HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  ax-his3 Structured version   Visualization version   GIF version

Axiom ax-his3 31011
Description: Associative law for inner product. Postulate (S3) of [Beran] p. 95. Warning: Mathematics textbooks usually use our version of the axiom. Physics textbooks, on the other hand, usually replace the left-hand side with (𝐵 ·ih (𝐴 · 𝐶)) (e.g., Equation 1.21b of [Hughes] p. 44; Definition (iii) of [ReedSimon] p. 36). See the comments in df-bra 31777 for why the physics definition is swapped. (Contributed by NM, 29-May-1999.) (New usage is discouraged.)
Assertion
Ref Expression
ax-his3 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ) → ((𝐴 · 𝐵) ·ih 𝐶) = (𝐴 · (𝐵 ·ih 𝐶)))

Detailed syntax breakdown of Axiom ax-his3
StepHypRef Expression
1 cA . . . 4 class 𝐴
2 cc 11125 . . . 4 class
31, 2wcel 2108 . . 3 wff 𝐴 ∈ ℂ
4 cB . . . 4 class 𝐵
5 chba 30846 . . . 4 class
64, 5wcel 2108 . . 3 wff 𝐵 ∈ ℋ
7 cC . . . 4 class 𝐶
87, 5wcel 2108 . . 3 wff 𝐶 ∈ ℋ
93, 6, 8w3a 1086 . 2 wff (𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ)
10 csm 30848 . . . . 5 class ·
111, 4, 10co 7403 . . . 4 class (𝐴 · 𝐵)
12 csp 30849 . . . 4 class ·ih
1311, 7, 12co 7403 . . 3 class ((𝐴 · 𝐵) ·ih 𝐶)
144, 7, 12co 7403 . . . 4 class (𝐵 ·ih 𝐶)
15 cmul 11132 . . . 4 class ·
161, 14, 15co 7403 . . 3 class (𝐴 · (𝐵 ·ih 𝐶))
1713, 16wceq 1540 . 2 wff ((𝐴 · 𝐵) ·ih 𝐶) = (𝐴 · (𝐵 ·ih 𝐶))
189, 17wi 4 1 wff ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ) → ((𝐴 · 𝐵) ·ih 𝐶) = (𝐴 · (𝐵 ·ih 𝐶)))
Colors of variables: wff setvar class
This axiom is referenced by:  his5  31013  his35  31015  hiassdi  31018  his2sub  31019  hi01  31023  normlem0  31036  normlem9  31045  bcseqi  31047  polid2i  31084  ocsh  31210  h1de2i  31480  normcan  31503  eigrei  31761  eigorthi  31764  bramul  31873  lnopunilem1  31937  hmopm  31948  riesz3i  31989  cnlnadjlem2  31995  adjmul  32019  branmfn  32032  kbass2  32044  kbass5  32047  leopmuli  32060  leopnmid  32065
  Copyright terms: Public domain W3C validator