| Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > HSE Home > Th. List > ax-his3 | Structured version Visualization version GIF version | ||
| Description: Associative law for inner product. Postulate (S3) of [Beran] p. 95. Warning: Mathematics textbooks usually use our version of the axiom. Physics textbooks, on the other hand, usually replace the left-hand side with (𝐵 ·ih (𝐴 ·ℎ 𝐶)) (e.g., Equation 1.21b of [Hughes] p. 44; Definition (iii) of [ReedSimon] p. 36). See the comments in df-bra 31752 for why the physics definition is swapped. (Contributed by NM, 29-May-1999.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| ax-his3 | ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ) → ((𝐴 ·ℎ 𝐵) ·ih 𝐶) = (𝐴 · (𝐵 ·ih 𝐶))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cA | . . . 4 class 𝐴 | |
| 2 | cc 11042 | . . . 4 class ℂ | |
| 3 | 1, 2 | wcel 2109 | . . 3 wff 𝐴 ∈ ℂ |
| 4 | cB | . . . 4 class 𝐵 | |
| 5 | chba 30821 | . . . 4 class ℋ | |
| 6 | 4, 5 | wcel 2109 | . . 3 wff 𝐵 ∈ ℋ |
| 7 | cC | . . . 4 class 𝐶 | |
| 8 | 7, 5 | wcel 2109 | . . 3 wff 𝐶 ∈ ℋ |
| 9 | 3, 6, 8 | w3a 1086 | . 2 wff (𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ) |
| 10 | csm 30823 | . . . . 5 class ·ℎ | |
| 11 | 1, 4, 10 | co 7369 | . . . 4 class (𝐴 ·ℎ 𝐵) |
| 12 | csp 30824 | . . . 4 class ·ih | |
| 13 | 11, 7, 12 | co 7369 | . . 3 class ((𝐴 ·ℎ 𝐵) ·ih 𝐶) |
| 14 | 4, 7, 12 | co 7369 | . . . 4 class (𝐵 ·ih 𝐶) |
| 15 | cmul 11049 | . . . 4 class · | |
| 16 | 1, 14, 15 | co 7369 | . . 3 class (𝐴 · (𝐵 ·ih 𝐶)) |
| 17 | 13, 16 | wceq 1540 | . 2 wff ((𝐴 ·ℎ 𝐵) ·ih 𝐶) = (𝐴 · (𝐵 ·ih 𝐶)) |
| 18 | 9, 17 | wi 4 | 1 wff ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ) → ((𝐴 ·ℎ 𝐵) ·ih 𝐶) = (𝐴 · (𝐵 ·ih 𝐶))) |
| Colors of variables: wff setvar class |
| This axiom is referenced by: his5 30988 his35 30990 hiassdi 30993 his2sub 30994 hi01 30998 normlem0 31011 normlem9 31020 bcseqi 31022 polid2i 31059 ocsh 31185 h1de2i 31455 normcan 31478 eigrei 31736 eigorthi 31739 bramul 31848 lnopunilem1 31912 hmopm 31923 riesz3i 31964 cnlnadjlem2 31970 adjmul 31994 branmfn 32007 kbass2 32019 kbass5 32022 leopmuli 32035 leopnmid 32040 |
| Copyright terms: Public domain | W3C validator |