HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  eigposi Structured version   Visualization version   GIF version

Theorem eigposi 31371
Description: A sufficient condition (first conjunct pair, that holds when 𝑇 is a positive operator) for an eigenvalue 𝐵 (second conjunct pair) to be nonnegative. Remark (ii) in [Hughes] p. 137. (Contributed by NM, 2-Jul-2005.) (New usage is discouraged.)
Hypotheses
Ref Expression
eigpos.1 𝐴 ∈ ℋ
eigpos.2 𝐵 ∈ ℂ
Assertion
Ref Expression
eigposi ((((𝐴 ·ih (𝑇𝐴)) ∈ ℝ ∧ 0 ≤ (𝐴 ·ih (𝑇𝐴))) ∧ ((𝑇𝐴) = (𝐵 · 𝐴) ∧ 𝐴 ≠ 0)) → (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵))

Proof of Theorem eigposi
StepHypRef Expression
1 oveq2 7420 . . . . . . . 8 ((𝑇𝐴) = (𝐵 · 𝐴) → (𝐴 ·ih (𝑇𝐴)) = (𝐴 ·ih (𝐵 · 𝐴)))
21eleq1d 2817 . . . . . . 7 ((𝑇𝐴) = (𝐵 · 𝐴) → ((𝐴 ·ih (𝑇𝐴)) ∈ ℝ ↔ (𝐴 ·ih (𝐵 · 𝐴)) ∈ ℝ))
3 eigpos.1 . . . . . . . . 9 𝐴 ∈ ℋ
4 eigpos.2 . . . . . . . . . 10 𝐵 ∈ ℂ
54, 3hvmulcli 30549 . . . . . . . . 9 (𝐵 · 𝐴) ∈ ℋ
6 hire 30629 . . . . . . . . 9 ((𝐴 ∈ ℋ ∧ (𝐵 · 𝐴) ∈ ℋ) → ((𝐴 ·ih (𝐵 · 𝐴)) ∈ ℝ ↔ (𝐴 ·ih (𝐵 · 𝐴)) = ((𝐵 · 𝐴) ·ih 𝐴)))
73, 5, 6mp2an 689 . . . . . . . 8 ((𝐴 ·ih (𝐵 · 𝐴)) ∈ ℝ ↔ (𝐴 ·ih (𝐵 · 𝐴)) = ((𝐵 · 𝐴) ·ih 𝐴))
8 oveq1 7419 . . . . . . . . 9 ((𝑇𝐴) = (𝐵 · 𝐴) → ((𝑇𝐴) ·ih 𝐴) = ((𝐵 · 𝐴) ·ih 𝐴))
91, 8eqeq12d 2747 . . . . . . . 8 ((𝑇𝐴) = (𝐵 · 𝐴) → ((𝐴 ·ih (𝑇𝐴)) = ((𝑇𝐴) ·ih 𝐴) ↔ (𝐴 ·ih (𝐵 · 𝐴)) = ((𝐵 · 𝐴) ·ih 𝐴)))
107, 9bitr4id 290 . . . . . . 7 ((𝑇𝐴) = (𝐵 · 𝐴) → ((𝐴 ·ih (𝐵 · 𝐴)) ∈ ℝ ↔ (𝐴 ·ih (𝑇𝐴)) = ((𝑇𝐴) ·ih 𝐴)))
112, 10bitrd 279 . . . . . 6 ((𝑇𝐴) = (𝐵 · 𝐴) → ((𝐴 ·ih (𝑇𝐴)) ∈ ℝ ↔ (𝐴 ·ih (𝑇𝐴)) = ((𝑇𝐴) ·ih 𝐴)))
1211adantr 480 . . . . 5 (((𝑇𝐴) = (𝐵 · 𝐴) ∧ 𝐴 ≠ 0) → ((𝐴 ·ih (𝑇𝐴)) ∈ ℝ ↔ (𝐴 ·ih (𝑇𝐴)) = ((𝑇𝐴) ·ih 𝐴)))
133, 4eigrei 31369 . . . . 5 (((𝑇𝐴) = (𝐵 · 𝐴) ∧ 𝐴 ≠ 0) → ((𝐴 ·ih (𝑇𝐴)) = ((𝑇𝐴) ·ih 𝐴) ↔ 𝐵 ∈ ℝ))
