HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  ax-his3 Structured version   Visualization version   GIF version

Axiom ax-his3 31056
Description: Associative law for inner product. Postulate (S3) of [Beran] p. 95. Warning: Mathematics textbooks usually use our version of the axiom. Physics textbooks, on the other hand, usually replace the left-hand side with (𝐵 ·ih (𝐴 · 𝐶)) (e.g., Equation 1.21b of [Hughes] p. 44; Definition (iii) of [ReedSimon] p. 36). See the comments in df-bra 31822 for why the physics definition is swapped. (Contributed by NM, 29-May-1999.) (New usage is discouraged.)
Assertion
Ref Expression
ax-his3 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ) → ((𝐴 · 𝐵) ·ih 𝐶) = (𝐴 · (𝐵 ·ih 𝐶)))

Detailed syntax breakdown of Axiom ax-his3
StepHypRef Expression
1 cA . . . 4 class 𝐴
2 cc 10999 . . . 4 class
31, 2wcel 2111 . . 3 wff 𝐴 ∈ ℂ
4 cB . . . 4 class 𝐵
5 chba 30891 . . . 4 class
64, 5wcel 2111 . . 3 wff 𝐵 ∈ ℋ
7 cC . . . 4 class 𝐶
87, 5wcel 2111 . . 3 wff 𝐶 ∈ ℋ
93, 6, 8w3a 1086 . 2 wff (𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ)
10 csm 30893 . . . . 5 class ·
111, 4, 10co 7341 . . . 4 class (𝐴 · 𝐵)
12 csp 30894 . . . 4 class ·ih
1311, 7, 12co 7341 . . 3 class ((𝐴 · 𝐵) ·ih 𝐶)
144, 7, 12co 7341 . . . 4 class (𝐵 ·ih 𝐶)
15 cmul 11006 . . . 4 class ·
161, 14, 15co 7341 . . 3 class (𝐴 · (𝐵 ·ih 𝐶))
1713, 16wceq 1541 . 2 wff ((𝐴 · 𝐵) ·ih 𝐶) = (𝐴 · (𝐵 ·ih 𝐶))
189, 17wi 4 1 wff ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ) → ((𝐴 · 𝐵) ·ih 𝐶) = (𝐴 · (𝐵 ·ih 𝐶)))
Colors of variables: wff setvar class
This axiom is referenced by:  his5  31058  his35  31060  hiassdi  31063  his2sub  31064  hi01  31068  normlem0  31081  normlem9  31090  bcseqi  31092  polid2i  31129  ocsh  31255  h1de2i  31525  normcan  31548  eigrei  31806  eigorthi  31809  bramul  31918  lnopunilem1  31982  hmopm  31993  riesz3i  32034  cnlnadjlem2  32040  adjmul  32064  branmfn  32077  kbass2  32089  kbass5  32092  leopmuli  32105  leopnmid  32110
  Copyright terms: Public domain W3C validator