MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  hsmex3 Structured version   Visualization version   GIF version

Theorem hsmex3 9702
Description: The set of hereditary size-limited sets, assuming ax-reg 8902, using strict comparison (an easy corollary by separation). (Contributed by Stefan O'Rear, 11-Feb-2015.)
Assertion
Ref Expression
hsmex3 (𝑋𝑉 → {𝑠 ∣ ∀𝑥 ∈ (TC‘{𝑠})𝑥𝑋} ∈ V)
Distinct variable group:   𝑥,𝑠,𝑋
Allowed substitution hints:   𝑉(𝑥,𝑠)

Proof of Theorem hsmex3
StepHypRef Expression
1 sdomdom 8385 . . . 4 (𝑥𝑋𝑥𝑋)
21ralimi 3127 . . 3 (∀𝑥 ∈ (TC‘{𝑠})𝑥𝑋 → ∀𝑥 ∈ (TC‘{𝑠})𝑥𝑋)
32ss2abi 3964 . 2 {𝑠 ∣ ∀𝑥 ∈ (TC‘{𝑠})𝑥𝑋} ⊆ {𝑠 ∣ ∀𝑥 ∈ (TC‘{𝑠})𝑥𝑋}
4 hsmex2 9701 . 2 (𝑋𝑉 → {𝑠 ∣ ∀𝑥 ∈ (TC‘{𝑠})𝑥𝑋} ∈ V)
5 ssexg 5118 . 2 (({𝑠 ∣ ∀𝑥 ∈ (TC‘{𝑠})𝑥𝑋} ⊆ {𝑠 ∣ ∀𝑥 ∈ (TC‘{𝑠})𝑥𝑋} ∧ {𝑠 ∣ ∀𝑥 ∈ (TC‘{𝑠})𝑥𝑋} ∈ V) → {𝑠 ∣ ∀𝑥 ∈ (TC‘{𝑠})𝑥𝑋} ∈ V)
63, 4, 5sylancr 587 1 (𝑋𝑉 → {𝑠 ∣ ∀𝑥 ∈ (TC‘{𝑠})𝑥𝑋} ∈ V)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2081  {cab 2775  wral 3105  Vcvv 3437  wss 3859  {csn 4472   class class class wbr 4962  cfv 6225  cdom 8355  csdm 8356  TCctc 9024
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1777  ax-4 1791  ax-5 1888  ax-6 1947  ax-7 1992  ax-8 2083  ax-9 2091  ax-10 2112  ax-11 2126  ax-12 2141  ax-13 2344  ax-ext 2769  ax-rep 5081  ax-sep 5094  ax-nul 5101  ax-pow 5157  ax-pr 5221  ax-un 7319  ax-reg 8902  ax-inf2 8950
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 843  df-3or 1081  df-3an 1082  df-tru 1525  df-ex 1762  df-nf 1766  df-sb 2043  df-mo 2576  df-eu 2612  df-clab 2776  df-cleq 2788  df-clel 2863  df-nfc 2935  df-ne 2985  df-ral 3110  df-rex 3111  df-reu 3112  df-rmo 3113  df-rab 3114  df-v 3439  df-sbc 3707  df-csb 3812  df-dif 3862  df-un 3864  df-in 3866  df-ss 3874  df-pss 3876  df-nul 4212  df-if 4382  df-pw 4455  df-sn 4473  df-pr 4475  df-tp 4477  df-op 4479  df-uni 4746  df-int 4783  df-iun 4827  df-iin 4828  df-br 4963  df-opab 5025  df-mpt 5042  df-tr 5064  df-id 5348  df-eprel 5353  df-po 5362  df-so 5363  df-fr 5402  df-se 5403  df-we 5404  df-xp 5449  df-rel 5450  df-cnv 5451  df-co 5452  df-dm 5453  df-rn 5454  df-res 5455  df-ima 5456  df-pred 6023  df-ord 6069  df-on 6070  df-lim 6071  df-suc 6072  df-iota 6189  df-fun 6227  df-fn 6228  df-f 6229  df-f1 6230  df-fo 6231  df-f1o 6232  df-fv 6233  df-isom 6234  df-riota 6977  df-om 7437  df-1st 7545  df-2nd 7546  df-wrecs 7798  df-smo 7835  df-recs 7860  df-rdg 7898  df-er 8139  df-en 8358  df-dom 8359  df-sdom 8360  df-oi 8820  df-har 8868  df-wdom 8869  df-tc 9025  df-r1 9039  df-rank 9040
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator