![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > hsmex3 | Structured version Visualization version GIF version |
Description: The set of hereditary size-limited sets, assuming ax-reg 9529, using strict comparison (an easy corollary by separation). (Contributed by Stefan O'Rear, 11-Feb-2015.) |
Ref | Expression |
---|---|
hsmex3 | ⊢ (𝑋 ∈ 𝑉 → {𝑠 ∣ ∀𝑥 ∈ (TC‘{𝑠})𝑥 ≺ 𝑋} ∈ V) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sdomdom 8921 | . . . 4 ⊢ (𝑥 ≺ 𝑋 → 𝑥 ≼ 𝑋) | |
2 | 1 | ralimi 3087 | . . 3 ⊢ (∀𝑥 ∈ (TC‘{𝑠})𝑥 ≺ 𝑋 → ∀𝑥 ∈ (TC‘{𝑠})𝑥 ≼ 𝑋) |
3 | 2 | ss2abi 4024 | . 2 ⊢ {𝑠 ∣ ∀𝑥 ∈ (TC‘{𝑠})𝑥 ≺ 𝑋} ⊆ {𝑠 ∣ ∀𝑥 ∈ (TC‘{𝑠})𝑥 ≼ 𝑋} |
4 | hsmex2 10370 | . 2 ⊢ (𝑋 ∈ 𝑉 → {𝑠 ∣ ∀𝑥 ∈ (TC‘{𝑠})𝑥 ≼ 𝑋} ∈ V) | |
5 | ssexg 5281 | . 2 ⊢ (({𝑠 ∣ ∀𝑥 ∈ (TC‘{𝑠})𝑥 ≺ 𝑋} ⊆ {𝑠 ∣ ∀𝑥 ∈ (TC‘{𝑠})𝑥 ≼ 𝑋} ∧ {𝑠 ∣ ∀𝑥 ∈ (TC‘{𝑠})𝑥 ≼ 𝑋} ∈ V) → {𝑠 ∣ ∀𝑥 ∈ (TC‘{𝑠})𝑥 ≺ 𝑋} ∈ V) | |
6 | 3, 4, 5 | sylancr 588 | 1 ⊢ (𝑋 ∈ 𝑉 → {𝑠 ∣ ∀𝑥 ∈ (TC‘{𝑠})𝑥 ≺ 𝑋} ∈ V) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2107 {cab 2714 ∀wral 3065 Vcvv 3446 ⊆ wss 3911 {csn 4587 class class class wbr 5106 ‘cfv 6497 ≼ cdom 8882 ≺ csdm 8883 TCctc 9673 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2708 ax-rep 5243 ax-sep 5257 ax-nul 5264 ax-pow 5321 ax-pr 5385 ax-un 7673 ax-reg 9529 ax-inf2 9578 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3or 1089 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2815 df-nfc 2890 df-ne 2945 df-ral 3066 df-rex 3075 df-rmo 3354 df-reu 3355 df-rab 3409 df-v 3448 df-sbc 3741 df-csb 3857 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-pss 3930 df-nul 4284 df-if 4488 df-pw 4563 df-sn 4588 df-pr 4590 df-op 4594 df-uni 4867 df-int 4909 df-iun 4957 df-iin 4958 df-br 5107 df-opab 5169 df-mpt 5190 df-tr 5224 df-id 5532 df-eprel 5538 df-po 5546 df-so 5547 df-fr 5589 df-se 5590 df-we 5591 df-xp 5640 df-rel 5641 df-cnv 5642 df-co 5643 df-dm 5644 df-rn 5645 df-res 5646 df-ima 5647 df-pred 6254 df-ord 6321 df-on 6322 df-lim 6323 df-suc 6324 df-iota 6449 df-fun 6499 df-fn 6500 df-f 6501 df-f1 6502 df-fo 6503 df-f1o 6504 df-fv 6505 df-isom 6506 df-riota 7314 df-ov 7361 df-om 7804 df-1st 7922 df-2nd 7923 df-frecs 8213 df-wrecs 8244 df-smo 8293 df-recs 8318 df-rdg 8357 df-en 8885 df-dom 8886 df-sdom 8887 df-oi 9447 df-har 9494 df-wdom 9502 df-tc 9674 df-r1 9701 df-rank 9702 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |