HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  eigposi Structured version   Visualization version   GIF version

Theorem eigposi 31816
Description: A sufficient condition (first conjunct pair, that holds when 𝑇 is a positive operator) for an eigenvalue 𝐵 (second conjunct pair) to be nonnegative. Remark (ii) in [Hughes] p. 137. (Contributed by NM, 2-Jul-2005.) (New usage is discouraged.)
Hypotheses
Ref Expression
eigpos.1 𝐴 ∈ ℋ
eigpos.2 𝐵 ∈ ℂ
Assertion
Ref Expression
eigposi ((((𝐴 ·ih (𝑇𝐴)) ∈ ℝ ∧ 0 ≤ (𝐴 ·ih (𝑇𝐴))) ∧ ((𝑇𝐴) = (𝐵 · 𝐴) ∧ 𝐴 ≠ 0)) → (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵))

Proof of Theorem eigposi
StepHypRef Expression
1 oveq2 7354 . . . . . . . 8 ((𝑇𝐴) = (𝐵 · 𝐴) → (𝐴 ·ih (𝑇𝐴)) = (𝐴 ·ih (𝐵 · 𝐴)))
21eleq1d 2816 . . . . . . 7 ((𝑇𝐴) = (𝐵 · 𝐴) → ((𝐴 ·ih (𝑇𝐴)) ∈ ℝ ↔ (𝐴 ·ih (𝐵 · 𝐴)) ∈ ℝ))
3 eigpos.1 . . . . . . . . 9 𝐴 ∈ ℋ
4 eigpos.2 . . . . . . . . . 10 𝐵 ∈ ℂ
54, 3hvmulcli 30994 . . . . . . . . 9 (𝐵 · 𝐴) ∈ ℋ
6 hire 31074 . . . . . . . . 9 ((𝐴 ∈ ℋ ∧ (𝐵 · 𝐴) ∈ ℋ) → ((𝐴 ·ih (𝐵 · 𝐴)) ∈ ℝ ↔ (𝐴 ·ih (𝐵 · 𝐴)) = ((𝐵 · 𝐴) ·ih 𝐴)))
73, 5, 6mp2an 692 . . . . . . . 8 ((𝐴 ·ih (𝐵 · 𝐴)) ∈ ℝ ↔ (𝐴 ·ih (𝐵 · 𝐴)) = ((𝐵 · 𝐴) ·ih 𝐴))
8 oveq1 7353 . . . . . . . . 9 ((𝑇𝐴) = (𝐵 · 𝐴) → ((𝑇𝐴) ·ih 𝐴) = ((𝐵 · 𝐴) ·ih 𝐴))
91, 8eqeq12d 2747 . . . . . . . 8 ((𝑇𝐴) = (𝐵 · 𝐴) → ((𝐴 ·ih (𝑇𝐴)) = ((𝑇𝐴) ·ih 𝐴) ↔ (𝐴 ·ih (𝐵 · 𝐴)) = ((𝐵 · 𝐴) ·ih 𝐴)))
107, 9bitr4id 290 . . . . . . 7 ((𝑇𝐴) = (𝐵 · 𝐴) → ((𝐴 ·ih (𝐵 · 𝐴)) ∈ ℝ ↔ (𝐴 ·ih (𝑇𝐴)) = ((𝑇𝐴) ·ih 𝐴)))
112, 10bitrd 279 . . . . . 6 ((𝑇𝐴) = (𝐵 · 𝐴) → ((𝐴 ·ih (𝑇𝐴)) ∈ ℝ ↔ (𝐴 ·ih (𝑇𝐴)) = ((𝑇𝐴) ·ih 𝐴)))
1211adantr 480 . . . . 5 (((𝑇𝐴) = (𝐵 · 𝐴) ∧ 𝐴 ≠ 0) → ((𝐴 ·ih (𝑇𝐴)) ∈ ℝ ↔ (𝐴 ·ih (𝑇𝐴)) = ((𝑇𝐴) ·ih 𝐴)))