1412, 13bitrd 279 . . . 4 (((𝑇𝐴) = (𝐵 · 𝐴) ∧ 𝐴 ≠ 0) → ((𝐴 ·ih (𝑇𝐴)) ∈ ℝ ↔ 𝐵 ∈ ℝ))
1514biimpac 478 . . 3 (((𝐴 ·ih (𝑇𝐴)) ∈ ℝ ∧ ((𝑇𝐴) = (𝐵 · 𝐴) ∧ 𝐴 ≠ 0)) → 𝐵 ∈ ℝ)
1615adantlr 712 . 2 ((((𝐴 ·ih (𝑇𝐴)) ∈ ℝ ∧ 0 ≤ (𝐴 ·ih (𝑇𝐴))) ∧ ((𝑇𝐴) = (𝐵 · 𝐴) ∧ 𝐴 ≠ 0)) → 𝐵 ∈ ℝ)
17 hiidrcl 30630 . . . . 5 (𝐴 ∈ ℋ → (𝐴 ·ih 𝐴) ∈ ℝ)
183, 17mp1i 13 . . . 4 ((((𝐴 ·ih (𝑇𝐴)) ∈ ℝ ∧ 0 ≤ (𝐴 ·ih (𝑇𝐴))) ∧ ((𝑇𝐴) = (𝐵 · 𝐴) ∧ 𝐴 ≠ 0)) → (𝐴 ·ih 𝐴) ∈ ℝ)
19 ax-his4 30620 . . . . . 6 ((𝐴 ∈ ℋ ∧ 𝐴 ≠ 0) → 0 < (𝐴 ·ih 𝐴))
203, 19mpan 687 . . . . 5 (𝐴 ≠ 0 → 0 < (𝐴 ·ih 𝐴))
2120ad2antll 726 . . . 4 ((((𝐴 ·ih (𝑇𝐴)) ∈ ℝ ∧ 0 ≤ (𝐴 ·ih (𝑇𝐴))) ∧ ((𝑇𝐴) = (𝐵 · 𝐴) ∧ 𝐴 ≠ 0)) → 0 < (𝐴 ·ih 𝐴))
2218, 21elrpd 13020 . . 3 ((((𝐴 ·ih (𝑇𝐴)) ∈ ℝ ∧ 0 ≤ (𝐴 ·ih (𝑇𝐴))) ∧ ((𝑇𝐴) = (𝐵 · 𝐴) ∧ 𝐴 ≠ 0)) → (𝐴 ·ih 𝐴) ∈ ℝ+)
23 simplr 766 . . . 4 ((((𝐴 ·ih (𝑇𝐴)) ∈ ℝ ∧ 0 ≤ (𝐴 ·ih (𝑇𝐴))) ∧ ((𝑇𝐴) = (𝐵 · 𝐴) ∧ 𝐴 ≠ 0)) → 0 ≤ (𝐴 ·ih (𝑇𝐴)))
241ad2antrl 725 . . . . 5 ((((𝐴 ·ih (𝑇𝐴)) ∈ ℝ ∧ 0 ≤ (𝐴 ·ih (𝑇𝐴))) ∧ ((𝑇𝐴) = (𝐵 · 𝐴) ∧ 𝐴 ≠ 0)) → (𝐴 ·ih (𝑇𝐴)) = (𝐴 ·ih (𝐵 · 𝐴)))
25 his5 30621 . . . . . . 7 ((𝐵 ∈ ℂ ∧ 𝐴 ∈ ℋ ∧ 𝐴 ∈ ℋ) → (𝐴 ·ih (𝐵 · 𝐴)) = ((∗‘𝐵) · (𝐴 ·ih 𝐴)))
264, 3, 3, 25mp3an 1460 . . . . . 6 (𝐴 ·ih (𝐵 · 𝐴)) = ((∗‘𝐵) · (𝐴 ·ih 𝐴))
2716cjred 15180 . . . . . . 7 ((((𝐴 ·ih (𝑇𝐴)) ∈ ℝ ∧ 0 ≤ (𝐴 ·ih (𝑇𝐴))) ∧ ((𝑇𝐴) = (𝐵 · 𝐴) ∧ 𝐴 ≠ 0)) → (∗‘𝐵) = 𝐵)
2827oveq1d 7427 . . . . . 6 ((((𝐴 ·ih (𝑇𝐴)) ∈ ℝ ∧ 0 ≤ (𝐴 ·ih (𝑇𝐴))) ∧ ((𝑇𝐴) = (𝐵 · 𝐴) ∧ 𝐴 ≠ 0)) → ((∗‘𝐵) · (𝐴 ·ih 𝐴)) = (𝐵 · (𝐴 ·ih 𝐴)))
2926, 28eqtrid 2783 . . . . 5 ((((𝐴 ·ih (𝑇𝐴)) ∈ ℝ ∧ 0 ≤ (𝐴 ·ih (𝑇𝐴))) ∧ ((𝑇𝐴) = (𝐵 · 𝐴) ∧ 𝐴 ≠ 0)) → (𝐴 ·ih (𝐵 · 𝐴)) = (𝐵 · (𝐴 ·ih 𝐴)))
3024, 29eqtrd 2771 . . . 4 ((((𝐴 ·ih (𝑇𝐴)) ∈ ℝ ∧ 0 ≤ (𝐴 ·ih (𝑇𝐴))) ∧ ((𝑇𝐴) = (𝐵 · 𝐴) ∧ 𝐴 ≠ 0)) → (𝐴 ·ih (𝑇𝐴)) = (𝐵 · (𝐴 ·ih 𝐴)))
3123, 30breqtrd 5174 . . 3 ((((𝐴 ·ih (𝑇𝐴)) ∈ ℝ ∧ 0 ≤ (𝐴 ·ih (𝑇𝐴))) ∧ ((𝑇𝐴) = (𝐵 · 𝐴) ∧ 𝐴 ≠ 0)) → 0 ≤ (𝐵 · (𝐴 ·ih 𝐴)))
3216, 22, 31prodge0ld 13089 . 2 ((((𝐴 ·ih (𝑇𝐴)) ∈ ℝ ∧ 0 ≤ (𝐴 ·ih (𝑇𝐴))) ∧ ((𝑇𝐴) = (𝐵 · 𝐴) ∧ 𝐴 ≠ 0)) → 0 ≤ 𝐵)
3316, 32jca 511 1 ((((𝐴 ·ih (𝑇𝐴)) ∈ ℝ ∧ 0 ≤ (𝐴 ·ih (𝑇𝐴))) ∧ ((𝑇𝐴) = (𝐵 · 𝐴) ∧ 𝐴 ≠ 0)) → (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395   = wceq 1540  wcel 2105  wne 2939   class class class wbr 5148  cfv 6543  (class class class)co 7412  cc 11114  cr 11115  0cc0 11116   · cmul 11121   < clt 11255  cle 11256  ccj 15050  chba 30454   · csm 30456   ·ih csp 30457  0c0v 30459
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2702  ax-sep 5299  ax-nul 5306  ax-pow 5363  ax-pr 5427  ax-un 7729  ax-resscn 11173  ax-1cn 11174  ax-icn 11175  ax-addcl 11176  ax-addrcl 11177  ax-mulcl 11178  ax-mulrcl 11179  ax-mulcom 11180  ax-addass 11181  ax-mulass 11182  ax-distr 11183  ax-i2m1 11184  ax-1ne0 11185  ax-1rid 11186  ax-rnegex 11187  ax-rrecex 11188  ax-cnre 11189  ax-pre-lttri 11190  ax-pre-lttrn 11191  ax-pre-ltadd 11192  ax-pre-mulgt0 11193  ax-hfvmul 30540  ax-hfi 30614  ax-his1 30617  ax-his3 30619  ax-his4 30620
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2533  df-eu 2562  df-clab 2709  df-cleq 2723  df-clel 2809  df-nfc 2884  df-ne 2940  df-nel 3046  df-ral 3061  df-rex 3070  df-rmo 3375  df-reu 3376  df-rab 3432  df-v 3475  df-sbc 3778  df-csb 3894  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-iun 4999  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5574  df-po 5588  df-so 5589  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-riota 7368  df-ov 7415  df-oprab 7416  df-mpo 7417  df-er 8709  df-en 8946  df-dom 8947  df-sdom 8948  df-pnf 11257  df-mnf 11258  df-xr 11259  df-ltxr 11260  df-le 11261  df-sub 11453  df-neg 11454  df-div 11879  df-2 12282  df-rp 12982  df-cj 15053  df-re 15054  df-im 15055
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator