![]() |
Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > HSE Home > Th. List > ax-his3 | Structured version Visualization version GIF version |
Description: Associative law for inner product. Postulate (S3) of [Beran] p. 95. Warning: Mathematics textbooks usually use our version of the axiom. Physics textbooks, on the other hand, usually replace the left-hand side with (𝐵 ·ih (𝐴 ·ℎ 𝐶)) (e.g., Equation 1.21b of [Hughes] p. 44; Definition (iii) of [ReedSimon] p. 36). See the comments in df-bra 31878 for why the physics definition is swapped. (Contributed by NM, 29-May-1999.) (New usage is discouraged.) |
Ref | Expression |
---|---|
ax-his3 | ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ) → ((𝐴 ·ℎ 𝐵) ·ih 𝐶) = (𝐴 · (𝐵 ·ih 𝐶))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cA | . . . 4 class 𝐴 | |
2 | cc 11150 | . . . 4 class ℂ | |
3 | 1, 2 | wcel 2105 | . . 3 wff 𝐴 ∈ ℂ |
4 | cB | . . . 4 class 𝐵 | |
5 | chba 30947 | . . . 4 class ℋ | |
6 | 4, 5 | wcel 2105 | . . 3 wff 𝐵 ∈ ℋ |
7 | cC | . . . 4 class 𝐶 | |
8 | 7, 5 | wcel 2105 | . . 3 wff 𝐶 ∈ ℋ |
9 | 3, 6, 8 | w3a 1086 | . 2 wff (𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ) |
10 | csm 30949 | . . . . 5 class ·ℎ | |
11 | 1, 4, 10 | co 7430 | . . . 4 class (𝐴 ·ℎ 𝐵) |
12 | csp 30950 | . . . 4 class ·ih | |
13 | 11, 7, 12 | co 7430 | . . 3 class ((𝐴 ·ℎ 𝐵) ·ih 𝐶) |
14 | 4, 7, 12 | co 7430 | . . . 4 class (𝐵 ·ih 𝐶) |
15 | cmul 11157 | . . . 4 class · | |
16 | 1, 14, 15 | co 7430 | . . 3 class (𝐴 · (𝐵 ·ih 𝐶)) |
17 | 13, 16 | wceq 1536 | . 2 wff ((𝐴 ·ℎ 𝐵) ·ih 𝐶) = (𝐴 · (𝐵 ·ih 𝐶)) |
18 | 9, 17 | wi 4 | 1 wff ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ) → ((𝐴 ·ℎ 𝐵) ·ih 𝐶) = (𝐴 · (𝐵 ·ih 𝐶))) |
Colors of variables: wff setvar class |
This axiom is referenced by: his5 31114 his35 31116 hiassdi 31119 his2sub 31120 hi01 31124 normlem0 31137 normlem9 31146 bcseqi 31148 polid2i 31185 ocsh 31311 h1de2i 31581 normcan 31604 eigrei 31862 eigorthi 31865 bramul 31974 lnopunilem1 32038 hmopm 32049 riesz3i 32090 cnlnadjlem2 32096 adjmul 32120 branmfn 32133 kbass2 32145 kbass5 32148 leopmuli 32161 leopnmid 32166 |
Copyright terms: Public domain | W3C validator |