MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  axcc Structured version   Visualization version   GIF version

Theorem axcc 10476
Description: Although CC can be proven trivially using ac5 10495, we prove it here using DC. (New usage is discouraged.) (Contributed by Mario Carneiro, 2-Feb-2013.)
Assertion
Ref Expression
axcc (𝑥 ≈ ω → ∃𝑓𝑧𝑥 (𝑧 ≠ ∅ → (𝑓𝑧) ∈ 𝑧))
Distinct variable group:   𝑥,𝑓,𝑧

Proof of Theorem axcc
Dummy variables 𝑡 𝑢 𝑣 𝑤 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2728 . 2 (𝑥 ∖ {∅}) = (𝑥 ∖ {∅})
2 eqid 2728 . 2 (𝑡 ∈ ω, 𝑦 (𝑥 ∖ {∅}) ↦ (𝑣𝑡)) = (𝑡 ∈ ω, 𝑦 (𝑥 ∖ {∅}) ↦ (𝑣𝑡))
3 eqid 2728 . 2 (𝑤 ∈ (𝑥 ∖ {∅}) ↦ (𝑢‘suc (𝑣𝑤))) = (𝑤 ∈ (𝑥 ∖ {∅}) ↦ (𝑢‘suc (𝑣𝑤)))
41, 2, 3axcclem 10475 1 (𝑥 ≈ ω → ∃𝑓𝑧𝑥 (𝑧 ≠ ∅ → (𝑓𝑧) ∈ 𝑧))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wex 1774  wcel 2099  wne 2936  wral 3057  cdif 3942  c0 4319  {csn 4625   cuni 4904   class class class wbr 5143  cmpt 5226  ccnv 5672  suc csuc 6366  cfv 6543  cmpo 7417  ωcom 7865  cen 8955
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2699  ax-sep 5294  ax-nul 5301  ax-pow 5360  ax-pr 5424  ax-un 7735  ax-dc 10464
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 847  df-3or 1086  df-3an 1087  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2530  df-eu 2559  df-clab 2706  df-cleq 2720  df-clel 2806  df-nfc 2881  df-ne 2937  df-ral 3058  df-rex 3067  df-reu 3373  df-rab 3429  df-v 3472  df-sbc 3776  df-csb 3891  df-dif 3948  df-un 3950  df-in 3952  df-ss 3962  df-pss 3964  df-nul 4320  df-if 4526  df-pw 4601  df-sn 4626  df-pr 4628  df-op 4632  df-uni 4905  df-int 4946  df-iun 4994  df-br 5144  df-opab 5206  df-mpt 5227  df-tr 5261  df-id 5571  df-eprel 5577  df-po 5585  df-so 5586  df-fr 5628  df-we 5630  df-xp 5679  df-rel 5680  df-cnv 5681  df-co 5682  df-dm 5683  df-rn 5684  df-res 5685  df-ima 5686  df-pred 6300  df-ord 6367  df-on 6368  df-lim 6369  df-suc 6370  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-ov 7418  df-oprab 7419  df-mpo 7420  df-om 7866  df-1st 7988  df-2nd 7989  df-frecs 8281  df-wrecs 8312  df-recs 8386  df-rdg 8425  df-1o 8481  df-er 8719  df-en 8959  df-dom 8960  df-sdom 8961  df-fin 8962
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator