![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > hsmex3 | Structured version Visualization version GIF version |
Description: The set of hereditary size-limited sets, assuming ax-reg 9616, using strict comparison (an easy corollary by separation). (Contributed by Stefan O'Rear, 11-Feb-2015.) |
Ref | Expression |
---|---|
hsmex3 | ⊢ (𝑋 ∈ 𝑉 → {𝑠 ∣ ∀𝑥 ∈ (TC‘{𝑠})𝑥 ≺ 𝑋} ∈ V) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sdomdom 9001 | . . . 4 ⊢ (𝑥 ≺ 𝑋 → 𝑥 ≼ 𝑋) | |
2 | 1 | ralimi 3080 | . . 3 ⊢ (∀𝑥 ∈ (TC‘{𝑠})𝑥 ≺ 𝑋 → ∀𝑥 ∈ (TC‘{𝑠})𝑥 ≼ 𝑋) |
3 | 2 | ss2abi 4061 | . 2 ⊢ {𝑠 ∣ ∀𝑥 ∈ (TC‘{𝑠})𝑥 ≺ 𝑋} ⊆ {𝑠 ∣ ∀𝑥 ∈ (TC‘{𝑠})𝑥 ≼ 𝑋} |
4 | hsmex2 10457 | . 2 ⊢ (𝑋 ∈ 𝑉 → {𝑠 ∣ ∀𝑥 ∈ (TC‘{𝑠})𝑥 ≼ 𝑋} ∈ V) | |
5 | ssexg 5323 | . 2 ⊢ (({𝑠 ∣ ∀𝑥 ∈ (TC‘{𝑠})𝑥 ≺ 𝑋} ⊆ {𝑠 ∣ ∀𝑥 ∈ (TC‘{𝑠})𝑥 ≼ 𝑋} ∧ {𝑠 ∣ ∀𝑥 ∈ (TC‘{𝑠})𝑥 ≼ 𝑋} ∈ V) → {𝑠 ∣ ∀𝑥 ∈ (TC‘{𝑠})𝑥 ≺ 𝑋} ∈ V) | |
6 | 3, 4, 5 | sylancr 586 | 1 ⊢ (𝑋 ∈ 𝑉 → {𝑠 ∣ ∀𝑥 ∈ (TC‘{𝑠})𝑥 ≺ 𝑋} ∈ V) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2099 {cab 2705 ∀wral 3058 Vcvv 3471 ⊆ wss 3947 {csn 4629 class class class wbr 5148 ‘cfv 6548 ≼ cdom 8962 ≺ csdm 8963 TCctc 9760 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2699 ax-rep 5285 ax-sep 5299 ax-nul 5306 ax-pow 5365 ax-pr 5429 ax-un 7740 ax-reg 9616 ax-inf2 9665 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3or 1086 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2530 df-eu 2559 df-clab 2706 df-cleq 2720 df-clel 2806 df-nfc 2881 df-ne 2938 df-ral 3059 df-rex 3068 df-rmo 3373 df-reu 3374 df-rab 3430 df-v 3473 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-pss 3966 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4909 df-int 4950 df-iun 4998 df-iin 4999 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5576 df-eprel 5582 df-po 5590 df-so 5591 df-fr 5633 df-se 5634 df-we 5635 df-xp 5684 df-rel 5685 df-cnv 5686 df-co 5687 df-dm 5688 df-rn 5689 df-res 5690 df-ima 5691 df-pred 6305 df-ord 6372 df-on 6373 df-lim 6374 df-suc 6375 df-iota 6500 df-fun 6550 df-fn 6551 df-f 6552 df-f1 6553 df-fo 6554 df-f1o 6555 df-fv 6556 df-isom 6557 df-riota 7376 df-ov 7423 df-om 7871 df-1st 7993 df-2nd 7994 df-frecs 8287 df-wrecs 8318 df-smo 8367 df-recs 8392 df-rdg 8431 df-en 8965 df-dom 8966 df-sdom 8967 df-oi 9534 df-har 9581 df-wdom 9589 df-tc 9761 df-r1 9788 df-rank 9789 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |