Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > HSE Home > Th. List > ax-his3 | Structured version Visualization version GIF version |
Description: Associative law for inner product. Postulate (S3) of [Beran] p. 95. Warning: Mathematics textbooks usually use our version of the axiom. Physics textbooks, on the other hand, usually replace the left-hand side with (𝐵 ·ih (𝐴 ·ℎ 𝐶)) (e.g., Equation 1.21b of [Hughes] p. 44; Definition (iii) of [ReedSimon] p. 36). See the comments in df-bra 29725 for why the physics definition is swapped. (Contributed by NM, 29-May-1999.) (New usage is discouraged.) |
Ref | Expression |
---|---|
ax-his3 | ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ) → ((𝐴 ·ℎ 𝐵) ·ih 𝐶) = (𝐴 · (𝐵 ·ih 𝐶))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cA | . . . 4 class 𝐴 | |
2 | cc 10566 | . . . 4 class ℂ | |
3 | 1, 2 | wcel 2112 | . . 3 wff 𝐴 ∈ ℂ |
4 | cB | . . . 4 class 𝐵 | |
5 | chba 28794 | . . . 4 class ℋ | |
6 | 4, 5 | wcel 2112 | . . 3 wff 𝐵 ∈ ℋ |
7 | cC | . . . 4 class 𝐶 | |
8 | 7, 5 | wcel 2112 | . . 3 wff 𝐶 ∈ ℋ |
9 | 3, 6, 8 | w3a 1085 | . 2 wff (𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ) |
10 | csm 28796 | . . . . 5 class ·ℎ | |
11 | 1, 4, 10 | co 7151 | . . . 4 class (𝐴 ·ℎ 𝐵) |
12 | csp 28797 | . . . 4 class ·ih | |
13 | 11, 7, 12 | co 7151 | . . 3 class ((𝐴 ·ℎ 𝐵) ·ih 𝐶) |
14 | 4, 7, 12 | co 7151 | . . . 4 class (𝐵 ·ih 𝐶) |
15 | cmul 10573 | . . . 4 class · | |
16 | 1, 14, 15 | co 7151 | . . 3 class (𝐴 · (𝐵 ·ih 𝐶)) |
17 | 13, 16 | wceq 1539 | . 2 wff ((𝐴 ·ℎ 𝐵) ·ih 𝐶) = (𝐴 · (𝐵 ·ih 𝐶)) |
18 | 9, 17 | wi 4 | 1 wff ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ) → ((𝐴 ·ℎ 𝐵) ·ih 𝐶) = (𝐴 · (𝐵 ·ih 𝐶))) |
Colors of variables: wff setvar class |
This axiom is referenced by: his5 28961 his35 28963 hiassdi 28966 his2sub 28967 hi01 28971 normlem0 28984 normlem9 28993 bcseqi 28995 polid2i 29032 ocsh 29158 h1de2i 29428 normcan 29451 eigrei 29709 eigorthi 29712 bramul 29821 lnopunilem1 29885 hmopm 29896 riesz3i 29937 cnlnadjlem2 29943 adjmul 29967 branmfn 29980 kbass2 29992 kbass5 29995 leopmuli 30008 leopnmid 30013 |
Copyright terms: Public domain | W3C validator |