![]() |
Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > HSE Home > Th. List > ax-his3 | Structured version Visualization version GIF version |
Description: Associative law for inner product. Postulate (S3) of [Beran] p. 95. Warning: Mathematics textbooks usually use our version of the axiom. Physics textbooks, on the other hand, usually replace the left-hand side with (𝐵 ·ih (𝐴 ·ℎ 𝐶)) (e.g., Equation 1.21b of [Hughes] p. 44; Definition (iii) of [ReedSimon] p. 36). See the comments in df-bra 31882 for why the physics definition is swapped. (Contributed by NM, 29-May-1999.) (New usage is discouraged.) |
Ref | Expression |
---|---|
ax-his3 | ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ) → ((𝐴 ·ℎ 𝐵) ·ih 𝐶) = (𝐴 · (𝐵 ·ih 𝐶))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cA | . . . 4 class 𝐴 | |
2 | cc 11182 | . . . 4 class ℂ | |
3 | 1, 2 | wcel 2108 | . . 3 wff 𝐴 ∈ ℂ |
4 | cB | . . . 4 class 𝐵 | |
5 | chba 30951 | . . . 4 class ℋ | |
6 | 4, 5 | wcel 2108 | . . 3 wff 𝐵 ∈ ℋ |
7 | cC | . . . 4 class 𝐶 | |
8 | 7, 5 | wcel 2108 | . . 3 wff 𝐶 ∈ ℋ |
9 | 3, 6, 8 | w3a 1087 | . 2 wff (𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ) |
10 | csm 30953 | . . . . 5 class ·ℎ | |
11 | 1, 4, 10 | co 7448 | . . . 4 class (𝐴 ·ℎ 𝐵) |
12 | csp 30954 | . . . 4 class ·ih | |
13 | 11, 7, 12 | co 7448 | . . 3 class ((𝐴 ·ℎ 𝐵) ·ih 𝐶) |
14 | 4, 7, 12 | co 7448 | . . . 4 class (𝐵 ·ih 𝐶) |
15 | cmul 11189 | . . . 4 class · | |
16 | 1, 14, 15 | co 7448 | . . 3 class (𝐴 · (𝐵 ·ih 𝐶)) |
17 | 13, 16 | wceq 1537 | . 2 wff ((𝐴 ·ℎ 𝐵) ·ih 𝐶) = (𝐴 · (𝐵 ·ih 𝐶)) |
18 | 9, 17 | wi 4 | 1 wff ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ) → ((𝐴 ·ℎ 𝐵) ·ih 𝐶) = (𝐴 · (𝐵 ·ih 𝐶))) |
Colors of variables: wff setvar class |
This axiom is referenced by: his5 31118 his35 31120 hiassdi 31123 his2sub 31124 hi01 31128 normlem0 31141 normlem9 31150 bcseqi 31152 polid2i 31189 ocsh 31315 h1de2i 31585 normcan 31608 eigrei 31866 eigorthi 31869 bramul 31978 lnopunilem1 32042 hmopm 32053 riesz3i 32094 cnlnadjlem2 32100 adjmul 32124 branmfn 32137 kbass2 32149 kbass5 32152 leopmuli 32165 leopnmid 32170 |
Copyright terms: Public domain | W3C validator |