![]() |
Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > HSE Home > Th. List > his6 | Structured version Visualization version GIF version |
Description: Zero inner product with self means vector is zero. Lemma 3.1(S6) of [Beran] p. 95. (Contributed by NM, 27-Jul-1999.) (New usage is discouraged.) |
Ref | Expression |
---|---|
his6 | โข (๐ด โ โ โ ((๐ด ยทih ๐ด) = 0 โ ๐ด = 0โ)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ax-his4 30603 | . . . . 5 โข ((๐ด โ โ โง ๐ด โ 0โ) โ 0 < (๐ด ยทih ๐ด)) | |
2 | 1 | gt0ne0d 11784 | . . . 4 โข ((๐ด โ โ โง ๐ด โ 0โ) โ (๐ด ยทih ๐ด) โ 0) |
3 | 2 | ex 411 | . . 3 โข (๐ด โ โ โ (๐ด โ 0โ โ (๐ด ยทih ๐ด) โ 0)) |
4 | 3 | necon4d 2962 | . 2 โข (๐ด โ โ โ ((๐ด ยทih ๐ด) = 0 โ ๐ด = 0โ)) |
5 | hi01 30614 | . . 3 โข (๐ด โ โ โ (0โ ยทih ๐ด) = 0) | |
6 | oveq1 7420 | . . . 4 โข (๐ด = 0โ โ (๐ด ยทih ๐ด) = (0โ ยทih ๐ด)) | |
7 | 6 | eqeq1d 2732 | . . 3 โข (๐ด = 0โ โ ((๐ด ยทih ๐ด) = 0 โ (0โ ยทih ๐ด) = 0)) |
8 | 5, 7 | syl5ibrcom 246 | . 2 โข (๐ด โ โ โ (๐ด = 0โ โ (๐ด ยทih ๐ด) = 0)) |
9 | 4, 8 | impbid 211 | 1 โข (๐ด โ โ โ ((๐ด ยทih ๐ด) = 0 โ ๐ด = 0โ)) |
Colors of variables: wff setvar class |
Syntax hints: โ wi 4 โ wb 205 โง wa 394 = wceq 1539 โ wcel 2104 โ wne 2938 (class class class)co 7413 0cc0 11114 โchba 30437 ยทih csp 30440 0โc0v 30442 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-10 2135 ax-11 2152 ax-12 2169 ax-ext 2701 ax-sep 5300 ax-nul 5307 ax-pow 5364 ax-pr 5428 ax-un 7729 ax-resscn 11171 ax-1cn 11172 ax-icn 11173 ax-addcl 11174 ax-addrcl 11175 ax-mulcl 11176 ax-mulrcl 11177 ax-mulcom 11178 ax-addass 11179 ax-mulass 11180 ax-distr 11181 ax-i2m1 11182 ax-1ne0 11183 ax-1rid 11184 ax-rnegex 11185 ax-rrecex 11186 ax-cnre 11187 ax-pre-lttri 11188 ax-pre-lttrn 11189 ax-pre-ltadd 11190 ax-hv0cl 30521 ax-hvmul0 30528 ax-hfi 30597 ax-his3 30602 ax-his4 30603 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2532 df-eu 2561 df-clab 2708 df-cleq 2722 df-clel 2808 df-nfc 2883 df-ne 2939 df-nel 3045 df-ral 3060 df-rex 3069 df-rab 3431 df-v 3474 df-sbc 3779 df-csb 3895 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4910 df-iun 5000 df-br 5150 df-opab 5212 df-mpt 5233 df-id 5575 df-po 5589 df-so 5590 df-xp 5683 df-rel 5684 df-cnv 5685 df-co 5686 df-dm 5687 df-rn 5688 df-res 5689 df-ima 5690 df-iota 6496 df-fun 6546 df-fn 6547 df-f 6548 df-f1 6549 df-fo 6550 df-f1o 6551 df-fv 6552 df-ov 7416 df-er 8707 df-en 8944 df-dom 8945 df-sdom 8946 df-pnf 11256 df-mnf 11257 df-ltxr 11259 |
This theorem is referenced by: hial0 30620 hial02 30621 hi2eq 30623 bcseqi 30638 ocin 30814 h1de2bi 31072 h1de2ctlem 31073 normcan 31094 unopf1o 31434 riesz3i 31580 |
Copyright terms: Public domain | W3C validator |