| Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > HSE Home > Th. List > ax-his3 | Structured version Visualization version GIF version | ||
| Description: Associative law for inner product. Postulate (S3) of [Beran] p. 95. Warning: Mathematics textbooks usually use our version of the axiom. Physics textbooks, on the other hand, usually replace the left-hand side with (𝐵 ·ih (𝐴 ·ℎ 𝐶)) (e.g., Equation 1.21b of [Hughes] p. 44; Definition (iii) of [ReedSimon] p. 36). See the comments in df-bra 31822 for why the physics definition is swapped. (Contributed by NM, 29-May-1999.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| ax-his3 | ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ) → ((𝐴 ·ℎ 𝐵) ·ih 𝐶) = (𝐴 · (𝐵 ·ih 𝐶))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cA | . . . 4 class 𝐴 | |
| 2 | cc 10999 | . . . 4 class ℂ | |
| 3 | 1, 2 | wcel 2111 | . . 3 wff 𝐴 ∈ ℂ |
| 4 | cB | . . . 4 class 𝐵 | |
| 5 | chba 30891 | . . . 4 class ℋ | |
| 6 | 4, 5 | wcel 2111 | . . 3 wff 𝐵 ∈ ℋ |
| 7 | cC | . . . 4 class 𝐶 | |
| 8 | 7, 5 | wcel 2111 | . . 3 wff 𝐶 ∈ ℋ |
| 9 | 3, 6, 8 | w3a 1086 | . 2 wff (𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ) |
| 10 | csm 30893 | . . . . 5 class ·ℎ | |
| 11 | 1, 4, 10 | co 7341 | . . . 4 class (𝐴 ·ℎ 𝐵) |
| 12 | csp 30894 | . . . 4 class ·ih | |
| 13 | 11, 7, 12 | co 7341 | . . 3 class ((𝐴 ·ℎ 𝐵) ·ih 𝐶) |
| 14 | 4, 7, 12 | co 7341 | . . . 4 class (𝐵 ·ih 𝐶) |
| 15 | cmul 11006 | . . . 4 class · | |
| 16 | 1, 14, 15 | co 7341 | . . 3 class (𝐴 · (𝐵 ·ih 𝐶)) |
| 17 | 13, 16 | wceq 1541 | . 2 wff ((𝐴 ·ℎ 𝐵) ·ih 𝐶) = (𝐴 · (𝐵 ·ih 𝐶)) |
| 18 | 9, 17 | wi 4 | 1 wff ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ) → ((𝐴 ·ℎ 𝐵) ·ih 𝐶) = (𝐴 · (𝐵 ·ih 𝐶))) |
| Colors of variables: wff setvar class |
| This axiom is referenced by: his5 31058 his35 31060 hiassdi 31063 his2sub 31064 hi01 31068 normlem0 31081 normlem9 31090 bcseqi 31092 polid2i 31129 ocsh 31255 h1de2i 31525 normcan 31548 eigrei 31806 eigorthi 31809 bramul 31918 lnopunilem1 31982 hmopm 31993 riesz3i 32034 cnlnadjlem2 32040 adjmul 32064 branmfn 32077 kbass2 32089 kbass5 32092 leopmuli 32105 leopnmid 32110 |
| Copyright terms: Public domain | W3C validator |