HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  ax-his3 Structured version   Visualization version   GIF version

Axiom ax-his3 31028
Description: Associative law for inner product. Postulate (S3) of [Beran] p. 95. Warning: Mathematics textbooks usually use our version of the axiom. Physics textbooks, on the other hand, usually replace the left-hand side with (𝐵 ·ih (𝐴 · 𝐶)) (e.g., Equation 1.21b of [Hughes] p. 44; Definition (iii) of [ReedSimon] p. 36). See the comments in df-bra 31794 for why the physics definition is swapped. (Contributed by NM, 29-May-1999.) (New usage is discouraged.)
Assertion
Ref Expression
ax-his3 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ) → ((𝐴 · 𝐵) ·ih 𝐶) = (𝐴 · (𝐵 ·ih 𝐶)))

Detailed syntax breakdown of Axiom ax-his3
StepHypRef Expression
1 cA . . . 4 class 𝐴
2 cc 11007 . . . 4 class
31, 2wcel 2109 . . 3 wff 𝐴 ∈ ℂ
4 cB . . . 4 class 𝐵
5 chba 30863 . . . 4 class
64, 5wcel 2109 . . 3 wff 𝐵 ∈ ℋ
7 cC . . . 4 class 𝐶
87, 5wcel 2109 . . 3 wff 𝐶 ∈ ℋ
93, 6, 8w3a 1086 . 2 wff (𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ)
10 csm 30865 . . . . 5 class ·
111, 4, 10co 7349 . . . 4 class (𝐴 · 𝐵)
12 csp 30866 . . . 4 class ·ih
1311, 7, 12co 7349 . . 3 class ((𝐴 · 𝐵) ·ih 𝐶)
144, 7, 12co 7349 . . . 4 class (𝐵 ·ih 𝐶)
15 cmul 11014 . . . 4 class ·
161, 14, 15co 7349 . . 3 class (𝐴 · (𝐵 ·ih 𝐶))
1713, 16wceq 1540 . 2 wff ((𝐴 · 𝐵) ·ih 𝐶) = (𝐴 · (𝐵 ·ih 𝐶))
189, 17wi 4 1 wff ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ) → ((𝐴 · 𝐵) ·ih 𝐶) = (𝐴 · (𝐵 ·ih 𝐶)))
Colors of variables: wff setvar class
This axiom is referenced by:  his5  31030  his35  31032  hiassdi  31035  his2sub  31036  hi01  31040  normlem0  31053  normlem9  31062  bcseqi  31064  polid2i  31101  ocsh  31227  h1de2i  31497  normcan  31520  eigrei  31778  eigorthi  31781  bramul  31890  lnopunilem1  31954  hmopm  31965  riesz3i  32006  cnlnadjlem2  32012  adjmul  32036  branmfn  32049  kbass2  32061  kbass5  32064  leopmuli  32077  leopnmid  32082
  Copyright terms: Public domain W3C validator