Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > HSE Home > Th. List > ax-his4 | Structured version Visualization version GIF version |
Description: Identity law for inner product. Postulate (S4) of [Beran] p. 95. (Contributed by NM, 29-May-1999.) (New usage is discouraged.) |
Ref | Expression |
---|---|
ax-his4 | ⊢ ((𝐴 ∈ ℋ ∧ 𝐴 ≠ 0ℎ) → 0 < (𝐴 ·ih 𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cA | . . . 4 class 𝐴 | |
2 | chba 29182 | . . . 4 class ℋ | |
3 | 1, 2 | wcel 2108 | . . 3 wff 𝐴 ∈ ℋ |
4 | c0v 29187 | . . . 4 class 0ℎ | |
5 | 1, 4 | wne 2942 | . . 3 wff 𝐴 ≠ 0ℎ |
6 | 3, 5 | wa 395 | . 2 wff (𝐴 ∈ ℋ ∧ 𝐴 ≠ 0ℎ) |
7 | cc0 10802 | . . 3 class 0 | |
8 | csp 29185 | . . . 4 class ·ih | |
9 | 1, 1, 8 | co 7255 | . . 3 class (𝐴 ·ih 𝐴) |
10 | clt 10940 | . . 3 class < | |
11 | 7, 9, 10 | wbr 5070 | . 2 wff 0 < (𝐴 ·ih 𝐴) |
12 | 6, 11 | wi 4 | 1 wff ((𝐴 ∈ ℋ ∧ 𝐴 ≠ 0ℎ) → 0 < (𝐴 ·ih 𝐴)) |
Colors of variables: wff setvar class |
This axiom is referenced by: hiidge0 29361 his6 29362 normgt0 29390 eigrei 30097 eigposi 30099 |
Copyright terms: Public domain | W3C validator |