HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  ax-his3 Structured version   Visualization version   GIF version

Axiom ax-his3 31112
Description: Associative law for inner product. Postulate (S3) of [Beran] p. 95. Warning: Mathematics textbooks usually use our version of the axiom. Physics textbooks, on the other hand, usually replace the left-hand side with (𝐵 ·ih (𝐴 · 𝐶)) (e.g., Equation 1.21b of [Hughes] p. 44; Definition (iii) of [ReedSimon] p. 36). See the comments in df-bra 31878 for why the physics definition is swapped. (Contributed by NM, 29-May-1999.) (New usage is discouraged.)
Assertion
Ref Expression
ax-his3 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ) → ((𝐴 · 𝐵) ·ih 𝐶) = (𝐴 · (𝐵 ·ih 𝐶)))

Detailed syntax breakdown of Axiom ax-his3
StepHypRef Expression
1 cA . . . 4 class 𝐴
2 cc 11150 . . . 4 class
31, 2wcel 2105 . . 3 wff 𝐴 ∈ ℂ
4 cB . . . 4 class 𝐵
5 chba 30947 . . . 4 class
64, 5wcel 2105 . . 3 wff 𝐵 ∈ ℋ
7 cC . . . 4 class 𝐶
87, 5wcel 2105 . . 3 wff 𝐶 ∈ ℋ
93, 6, 8w3a 1086 . 2 wff (𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ)
10 csm 30949 . . . . 5 class ·
111, 4, 10co 7430 . . . 4 class (𝐴 · 𝐵)
12 csp 30950 . . . 4 class ·ih
1311, 7, 12co 7430 . . 3 class ((𝐴 · 𝐵) ·ih 𝐶)
144, 7, 12co 7430 . . . 4 class (𝐵 ·ih 𝐶)
15 cmul 11157 . . . 4 class ·
161, 14, 15co 7430 . . 3 class (𝐴 · (𝐵 ·ih 𝐶))
1713, 16wceq 1536 . 2 wff ((𝐴 · 𝐵) ·ih 𝐶) = (𝐴 · (𝐵 ·ih 𝐶))
189, 17wi 4 1 wff ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ) → ((𝐴 · 𝐵) ·ih 𝐶) = (𝐴 · (𝐵 ·ih 𝐶)))
Colors of variables: wff setvar class
This axiom is referenced by:  his5  31114  his35  31116  hiassdi  31119  his2sub  31120  hi01  31124  normlem0  31137  normlem9  31146  bcseqi  31148  polid2i  31185  ocsh  31311  h1de2i  31581  normcan  31604  eigrei  31862  eigorthi  31865  bramul  31974  lnopunilem1  32038  hmopm  32049  riesz3i  32090  cnlnadjlem2  32096  adjmul  32120  branmfn  32133  kbass2  32145  kbass5  32148  leopmuli  32161  leopnmid  32166
  Copyright terms: Public domain W3C validator