| Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > HSE Home > Th. List > ax-his3 | Structured version Visualization version GIF version | ||
| Description: Associative law for inner product. Postulate (S3) of [Beran] p. 95. Warning: Mathematics textbooks usually use our version of the axiom. Physics textbooks, on the other hand, usually replace the left-hand side with (𝐵 ·ih (𝐴 ·ℎ 𝐶)) (e.g., Equation 1.21b of [Hughes] p. 44; Definition (iii) of [ReedSimon] p. 36). See the comments in df-bra 31786 for why the physics definition is swapped. (Contributed by NM, 29-May-1999.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| ax-his3 | ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ) → ((𝐴 ·ℎ 𝐵) ·ih 𝐶) = (𝐴 · (𝐵 ·ih 𝐶))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cA | . . . 4 class 𝐴 | |
| 2 | cc 11073 | . . . 4 class ℂ | |
| 3 | 1, 2 | wcel 2109 | . . 3 wff 𝐴 ∈ ℂ |
| 4 | cB | . . . 4 class 𝐵 | |
| 5 | chba 30855 | . . . 4 class ℋ | |
| 6 | 4, 5 | wcel 2109 | . . 3 wff 𝐵 ∈ ℋ |
| 7 | cC | . . . 4 class 𝐶 | |
| 8 | 7, 5 | wcel 2109 | . . 3 wff 𝐶 ∈ ℋ |
| 9 | 3, 6, 8 | w3a 1086 | . 2 wff (𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ) |
| 10 | csm 30857 | . . . . 5 class ·ℎ | |
| 11 | 1, 4, 10 | co 7390 | . . . 4 class (𝐴 ·ℎ 𝐵) |
| 12 | csp 30858 | . . . 4 class ·ih | |
| 13 | 11, 7, 12 | co 7390 | . . 3 class ((𝐴 ·ℎ 𝐵) ·ih 𝐶) |
| 14 | 4, 7, 12 | co 7390 | . . . 4 class (𝐵 ·ih 𝐶) |
| 15 | cmul 11080 | . . . 4 class · | |
| 16 | 1, 14, 15 | co 7390 | . . 3 class (𝐴 · (𝐵 ·ih 𝐶)) |
| 17 | 13, 16 | wceq 1540 | . 2 wff ((𝐴 ·ℎ 𝐵) ·ih 𝐶) = (𝐴 · (𝐵 ·ih 𝐶)) |
| 18 | 9, 17 | wi 4 | 1 wff ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ) → ((𝐴 ·ℎ 𝐵) ·ih 𝐶) = (𝐴 · (𝐵 ·ih 𝐶))) |
| Colors of variables: wff setvar class |
| This axiom is referenced by: his5 31022 his35 31024 hiassdi 31027 his2sub 31028 hi01 31032 normlem0 31045 normlem9 31054 bcseqi 31056 polid2i 31093 ocsh 31219 h1de2i 31489 normcan 31512 eigrei 31770 eigorthi 31773 bramul 31882 lnopunilem1 31946 hmopm 31957 riesz3i 31998 cnlnadjlem2 32004 adjmul 32028 branmfn 32041 kbass2 32053 kbass5 32056 leopmuli 32069 leopnmid 32074 |
| Copyright terms: Public domain | W3C validator |