Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > HSE Home > Th. List > his6 | Structured version Visualization version GIF version |
Description: Zero inner product with self means vector is zero. Lemma 3.1(S6) of [Beran] p. 95. (Contributed by NM, 27-Jul-1999.) (New usage is discouraged.) |
Ref | Expression |
---|---|
his6 | ⊢ (𝐴 ∈ ℋ → ((𝐴 ·ih 𝐴) = 0 ↔ 𝐴 = 0ℎ)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ax-his4 29735 | . . . . 5 ⊢ ((𝐴 ∈ ℋ ∧ 𝐴 ≠ 0ℎ) → 0 < (𝐴 ·ih 𝐴)) | |
2 | 1 | gt0ne0d 11645 | . . . 4 ⊢ ((𝐴 ∈ ℋ ∧ 𝐴 ≠ 0ℎ) → (𝐴 ·ih 𝐴) ≠ 0) |
3 | 2 | ex 414 | . . 3 ⊢ (𝐴 ∈ ℋ → (𝐴 ≠ 0ℎ → (𝐴 ·ih 𝐴) ≠ 0)) |
4 | 3 | necon4d 2965 | . 2 ⊢ (𝐴 ∈ ℋ → ((𝐴 ·ih 𝐴) = 0 → 𝐴 = 0ℎ)) |
5 | hi01 29746 | . . 3 ⊢ (𝐴 ∈ ℋ → (0ℎ ·ih 𝐴) = 0) | |
6 | oveq1 7349 | . . . 4 ⊢ (𝐴 = 0ℎ → (𝐴 ·ih 𝐴) = (0ℎ ·ih 𝐴)) | |
7 | 6 | eqeq1d 2739 | . . 3 ⊢ (𝐴 = 0ℎ → ((𝐴 ·ih 𝐴) = 0 ↔ (0ℎ ·ih 𝐴) = 0)) |
8 | 5, 7 | syl5ibrcom 247 | . 2 ⊢ (𝐴 ∈ ℋ → (𝐴 = 0ℎ → (𝐴 ·ih 𝐴) = 0)) |
9 | 4, 8 | impbid 211 | 1 ⊢ (𝐴 ∈ ℋ → ((𝐴 ·ih 𝐴) = 0 ↔ 𝐴 = 0ℎ)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 397 = wceq 1541 ∈ wcel 2106 ≠ wne 2941 (class class class)co 7342 0cc0 10977 ℋchba 29569 ·ih csp 29572 0ℎc0v 29574 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2708 ax-sep 5248 ax-nul 5255 ax-pow 5313 ax-pr 5377 ax-un 7655 ax-resscn 11034 ax-1cn 11035 ax-icn 11036 ax-addcl 11037 ax-addrcl 11038 ax-mulcl 11039 ax-mulrcl 11040 ax-mulcom 11041 ax-addass 11042 ax-mulass 11043 ax-distr 11044 ax-i2m1 11045 ax-1ne0 11046 ax-1rid 11047 ax-rnegex 11048 ax-rrecex 11049 ax-cnre 11050 ax-pre-lttri 11051 ax-pre-lttrn 11052 ax-pre-ltadd 11053 ax-hv0cl 29653 ax-hvmul0 29660 ax-hfi 29729 ax-his3 29734 ax-his4 29735 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2815 df-nfc 2887 df-ne 2942 df-nel 3048 df-ral 3063 df-rex 3072 df-rab 3405 df-v 3444 df-sbc 3732 df-csb 3848 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-nul 4275 df-if 4479 df-pw 4554 df-sn 4579 df-pr 4581 df-op 4585 df-uni 4858 df-iun 4948 df-br 5098 df-opab 5160 df-mpt 5181 df-id 5523 df-po 5537 df-so 5538 df-xp 5631 df-rel 5632 df-cnv 5633 df-co 5634 df-dm 5635 df-rn 5636 df-res 5637 df-ima 5638 df-iota 6436 df-fun 6486 df-fn 6487 df-f 6488 df-f1 6489 df-fo 6490 df-f1o 6491 df-fv 6492 df-ov 7345 df-er 8574 df-en 8810 df-dom 8811 df-sdom 8812 df-pnf 11117 df-mnf 11118 df-ltxr 11120 |
This theorem is referenced by: hial0 29752 hial02 29753 hi2eq 29755 bcseqi 29770 ocin 29946 h1de2bi 30204 h1de2ctlem 30205 normcan 30226 unopf1o 30566 riesz3i 30712 |
Copyright terms: Public domain | W3C validator |