| Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > HSE Home > Th. List > ax-his3 | Structured version Visualization version GIF version | ||
| Description: Associative law for inner product. Postulate (S3) of [Beran] p. 95. Warning: Mathematics textbooks usually use our version of the axiom. Physics textbooks, on the other hand, usually replace the left-hand side with (𝐵 ·ih (𝐴 ·ℎ 𝐶)) (e.g., Equation 1.21b of [Hughes] p. 44; Definition (iii) of [ReedSimon] p. 36). See the comments in df-bra 31794 for why the physics definition is swapped. (Contributed by NM, 29-May-1999.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| ax-his3 | ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ) → ((𝐴 ·ℎ 𝐵) ·ih 𝐶) = (𝐴 · (𝐵 ·ih 𝐶))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cA | . . . 4 class 𝐴 | |
| 2 | cc 11007 | . . . 4 class ℂ | |
| 3 | 1, 2 | wcel 2109 | . . 3 wff 𝐴 ∈ ℂ |
| 4 | cB | . . . 4 class 𝐵 | |
| 5 | chba 30863 | . . . 4 class ℋ | |
| 6 | 4, 5 | wcel 2109 | . . 3 wff 𝐵 ∈ ℋ |
| 7 | cC | . . . 4 class 𝐶 | |
| 8 | 7, 5 | wcel 2109 | . . 3 wff 𝐶 ∈ ℋ |
| 9 | 3, 6, 8 | w3a 1086 | . 2 wff (𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ) |
| 10 | csm 30865 | . . . . 5 class ·ℎ | |
| 11 | 1, 4, 10 | co 7349 | . . . 4 class (𝐴 ·ℎ 𝐵) |
| 12 | csp 30866 | . . . 4 class ·ih | |
| 13 | 11, 7, 12 | co 7349 | . . 3 class ((𝐴 ·ℎ 𝐵) ·ih 𝐶) |
| 14 | 4, 7, 12 | co 7349 | . . . 4 class (𝐵 ·ih 𝐶) |
| 15 | cmul 11014 | . . . 4 class · | |
| 16 | 1, 14, 15 | co 7349 | . . 3 class (𝐴 · (𝐵 ·ih 𝐶)) |
| 17 | 13, 16 | wceq 1540 | . 2 wff ((𝐴 ·ℎ 𝐵) ·ih 𝐶) = (𝐴 · (𝐵 ·ih 𝐶)) |
| 18 | 9, 17 | wi 4 | 1 wff ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ) → ((𝐴 ·ℎ 𝐵) ·ih 𝐶) = (𝐴 · (𝐵 ·ih 𝐶))) |
| Colors of variables: wff setvar class |
| This axiom is referenced by: his5 31030 his35 31032 hiassdi 31035 his2sub 31036 hi01 31040 normlem0 31053 normlem9 31062 bcseqi 31064 polid2i 31101 ocsh 31227 h1de2i 31497 normcan 31520 eigrei 31778 eigorthi 31781 bramul 31890 lnopunilem1 31954 hmopm 31965 riesz3i 32006 cnlnadjlem2 32012 adjmul 32036 branmfn 32049 kbass2 32061 kbass5 32064 leopmuli 32077 leopnmid 32082 |
| Copyright terms: Public domain | W3C validator |