv 5533 df-co 5534 df-dm 5535 df-rn 5536 df-res 5537 df-ima 5538 df-pred 6129 df-ord 6175 df-on 6176 df-lim 6177 df-suc 6178 df-iota 6297 df-fun 6341 df-fn 6342 df-f 6343 df-f1 6344 df-fo 6345 df-f1o 6346 df-fv 6347 df-ov 7173 df-oprab 7174 df-mpo 7175 df-om 7600 df-1st 7714 df-2nd 7715 df-wrecs 7976 df-recs 8037 df-rdg 8075 df-1o 8131 df-er 8320 df-en 8556 df-dom 8557 df-sdom 8558 df-fin 8559 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |