Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > HSE Home > Th. List > ax-his3 | Structured version Visualization version GIF version |
Description: Associative law for inner product. Postulate (S3) of [Beran] p. 95. Warning: Mathematics textbooks usually use our version of the axiom. Physics textbooks, on the other hand, usually replace the left-hand side with (𝐵 ·ih (𝐴 ·ℎ 𝐶)) (e.g., Equation 1.21b of [Hughes] p. 44; Definition (iii) of [ReedSimon] p. 36). See the comments in df-bra 30113 for why the physics definition is swapped. (Contributed by NM, 29-May-1999.) (New usage is discouraged.) |
Ref | Expression |
---|---|
ax-his3 | ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ) → ((𝐴 ·ℎ 𝐵) ·ih 𝐶) = (𝐴 · (𝐵 ·ih 𝐶))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cA | . . . 4 class 𝐴 | |
2 | cc 10800 | . . . 4 class ℂ | |
3 | 1, 2 | wcel 2108 | . . 3 wff 𝐴 ∈ ℂ |
4 | cB | . . . 4 class 𝐵 | |
5 | chba 29182 | . . . 4 class ℋ | |
6 | 4, 5 | wcel 2108 | . . 3 wff 𝐵 ∈ ℋ |
7 | cC | . . . 4 class 𝐶 | |
8 | 7, 5 | wcel 2108 | . . 3 wff 𝐶 ∈ ℋ |
9 | 3, 6, 8 | w3a 1085 | . 2 wff (𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ) |
10 | csm 29184 | . . . . 5 class ·ℎ | |
11 | 1, 4, 10 | co 7255 | . . . 4 class (𝐴 ·ℎ 𝐵) |
12 | csp 29185 | . . . 4 class ·ih | |
13 | 11, 7, 12 | co 7255 | . . 3 class ((𝐴 ·ℎ 𝐵) ·ih 𝐶) |
14 | 4, 7, 12 | co 7255 | . . . 4 class (𝐵 ·ih 𝐶) |
15 | cmul 10807 | . . . 4 class · | |
16 | 1, 14, 15 | co 7255 | . . 3 class (𝐴 · (𝐵 ·ih 𝐶)) |
17 | 13, 16 | wceq 1539 | . 2 wff ((𝐴 ·ℎ 𝐵) ·ih 𝐶) = (𝐴 · (𝐵 ·ih 𝐶)) |
18 | 9, 17 | wi 4 | 1 wff ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ) → ((𝐴 ·ℎ 𝐵) ·ih 𝐶) = (𝐴 · (𝐵 ·ih 𝐶))) |
Colors of variables: wff setvar class |
This axiom is referenced by: his5 29349 his35 29351 hiassdi 29354 his2sub 29355 hi01 29359 normlem0 29372 normlem9 29381 bcseqi 29383 polid2i 29420 ocsh 29546 h1de2i 29816 normcan 29839 eigrei 30097 eigorthi 30100 bramul 30209 lnopunilem1 30273 hmopm 30284 riesz3i 30325 cnlnadjlem2 30331 adjmul 30355 branmfn 30368 kbass2 30380 kbass5 30383 leopmuli 30396 leopnmid 30401 |
Copyright terms: Public domain | W3C validator |