MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  hsmex3 Structured version   Visualization version   GIF version

Theorem hsmex3 9845
Description: The set of hereditary size-limited sets, assuming ax-reg 9040, using strict comparison (an easy corollary by separation). (Contributed by Stefan O'Rear, 11-Feb-2015.)
Assertion
Ref Expression
hsmex3 (𝑋𝑉 → {𝑠 ∣ ∀𝑥 ∈ (TC‘{𝑠})𝑥𝑋} ∈ V)
Distinct variable group:   𝑥,𝑠,𝑋
Allowed substitution hints:   𝑉(𝑥,𝑠)

Proof of Theorem hsmex3
StepHypRef Expression
1 sdomdom 8520 . . . 4 (𝑥𝑋𝑥𝑋)
21ralimi 3128 . . 3 (∀𝑥 ∈ (TC‘{𝑠})𝑥𝑋 → ∀𝑥 ∈ (TC‘{𝑠})𝑥𝑋)
32ss2abi 3994 . 2 {𝑠 ∣ ∀𝑥 ∈ (TC‘{𝑠})𝑥𝑋} ⊆ {𝑠 ∣ ∀𝑥 ∈ (TC‘{𝑠})𝑥𝑋}
4 hsmex2 9844 . 2 (𝑋𝑉 → {𝑠 ∣ ∀𝑥 ∈ (TC‘{𝑠})𝑥𝑋} ∈ V)
5 ssexg 5191 . 2 (({𝑠 ∣ ∀𝑥 ∈ (TC‘{𝑠})𝑥𝑋} ⊆ {𝑠 ∣ ∀𝑥 ∈ (TC‘{𝑠})𝑥𝑋} ∧ {𝑠 ∣ ∀𝑥 ∈ (TC‘{𝑠})𝑥𝑋} ∈ V) → {𝑠 ∣ ∀𝑥 ∈ (TC‘{𝑠})𝑥𝑋} ∈ V)
63, 4, 5sylancr 590 1 (𝑋𝑉 → {𝑠 ∣ ∀𝑥 ∈ (TC‘{𝑠})𝑥𝑋} ∈ V)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2111  {cab 2776  wral 3106  Vcvv 3441  wss 3881  {csn 4525   class class class wbr 5030  cfv 6324  cdom 8490  csdm 8491  TCctc 9162
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-rep 5154  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441  ax-reg 9040  ax-inf2 9088
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-ral 3111  df-rex 3112  df-reu 3113  df-rmo 3114  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-pss 3900  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4801  df-int 4839  df-iun 4883  df-iin 4884  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5425  df-eprel 5430  df-po 5438  df-so 5439  df-fr 5478  df-se 5479  df-we 5480  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-pred 6116  df-ord 6162  df-on 6163  df-lim 6164  df-suc 6165  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-isom 6333  df-riota 7093  df-om 7561  df-1st 7671  df-2nd 7672  df-wrecs 7930  df-smo 7966  df-recs 7991  df-rdg 8029  df-er 8272  df-en 8493  df-dom 8494  df-sdom 8495  df-oi 8958  df-har 9005  df-wdom 9013  df-tc 9163  df-r1 9177  df-rank 9178
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator