HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  ax-his3 Structured version   Visualization version   GIF version

Axiom ax-his3 30986
Description: Associative law for inner product. Postulate (S3) of [Beran] p. 95. Warning: Mathematics textbooks usually use our version of the axiom. Physics textbooks, on the other hand, usually replace the left-hand side with (𝐵 ·ih (𝐴 · 𝐶)) (e.g., Equation 1.21b of [Hughes] p. 44; Definition (iii) of [ReedSimon] p. 36). See the comments in df-bra 31752 for why the physics definition is swapped. (Contributed by NM, 29-May-1999.) (New usage is discouraged.)
Assertion
Ref Expression
ax-his3 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ) → ((𝐴 · 𝐵) ·ih 𝐶) = (𝐴 · (𝐵 ·ih 𝐶)))

Detailed syntax breakdown of Axiom ax-his3
StepHypRef Expression
1 cA . . . 4 class 𝐴
2 cc 11042 . . . 4 class
31, 2wcel 2109 . . 3 wff 𝐴 ∈ ℂ
4 cB . . . 4 class 𝐵
5 chba 30821 . . . 4 class
64, 5wcel 2109 . . 3 wff 𝐵 ∈ ℋ
7 cC . . . 4 class 𝐶
87, 5wcel 2109 . . 3 wff 𝐶 ∈ ℋ
93, 6, 8w3a 1086 . 2 wff (𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ)
10 csm 30823 . . . . 5 class ·
111, 4, 10co 7369 . . . 4 class (𝐴 · 𝐵)
12 csp 30824 . . . 4 class ·ih
1311, 7, 12co 7369 . . 3 class ((𝐴 · 𝐵) ·ih 𝐶)
144, 7, 12co 7369 . . . 4 class (𝐵 ·ih 𝐶)
15 cmul 11049 . . . 4 class ·
161, 14, 15co 7369 . . 3 class (𝐴 · (𝐵 ·ih 𝐶))
1713, 16wceq 1540 . 2 wff ((𝐴 · 𝐵) ·ih 𝐶) = (𝐴 · (𝐵 ·ih 𝐶))
189, 17wi 4 1 wff ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ) → ((𝐴 · 𝐵) ·ih 𝐶) = (𝐴 · (𝐵 ·ih 𝐶)))
Colors of variables: wff setvar class
This axiom is referenced by:  his5  30988  his35  30990  hiassdi  30993  his2sub  30994  hi01  30998  normlem0  31011  normlem9  31020  bcseqi  31022  polid2i  31059  ocsh  31185  h1de2i  31455  normcan  31478  eigrei  31736  eigorthi  31739  bramul  31848  lnopunilem1  31912  hmopm  31923  riesz3i  31964  cnlnadjlem2  31970  adjmul  31994  branmfn  32007  kbass2  32019  kbass5  32022  leopmuli  32035  leopnmid  32040
  Copyright terms: Public domain W3C validator