MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  hsmex3 Structured version   Visualization version   GIF version

Theorem hsmex3 10387
Description: The set of hereditary size-limited sets, assuming ax-reg 9545, using strict comparison (an easy corollary by separation). (Contributed by Stefan O'Rear, 11-Feb-2015.)
Assertion
Ref Expression
hsmex3 (𝑋𝑉 → {𝑠 ∣ ∀𝑥 ∈ (TC‘{𝑠})𝑥𝑋} ∈ V)
Distinct variable group:   𝑥,𝑠,𝑋
Allowed substitution hints:   𝑉(𝑥,𝑠)

Proof of Theorem hsmex3
StepHypRef Expression
1 sdomdom 8951 . . . 4 (𝑥𝑋𝑥𝑋)
21ralimi 3066 . . 3 (∀𝑥 ∈ (TC‘{𝑠})𝑥𝑋 → ∀𝑥 ∈ (TC‘{𝑠})𝑥𝑋)
32ss2abi 4030 . 2 {𝑠 ∣ ∀𝑥 ∈ (TC‘{𝑠})𝑥𝑋} ⊆ {𝑠 ∣ ∀𝑥 ∈ (TC‘{𝑠})𝑥𝑋}
4 hsmex2 10386 . 2 (𝑋𝑉 → {𝑠 ∣ ∀𝑥 ∈ (TC‘{𝑠})𝑥𝑋} ∈ V)
5 ssexg 5278 . 2 (({𝑠 ∣ ∀𝑥 ∈ (TC‘{𝑠})𝑥𝑋} ⊆ {𝑠 ∣ ∀𝑥 ∈ (TC‘{𝑠})𝑥𝑋} ∧ {𝑠 ∣ ∀𝑥 ∈ (TC‘{𝑠})𝑥𝑋} ∈ V) → {𝑠 ∣ ∀𝑥 ∈ (TC‘{𝑠})𝑥𝑋} ∈ V)
63, 4, 5sylancr 587 1 (𝑋𝑉 → {𝑠 ∣ ∀𝑥 ∈ (TC‘{𝑠})𝑥𝑋} ∈ V)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2109  {cab 2707  wral 3044  Vcvv 3447  wss 3914  {csn 4589   class class class wbr 5107  cfv 6511  cdom 8916  csdm 8917  TCctc 9689
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-reg 9545  ax-inf2 9594
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rmo 3354  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-int 4911  df-iun 4957  df-iin 4958  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-se 5592  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-isom 6520  df-riota 7344  df-ov 7390  df-om 7843  df-1st 7968  df-2nd 7969  df-frecs 8260  df-wrecs 8291  df-smo 8315  df-recs 8340  df-rdg 8378  df-en 8919  df-dom 8920  df-sdom 8921  df-oi 9463  df-har 9510  df-wdom 9518  df-tc 9690  df-r1 9717  df-rank 9718
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator