HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  his6 Structured version   Visualization version   GIF version

Theorem his6 31131
Description: Zero inner product with self means vector is zero. Lemma 3.1(S6) of [Beran] p. 95. (Contributed by NM, 27-Jul-1999.) (New usage is discouraged.)
Assertion
Ref Expression
his6 (𝐴 ∈ ℋ → ((𝐴 ·ih 𝐴) = 0 ↔ 𝐴 = 0))

Proof of Theorem his6
StepHypRef Expression
1 ax-his4 31117 . . . . 5 ((𝐴 ∈ ℋ ∧ 𝐴 ≠ 0) → 0 < (𝐴 ·ih 𝐴))
21gt0ne0d 11854 . . . 4 ((𝐴 ∈ ℋ ∧ 𝐴 ≠ 0) → (𝐴 ·ih 𝐴) ≠ 0)
32ex 412 . . 3 (𝐴 ∈ ℋ → (𝐴 ≠ 0 → (𝐴 ·ih 𝐴) ≠ 0))
43necon4d 2970 . 2 (𝐴 ∈ ℋ → ((𝐴 ·ih 𝐴) = 0 → 𝐴 = 0))
5 hi01 31128 . . 3 (𝐴 ∈ ℋ → (0 ·ih 𝐴) = 0)
6 oveq1 7455 . . . 4 (𝐴 = 0 → (𝐴 ·ih 𝐴) = (0 ·ih 𝐴))
76eqeq1d 2742 . . 3 (𝐴 = 0 → ((𝐴 ·ih 𝐴) = 0 ↔ (0 ·ih 𝐴) = 0))
85, 7syl5ibrcom 247 . 2 (𝐴 ∈ ℋ → (𝐴 = 0 → (𝐴 ·ih 𝐴) = 0))
94, 8impbid 212 1 (𝐴 ∈ ℋ → ((𝐴 ·ih 𝐴) = 0 ↔ 𝐴 = 0))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1537  wcel 2108  wne 2946  (class class class)co 7448  0cc0 11184  chba 30951   ·ih csp 30954  0c0v 30956
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-hv0cl 31035  ax-hvmul0 31042  ax-hfi 31111  ax-his3 31116  ax-his4 31117
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-id 5593  df-po 5607  df-so 5608  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-ov 7451  df-er 8763  df-en 9004  df-dom 9005  df-sdom 9006  df-pnf 11326  df-mnf 11327  df-ltxr 11329
This theorem is referenced by:  hial0  31134  hial02  31135  hi2eq  31137  bcseqi  31152  ocin  31328  h1de2bi  31586  h1de2ctlem  31587  normcan  31608  unopf1o  31948  riesz3i  32094
  Copyright terms: Public domain W3C validator