HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  ax-his3 Structured version   Visualization version   GIF version

Axiom ax-his3 29347
Description: Associative law for inner product. Postulate (S3) of [Beran] p. 95. Warning: Mathematics textbooks usually use our version of the axiom. Physics textbooks, on the other hand, usually replace the left-hand side with (𝐵 ·ih (𝐴 · 𝐶)) (e.g., Equation 1.21b of [Hughes] p. 44; Definition (iii) of [ReedSimon] p. 36). See the comments in df-bra 30113 for why the physics definition is swapped. (Contributed by NM, 29-May-1999.) (New usage is discouraged.)
Assertion
Ref Expression
ax-his3 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ) → ((𝐴 · 𝐵) ·ih 𝐶) = (𝐴 · (𝐵 ·ih 𝐶)))

Detailed syntax breakdown of Axiom ax-his3
StepHypRef Expression
1 cA . . . 4 class 𝐴
2 cc 10800 . . . 4 class
31, 2wcel 2108 . . 3 wff 𝐴 ∈ ℂ
4 cB . . . 4 class 𝐵
5 chba 29182 . . . 4 class
64, 5wcel 2108 . . 3 wff 𝐵 ∈ ℋ
7 cC . . . 4 class 𝐶
87, 5wcel 2108 . . 3 wff 𝐶 ∈ ℋ
93, 6, 8w3a 1085 . 2 wff (𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ)
10 csm 29184 . . . . 5 class ·
111, 4, 10co 7255 . . . 4 class (𝐴 · 𝐵)
12 csp 29185 . . . 4 class ·ih
1311, 7, 12co 7255 . . 3 class ((𝐴 · 𝐵) ·ih 𝐶)
144, 7, 12co 7255 . . . 4 class (𝐵 ·ih 𝐶)
15 cmul 10807 . . . 4 class ·
161, 14, 15co 7255 . . 3 class (𝐴 · (𝐵 ·ih 𝐶))
1713, 16wceq 1539 . 2 wff ((𝐴 · 𝐵) ·ih 𝐶) = (𝐴 · (𝐵 ·ih 𝐶))
189, 17wi 4 1 wff ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ) → ((𝐴 · 𝐵) ·ih 𝐶) = (𝐴 · (𝐵 ·ih 𝐶)))
Colors of variables: wff setvar class
This axiom is referenced by:  his5  29349  his35  29351  hiassdi  29354  his2sub  29355  hi01  29359  normlem0  29372  normlem9  29381  bcseqi  29383  polid2i  29420  ocsh  29546  h1de2i  29816  normcan  29839  eigrei  30097  eigorthi  30100  bramul  30209  lnopunilem1  30273  hmopm  30284  riesz3i  30325  cnlnadjlem2  30331  adjmul  30355  branmfn  30368  kbass2  30380  kbass5  30383  leopmuli  30396  leopnmid  30401
  Copyright terms: Public domain W3C validator