MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  hsmex3 Structured version   Visualization version   GIF version

Theorem hsmex3 10426
Description: The set of hereditary size-limited sets, assuming ax-reg 9584, using strict comparison (an easy corollary by separation). (Contributed by Stefan O'Rear, 11-Feb-2015.)
Assertion
Ref Expression
hsmex3 (𝑋𝑉 → {𝑠 ∣ ∀𝑥 ∈ (TC‘{𝑠})𝑥𝑋} ∈ V)
Distinct variable group:   𝑥,𝑠,𝑋
Allowed substitution hints:   𝑉(𝑥,𝑠)

Proof of Theorem hsmex3
StepHypRef Expression
1 sdomdom 8973 . . . 4 (𝑥𝑋𝑥𝑋)
21ralimi 3075 . . 3 (∀𝑥 ∈ (TC‘{𝑠})𝑥𝑋 → ∀𝑥 ∈ (TC‘{𝑠})𝑥𝑋)
32ss2abi 4056 . 2 {𝑠 ∣ ∀𝑥 ∈ (TC‘{𝑠})𝑥𝑋} ⊆ {𝑠 ∣ ∀𝑥 ∈ (TC‘{𝑠})𝑥𝑋}
4 hsmex2 10425 . 2 (𝑋𝑉 → {𝑠 ∣ ∀𝑥 ∈ (TC‘{𝑠})𝑥𝑋} ∈ V)
5 ssexg 5314 . 2 (({𝑠 ∣ ∀𝑥 ∈ (TC‘{𝑠})𝑥𝑋} ⊆ {𝑠 ∣ ∀𝑥 ∈ (TC‘{𝑠})𝑥𝑋} ∧ {𝑠 ∣ ∀𝑥 ∈ (TC‘{𝑠})𝑥𝑋} ∈ V) → {𝑠 ∣ ∀𝑥 ∈ (TC‘{𝑠})𝑥𝑋} ∈ V)
63, 4, 5sylancr 586 1 (𝑋𝑉 → {𝑠 ∣ ∀𝑥 ∈ (TC‘{𝑠})𝑥𝑋} ∈ V)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2098  {cab 2701  wral 3053  Vcvv 3466  wss 3941  {csn 4621   class class class wbr 5139  cfv 6534  cdom 8934  csdm 8935  TCctc 9728
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2163  ax-ext 2695  ax-rep 5276  ax-sep 5290  ax-nul 5297  ax-pow 5354  ax-pr 5418  ax-un 7719  ax-reg 9584  ax-inf2 9633
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2526  df-eu 2555  df-clab 2702  df-cleq 2716  df-clel 2802  df-nfc 2877  df-ne 2933  df-ral 3054  df-rex 3063  df-rmo 3368  df-reu 3369  df-rab 3425  df-v 3468  df-sbc 3771  df-csb 3887  df-dif 3944  df-un 3946  df-in 3948  df-ss 3958  df-pss 3960  df-nul 4316  df-if 4522  df-pw 4597  df-sn 4622  df-pr 4624  df-op 4628  df-uni 4901  df-int 4942  df-iun 4990  df-iin 4991  df-br 5140  df-opab 5202  df-mpt 5223  df-tr 5257  df-id 5565  df-eprel 5571  df-po 5579  df-so 5580  df-fr 5622  df-se 5623  df-we 5624  df-xp 5673  df-rel 5674  df-cnv 5675  df-co 5676  df-dm 5677  df-rn 5678  df-res 5679  df-ima 5680  df-pred 6291  df-ord 6358  df-on 6359  df-lim 6360  df-suc 6361  df-iota 6486  df-fun 6536  df-fn 6537  df-f 6538  df-f1 6539  df-fo 6540  df-f1o 6541  df-fv 6542  df-isom 6543  df-riota 7358  df-ov 7405  df-om 7850  df-1st 7969  df-2nd 7970  df-frecs 8262  df-wrecs 8293  df-smo 8342  df-recs 8367  df-rdg 8406  df-en 8937  df-dom 8938  df-sdom 8939  df-oi 9502  df-har 9549  df-wdom 9557  df-tc 9729  df-r1 9756  df-rank 9757
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator