HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  his6 Structured version   Visualization version   GIF version

Theorem his6 28649
Description: Zero inner product with self means vector is zero. Lemma 3.1(S6) of [Beran] p. 95. (Contributed by NM, 27-Jul-1999.) (New usage is discouraged.)
Assertion
Ref Expression
his6 (𝐴 ∈ ℋ → ((𝐴 ·ih 𝐴) = 0 ↔ 𝐴 = 0))

Proof of Theorem his6
StepHypRef Expression
1 ax-his4 28635 . . . . 5 ((𝐴 ∈ ℋ ∧ 𝐴 ≠ 0) → 0 < (𝐴 ·ih 𝐴))
21gt0ne0d 11001 . . . 4 ((𝐴 ∈ ℋ ∧ 𝐴 ≠ 0) → (𝐴 ·ih 𝐴) ≠ 0)
32ex 405 . . 3 (𝐴 ∈ ℋ → (𝐴 ≠ 0 → (𝐴 ·ih 𝐴) ≠ 0))
43necon4d 2988 . 2 (𝐴 ∈ ℋ → ((𝐴 ·ih 𝐴) = 0 → 𝐴 = 0))
5 hi01 28646 . . 3 (𝐴 ∈ ℋ → (0 ·ih 𝐴) = 0)
6 oveq1 6981 . . . 4 (𝐴 = 0 → (𝐴 ·ih 𝐴) = (0 ·ih 𝐴))
76eqeq1d 2777 . . 3 (𝐴 = 0 → ((𝐴 ·ih 𝐴) = 0 ↔ (0 ·ih 𝐴) = 0))
85, 7syl5ibrcom 239 . 2 (𝐴 ∈ ℋ → (𝐴 = 0 → (𝐴 ·ih 𝐴) = 0))
94, 8impbid 204 1 (𝐴 ∈ ℋ → ((𝐴 ·ih 𝐴) = 0 ↔ 𝐴 = 0))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 198  wa 387   = wceq 1507  wcel 2048  wne 2964  (class class class)co 6974  0cc0 10331  chba 28469   ·ih csp 28472  0c0v 28474
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1758  ax-4 1772  ax-5 1869  ax-6 1928  ax-7 1964  ax-8 2050  ax-9 2057  ax-10 2077  ax-11 2091  ax-12 2104  ax-13 2299  ax-ext 2747  ax-sep 5058  ax-nul 5065  ax-pow 5117  ax-pr 5184  ax-un 7277  ax-resscn 10388  ax-1cn 10389  ax-icn 10390  ax-addcl 10391  ax-addrcl 10392  ax-mulcl 10393  ax-mulrcl 10394  ax-mulcom 10395  ax-addass 10396  ax-mulass 10397  ax-distr 10398  ax-i2m1 10399  ax-1ne0 10400  ax-1rid 10401  ax-rnegex 10402  ax-rrecex 10403  ax-cnre 10404  ax-pre-lttri 10405  ax-pre-lttrn 10406  ax-pre-ltadd 10407  ax-hv0cl 28553  ax-hvmul0 28560  ax-hfi 28629  ax-his3 28634  ax-his4 28635
This theorem depends on definitions:  df-bi 199  df-an 388  df-or 834  df-3or 1069  df-3an 1070  df-tru 1510  df-ex 1743  df-nf 1747  df-sb 2014  df-mo 2544  df-eu 2580  df-clab 2756  df-cleq 2768  df-clel 2843  df-nfc 2915  df-ne 2965  df-nel 3071  df-ral 3090  df-rex 3091  df-rab 3094  df-v 3414  df-sbc 3681  df-csb 3786  df-dif 3831  df-un 3833  df-in 3835  df-ss 3842  df-nul 4178  df-if 4349  df-pw 4422  df-sn 4440  df-pr 4442  df-op 4446  df-uni 4711  df-iun 4792  df-br 4928  df-opab 4990  df-mpt 5007  df-id 5309  df-po 5323  df-so 5324  df-xp 5410  df-rel 5411  df-cnv 5412  df-co 5413  df-dm 5414  df-rn 5415  df-res 5416  df-ima 5417  df-iota 6150  df-fun 6188  df-fn 6189  df-f 6190  df-f1 6191  df-fo 6192  df-f1o 6193  df-fv 6194  df-ov 6977  df-er 8085  df-en 8303  df-dom 8304  df-sdom 8305  df-pnf 10472  df-mnf 10473  df-ltxr 10475
This theorem is referenced by:  hial0  28652  hial02  28653  hi2eq  28655  bcseqi  28670  ocin  28848  h1de2bi  29106  h1de2ctlem  29107  normcan  29128  unopf1o  29468  riesz3i  29614
  Copyright terms: Public domain W3C validator