133, 4eigrei 31814 . . . . 5 (((𝑇𝐴) = (𝐵 · 𝐴) ∧ 𝐴 ≠ 0) → ((𝐴 ·ih (𝑇𝐴)) = ((𝑇𝐴) ·ih 𝐴) ↔ 𝐵 ∈ ℝ))
1412, 13bitrd 279 . . . 4 (((𝑇𝐴) = (𝐵 · 𝐴) ∧ 𝐴 ≠ 0) → ((𝐴 ·ih (𝑇𝐴)) ∈ ℝ ↔ 𝐵 ∈ ℝ))
1514biimpac 478 . . 3 (((𝐴 ·ih (𝑇𝐴)) ∈ ℝ ∧ ((𝑇𝐴) = (𝐵 · 𝐴) ∧ 𝐴 ≠ 0)) → 𝐵 ∈ ℝ)
1615adantlr 715 . 2 ((((𝐴 ·ih (𝑇𝐴)) ∈ ℝ ∧ 0 ≤ (𝐴 ·ih (𝑇𝐴))) ∧ ((𝑇𝐴) = (𝐵 · 𝐴) ∧ 𝐴 ≠ 0)) → 𝐵 ∈ ℝ)
17 hiidrcl 31075 . . . . 5 (𝐴 ∈ ℋ → (𝐴 ·ih 𝐴) ∈ ℝ)
183, 17mp1i 13 . . . 4 ((((𝐴 ·ih (𝑇𝐴)) ∈ ℝ ∧ 0 ≤ (𝐴 ·ih (𝑇𝐴))) ∧ ((𝑇𝐴) = (𝐵 · 𝐴) ∧ 𝐴 ≠ 0)) → (𝐴 ·ih 𝐴) ∈ ℝ)
19 ax-his4 31065 . . . . . 6 ((𝐴 ∈ ℋ ∧ 𝐴 ≠ 0) → 0 < (𝐴 ·ih 𝐴))
203, 19mpan 690 . . . . 5 (𝐴 ≠ 0 → 0 < (𝐴 ·ih 𝐴))
2120ad2antll 729 . . . 4 ((((𝐴 ·ih (𝑇𝐴)) ∈ ℝ ∧ 0 ≤ (𝐴 ·ih (𝑇𝐴))) ∧ ((𝑇𝐴) = (𝐵 · 𝐴) ∧ 𝐴 ≠ 0)) → 0 < (𝐴 ·ih 𝐴))
2218, 21elrpd 12931 . . 3 ((((𝐴 ·ih (𝑇𝐴)) ∈ ℝ ∧ 0 ≤ (𝐴 ·ih (𝑇𝐴))) ∧ ((𝑇𝐴) = (𝐵 · 𝐴) ∧ 𝐴 ≠ 0)) → (𝐴 ·ih 𝐴) ∈ ℝ+)
23 simplr 768 . . . 4 ((((𝐴 ·ih (𝑇𝐴)) ∈ ℝ ∧ 0 ≤ (𝐴 ·ih (𝑇𝐴))) ∧ ((𝑇𝐴) = (𝐵 · 𝐴) ∧ 𝐴 ≠ 0)) → 0 ≤ (𝐴 ·ih (𝑇𝐴)))
241ad2antrl 728 . . . . 5 ((((𝐴 ·ih (𝑇𝐴)) ∈ ℝ ∧ 0 ≤ (𝐴 ·ih (𝑇𝐴))) ∧ ((𝑇𝐴) = (𝐵 · 𝐴) ∧ 𝐴 ≠ 0)) → (𝐴 ·ih (𝑇𝐴)) = (𝐴 ·ih (𝐵 · 𝐴)))
25 his5 31066 . . . . . . 7 ((𝐵 ∈ ℂ ∧ 𝐴 ∈ ℋ ∧ 𝐴 ∈ ℋ) → (𝐴 ·ih (𝐵 · 𝐴)) = ((∗‘𝐵) · (𝐴 ·ih 𝐴)))
264, 3, 3, 25mp3an 1463 . . . . . 6 (𝐴 ·ih (𝐵 · 𝐴)) = ((∗‘𝐵) · (𝐴 ·ih 𝐴))
2716cjred 15133 . . . . . . 7 ((((𝐴 ·ih (𝑇𝐴)) ∈ ℝ ∧ 0 ≤ (𝐴 ·ih (𝑇𝐴))) ∧ ((𝑇𝐴) = (𝐵 · 𝐴) ∧ 𝐴 ≠ 0)) → (∗‘𝐵) = 𝐵)
2827oveq1d 7361 . . . . . 6 ((((𝐴 ·ih (𝑇𝐴)) ∈ ℝ ∧ 0 ≤ (𝐴 ·ih (𝑇𝐴))) ∧ ((𝑇𝐴) = (𝐵 · 𝐴) ∧ 𝐴 ≠ 0)) → ((∗‘𝐵) · (𝐴 ·ih 𝐴)) = (𝐵 · (𝐴 ·ih 𝐴)))
2926, 28eqtrid 2778 . . . . 5 ((((𝐴 ·ih (𝑇𝐴)) ∈ ℝ ∧ 0 ≤ (𝐴 ·ih (𝑇𝐴))) ∧ ((𝑇𝐴) = (𝐵 · 𝐴) ∧ 𝐴 ≠ 0)) → (𝐴 ·ih (𝐵 · 𝐴)) = (𝐵 · (𝐴 ·ih 𝐴)))
3024, 29eqtrd 2766 . . . 4 ((((𝐴 ·ih (𝑇𝐴)) ∈ ℝ ∧ 0 ≤ (𝐴 ·ih (𝑇𝐴))) ∧ ((𝑇𝐴) = (𝐵 · 𝐴) ∧ 𝐴 ≠ 0)) → (𝐴 ·ih (𝑇𝐴)) = (𝐵 · (𝐴 ·ih 𝐴)))
