![]() |
Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > HSE Home > Th. List > his6 | Structured version Visualization version GIF version |
Description: Zero inner product with self means vector is zero. Lemma 3.1(S6) of [Beran] p. 95. (Contributed by NM, 27-Jul-1999.) (New usage is discouraged.) |
Ref | Expression |
---|---|
his6 | ⊢ (𝐴 ∈ ℋ → ((𝐴 ·ih 𝐴) = 0 ↔ 𝐴 = 0ℎ)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ax-his4 28635 | . . . . 5 ⊢ ((𝐴 ∈ ℋ ∧ 𝐴 ≠ 0ℎ) → 0 < (𝐴 ·ih 𝐴)) | |
2 | 1 | gt0ne0d 11001 | . . . 4 ⊢ ((𝐴 ∈ ℋ ∧ 𝐴 ≠ 0ℎ) → (𝐴 ·ih 𝐴) ≠ 0) |
3 | 2 | ex 405 | . . 3 ⊢ (𝐴 ∈ ℋ → (𝐴 ≠ 0ℎ → (𝐴 ·ih 𝐴) ≠ 0)) |
4 | 3 | necon4d 2988 | . 2 ⊢ (𝐴 ∈ ℋ → ((𝐴 ·ih 𝐴) = 0 → 𝐴 = 0ℎ)) |
5 | hi01 28646 | . . 3 ⊢ (𝐴 ∈ ℋ → (0ℎ ·ih 𝐴) = 0) | |
6 | oveq1 6981 | . . . 4 ⊢ (𝐴 = 0ℎ → (𝐴 ·ih 𝐴) = (0ℎ ·ih 𝐴)) | |
7 | 6 | eqeq1d 2777 | . . 3 ⊢ (𝐴 = 0ℎ → ((𝐴 ·ih 𝐴) = 0 ↔ (0ℎ ·ih 𝐴) = 0)) |
8 | 5, 7 | syl5ibrcom 239 | . 2 ⊢ (𝐴 ∈ ℋ → (𝐴 = 0ℎ → (𝐴 ·ih 𝐴) = 0)) |
9 | 4, 8 | impbid 204 | 1 ⊢ (𝐴 ∈ ℋ → ((𝐴 ·ih 𝐴) = 0 ↔ 𝐴 = 0ℎ)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 198 ∧ wa 387 = wceq 1507 ∈ wcel 2048 ≠ wne 2964 (class class class)co 6974 0cc0 10331 ℋchba 28469 ·ih csp 28472 0ℎc0v 28474 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1758 ax-4 1772 ax-5 1869 ax-6 1928 ax-7 1964 ax-8 2050 ax-9 2057 ax-10 2077 ax-11 2091 ax-12 2104 ax-13 2299 ax-ext 2747 ax-sep 5058 ax-nul 5065 ax-pow 5117 ax-pr 5184 ax-un 7277 ax-resscn 10388 ax-1cn 10389 ax-icn 10390 ax-addcl 10391 ax-addrcl 10392 ax-mulcl 10393 ax-mulrcl 10394 ax-mulcom 10395 ax-addass 10396 ax-mulass 10397 ax-distr 10398 ax-i2m1 10399 ax-1ne0 10400 ax-1rid 10401 ax-rnegex 10402 ax-rrecex 10403 ax-cnre 10404 ax-pre-lttri 10405 ax-pre-lttrn 10406 ax-pre-ltadd 10407 ax-hv0cl 28553 ax-hvmul0 28560 ax-hfi 28629 ax-his3 28634 ax-his4 28635 |
This theorem depends on definitions: df-bi 199 df-an 388 df-or 834 df-3or 1069 df-3an 1070 df-tru 1510 df-ex 1743 df-nf 1747 df-sb 2014 df-mo 2544 df-eu 2580 df-clab 2756 df-cleq 2768 df-clel 2843 df-nfc 2915 df-ne 2965 df-nel 3071 df-ral 3090 df-rex 3091 df-rab 3094 df-v 3414 df-sbc 3681 df-csb 3786 df-dif 3831 df-un 3833 df-in 3835 df-ss 3842 df-nul 4178 df-if 4349 df-pw 4422 df-sn 4440 df-pr 4442 df-op 4446 df-uni 4711 df-iun 4792 df-br 4928 df-opab 4990 df-mpt 5007 df-id 5309 df-po 5323 df-so 5324 df-xp 5410 df-rel 5411 df-cnv 5412 df-co 5413 df-dm 5414 df-rn 5415 df-res 5416 df-ima 5417 df-iota 6150 df-fun 6188 df-fn 6189 df-f 6190 df-f1 6191 df-fo 6192 df-f1o 6193 df-fv 6194 df-ov 6977 df-er 8085 df-en 8303 df-dom 8304 df-sdom 8305 df-pnf 10472 df-mnf 10473 df-ltxr 10475 |
This theorem is referenced by: hial0 28652 hial02 28653 hi2eq 28655 bcseqi 28670 ocin 28848 h1de2bi 29106 h1de2ctlem 29107 normcan 29128 unopf1o 29468 riesz3i 29614 |
Copyright terms: Public domain | W3C validator |