Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > HSE Home > Th. List > ax-his3 | Structured version Visualization version GIF version |
Description: Associative law for inner product. Postulate (S3) of [Beran] p. 95. Warning: Mathematics textbooks usually use our version of the axiom. Physics textbooks, on the other hand, usually replace the left-hand side with (𝐵 ·ih (𝐴 ·ℎ 𝐶)) (e.g., Equation 1.21b of [Hughes] p. 44; Definition (iii) of [ReedSimon] p. 36). See the comments in df-bra 30221 for why the physics definition is swapped. (Contributed by NM, 29-May-1999.) (New usage is discouraged.) |
Ref | Expression |
---|---|
ax-his3 | ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ) → ((𝐴 ·ℎ 𝐵) ·ih 𝐶) = (𝐴 · (𝐵 ·ih 𝐶))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cA | . . . 4 class 𝐴 | |
2 | cc 10878 | . . . 4 class ℂ | |
3 | 1, 2 | wcel 2107 | . . 3 wff 𝐴 ∈ ℂ |
4 | cB | . . . 4 class 𝐵 | |
5 | chba 29290 | . . . 4 class ℋ | |
6 | 4, 5 | wcel 2107 | . . 3 wff 𝐵 ∈ ℋ |
7 | cC | . . . 4 class 𝐶 | |
8 | 7, 5 | wcel 2107 | . . 3 wff 𝐶 ∈ ℋ |
9 | 3, 6, 8 | w3a 1086 | . 2 wff (𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ) |
10 | csm 29292 | . . . . 5 class ·ℎ | |
11 | 1, 4, 10 | co 7284 | . . . 4 class (𝐴 ·ℎ 𝐵) |
12 | csp 29293 | . . . 4 class ·ih | |
13 | 11, 7, 12 | co 7284 | . . 3 class ((𝐴 ·ℎ 𝐵) ·ih 𝐶) |
14 | 4, 7, 12 | co 7284 | . . . 4 class (𝐵 ·ih 𝐶) |
15 | cmul 10885 | . . . 4 class · | |
16 | 1, 14, 15 | co 7284 | . . 3 class (𝐴 · (𝐵 ·ih 𝐶)) |
17 | 13, 16 | wceq 1539 | . 2 wff ((𝐴 ·ℎ 𝐵) ·ih 𝐶) = (𝐴 · (𝐵 ·ih 𝐶)) |
18 | 9, 17 | wi 4 | 1 wff ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ) → ((𝐴 ·ℎ 𝐵) ·ih 𝐶) = (𝐴 · (𝐵 ·ih 𝐶))) |
Colors of variables: wff setvar class |
This axiom is referenced by: his5 29457 his35 29459 hiassdi 29462 his2sub 29463 hi01 29467 normlem0 29480 normlem9 29489 bcseqi 29491 polid2i 29528 ocsh 29654 h1de2i 29924 normcan 29947 eigrei 30205 eigorthi 30208 bramul 30317 lnopunilem1 30381 hmopm 30392 riesz3i 30433 cnlnadjlem2 30439 adjmul 30463 branmfn 30476 kbass2 30488 kbass5 30491 leopmuli 30504 leopnmid 30509 |
Copyright terms: Public domain | W3C validator |