3123, 30breqtrd 5115 . . 3 ((((𝐴 ·ih (𝑇𝐴)) ∈ ℝ ∧ 0 ≤ (𝐴 ·ih (𝑇𝐴))) ∧ ((𝑇𝐴) = (𝐵 · 𝐴) ∧ 𝐴 ≠ 0)) → 0 ≤ (𝐵 · (𝐴 ·ih 𝐴)))
3216, 22, 31prodge0ld 13000 . 2 ((((𝐴 ·ih (𝑇𝐴)) ∈ ℝ ∧ 0 ≤ (𝐴 ·ih (𝑇𝐴))) ∧ ((𝑇𝐴) = (𝐵 · 𝐴) ∧ 𝐴 ≠ 0)) → 0 ≤ 𝐵)
3316, 32jca 511 1 ((((𝐴 ·ih (𝑇𝐴)) ∈ ℝ ∧ 0 ≤ (𝐴 ·ih (𝑇𝐴))) ∧ ((𝑇𝐴) = (𝐵 · 𝐴) ∧ 𝐴 ≠ 0)) → (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1541  wcel 2111  wne 2928   class class class wbr 5089  cfv 6481  (class class class)co 7346  cc 11004  cr 11005  0cc0 11006   · cmul 11011   < clt 11146  cle 11147  ccj 15003  chba 30899   · csm 30901   ·ih csp 30902  0c0v 30904
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7668  ax-resscn 11063  ax-1cn 11064  ax-icn 11065  ax-addcl 11066  ax-addrcl 11067  ax-mulcl 11068  ax-mulrcl 11069  ax-mulcom 11070  ax-addass 11071  ax-mulass 11072  ax-distr 11073  ax-i2m1 11074  ax-1ne0 11075  ax-1rid 11076  ax-rnegex 11077  ax-rrecex 11078  ax-cnre 11079  ax-pre-lttri 11080  ax-pre-lttrn 11081  ax-pre-ltadd 11082  ax-pre-mulgt0 11083  ax-hfvmul 30985  ax-hfi 31059  ax-his1 31062  ax-his3 31064  ax-his4 31065
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-iun 4941  df-br 5090  df-opab 5152  df-mpt 5171  df-tr 5197  df-id 5509  df-eprel 5514  df-po 5522  df-so 5523  df-fr 5567  df-we 5569  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-om 7797  df-2nd 7922  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-er 8622  df-en 8870  df-dom 8871  df-sdom 8872  df-pnf 11148  df-mnf 11149  df-xr 11150  df-ltxr 11151  df-le 11152  df-sub 11346  df-neg 11347  df-div 11775  df-nn 12126  df-2 12188  df-rp 12891  df-cj 15006  df-re 15007  df-im 15008
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator