| Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > HSE Home > Th. List > ax-his3 | Structured version Visualization version GIF version | ||
| Description: Associative law for inner product. Postulate (S3) of [Beran] p. 95. Warning: Mathematics textbooks usually use our version of the axiom. Physics textbooks, on the other hand, usually replace the left-hand side with (𝐵 ·ih (𝐴 ·ℎ 𝐶)) (e.g., Equation 1.21b of [Hughes] p. 44; Definition (iii) of [ReedSimon] p. 36). See the comments in df-bra 31777 for why the physics definition is swapped. (Contributed by NM, 29-May-1999.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| ax-his3 | ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ) → ((𝐴 ·ℎ 𝐵) ·ih 𝐶) = (𝐴 · (𝐵 ·ih 𝐶))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cA | . . . 4 class 𝐴 | |
| 2 | cc 11125 | . . . 4 class ℂ | |
| 3 | 1, 2 | wcel 2108 | . . 3 wff 𝐴 ∈ ℂ |
| 4 | cB | . . . 4 class 𝐵 | |
| 5 | chba 30846 | . . . 4 class ℋ | |
| 6 | 4, 5 | wcel 2108 | . . 3 wff 𝐵 ∈ ℋ |
| 7 | cC | . . . 4 class 𝐶 | |
| 8 | 7, 5 | wcel 2108 | . . 3 wff 𝐶 ∈ ℋ |
| 9 | 3, 6, 8 | w3a 1086 | . 2 wff (𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ) |
| 10 | csm 30848 | . . . . 5 class ·ℎ | |
| 11 | 1, 4, 10 | co 7403 | . . . 4 class (𝐴 ·ℎ 𝐵) |
| 12 | csp 30849 | . . . 4 class ·ih | |
| 13 | 11, 7, 12 | co 7403 | . . 3 class ((𝐴 ·ℎ 𝐵) ·ih 𝐶) |
| 14 | 4, 7, 12 | co 7403 | . . . 4 class (𝐵 ·ih 𝐶) |
| 15 | cmul 11132 | . . . 4 class · | |
| 16 | 1, 14, 15 | co 7403 | . . 3 class (𝐴 · (𝐵 ·ih 𝐶)) |
| 17 | 13, 16 | wceq 1540 | . 2 wff ((𝐴 ·ℎ 𝐵) ·ih 𝐶) = (𝐴 · (𝐵 ·ih 𝐶)) |
| 18 | 9, 17 | wi 4 | 1 wff ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ) → ((𝐴 ·ℎ 𝐵) ·ih 𝐶) = (𝐴 · (𝐵 ·ih 𝐶))) |
| Colors of variables: wff setvar class |
| This axiom is referenced by: his5 31013 his35 31015 hiassdi 31018 his2sub 31019 hi01 31023 normlem0 31036 normlem9 31045 bcseqi 31047 polid2i 31084 ocsh 31210 h1de2i 31480 normcan 31503 eigrei 31761 eigorthi 31764 bramul 31873 lnopunilem1 31937 hmopm 31948 riesz3i 31989 cnlnadjlem2 31995 adjmul 32019 branmfn 32032 kbass2 32044 kbass5 32047 leopmuli 32060 leopnmid 32065 |
| Copyright terms: Public domain | W3C validator |