HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  eigposi Structured version   Visualization version   GIF version

Theorem eigposi 29046
Description: A sufficient condition (first conjunct pair, that holds when 𝑇 is a positive operator) for an eigenvalue 𝐵 (second conjunct pair) to be nonnegative. Remark (ii) in [Hughes] p. 137. (Contributed by NM, 2-Jul-2005.) (New usage is discouraged.)
Hypotheses
Ref Expression
eigpos.1 𝐴 ∈ ℋ
eigpos.2 𝐵 ∈ ℂ
Assertion
Ref Expression
eigposi ((((𝐴 ·ih (𝑇𝐴)) ∈ ℝ ∧ 0 ≤ (𝐴 ·ih (𝑇𝐴))) ∧ ((𝑇𝐴) = (𝐵 · 𝐴) ∧ 𝐴 ≠ 0)) → (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵))

Proof of Theorem eigposi
StepHypRef Expression
1 oveq2 6892 . . . . . . . 8 ((𝑇𝐴) = (𝐵 · 𝐴) → (𝐴 ·ih (𝑇𝐴)) = (𝐴 ·ih (𝐵 · 𝐴)))
21eleq1d 2881 . . . . . . 7 ((𝑇𝐴) = (𝐵 · 𝐴) → ((𝐴 ·ih (𝑇𝐴)) ∈ ℝ ↔ (𝐴 ·ih (𝐵 · 𝐴)) ∈ ℝ))
3 oveq1 6891 . . . . . . . . 9 ((𝑇𝐴) = (𝐵 · 𝐴) → ((𝑇𝐴) ·ih 𝐴) = ((𝐵 · 𝐴) ·ih 𝐴))
41, 3eqeq12d 2832 . . . . . . . 8 ((𝑇𝐴) = (𝐵 · 𝐴) → ((𝐴 ·ih (𝑇𝐴)) = ((𝑇𝐴) ·ih 𝐴) ↔ (𝐴 ·ih (𝐵 · 𝐴)) = ((𝐵 · 𝐴) ·ih 𝐴)))
5 eigpos.1 . . . . . . . . 9 𝐴 ∈ ℋ
6 eigpos.2 . . . . . . . . . 10 𝐵 ∈ ℂ
76, 5hvmulcli 28222 . . . . . . . . 9 (𝐵 · 𝐴) ∈ ℋ
8 hire 28302 . . . . . . . . 9 ((𝐴 ∈ ℋ ∧ (𝐵 · 𝐴) ∈ ℋ) → ((𝐴 ·ih (𝐵 · 𝐴)) ∈ ℝ ↔ (𝐴 ·ih (𝐵 · 𝐴)) = ((𝐵 · 𝐴) ·ih 𝐴)))
95, 7, 8mp2an 675 . . . . . . . 8 ((𝐴 ·ih (𝐵 · 𝐴)) ∈ ℝ ↔ (𝐴 ·ih (𝐵 · 𝐴)) = ((𝐵 · 𝐴) ·ih 𝐴))
104, 9syl6rbbr 281 . . . . . . 7 ((𝑇𝐴) = (𝐵 · 𝐴) → ((𝐴 ·ih (𝐵 · 𝐴)) ∈ ℝ ↔ (𝐴 ·ih (𝑇𝐴)) = ((𝑇𝐴) ·ih 𝐴)))
112, 10bitrd 270 . . . . . 6 ((𝑇𝐴) = (𝐵 · 𝐴) → ((𝐴 ·ih (𝑇𝐴)) ∈ ℝ ↔ (𝐴 ·ih (𝑇𝐴)) = ((𝑇𝐴) ·ih 𝐴)))
1211adantr 468 . . . . 5 (((𝑇𝐴) = (𝐵 · 𝐴) ∧ 𝐴 ≠ 0) → ((𝐴 ·ih (𝑇𝐴)) ∈ ℝ ↔ (𝐴 ·ih (𝑇𝐴)) = ((𝑇𝐴) ·ih 𝐴)))
135, 6eigrei 29044 . . . . 5 (((𝑇𝐴) = (𝐵 · 𝐴) ∧ 𝐴 ≠ 0) → ((𝐴 ·ih (𝑇𝐴)) = ((𝑇𝐴) ·ih 𝐴) ↔ 𝐵 ∈ ℝ))
1412, 13bitrd 270 . . . 4 (((𝑇𝐴) = (𝐵 · 𝐴) ∧ 𝐴 ≠ 0) → ((𝐴 ·ih (𝑇𝐴)) ∈ ℝ ↔ 𝐵 ∈ ℝ))
1514biimpac 466 . . 3 (((𝐴 ·ih (𝑇𝐴)) ∈ ℝ ∧ ((𝑇𝐴) = (𝐵 · 𝐴) ∧ 𝐴 ≠ 0)) → 𝐵 ∈ ℝ)
1615adantlr 697 . 2 ((((𝐴 ·ih (𝑇𝐴)) ∈ ℝ ∧ 0 ≤ (𝐴 ·ih (𝑇𝐴))) ∧ ((𝑇𝐴) = (𝐵 · 𝐴) ∧ 𝐴 ≠ 0)) → 𝐵 ∈ ℝ)
17 hiidrcl 28303 . . . . 5 (𝐴 ∈ ℋ → (𝐴 ·ih 𝐴) ∈ ℝ)
185, 17mp1i 13 . . . 4 ((((𝐴 ·ih (𝑇𝐴)) ∈ ℝ ∧ 0 ≤ (𝐴 ·ih (𝑇𝐴))) ∧ ((𝑇𝐴) = (𝐵 · 𝐴) ∧ 𝐴 ≠ 0)) → (𝐴 ·ih 𝐴) ∈ ℝ)
19 ax-his4 28293 . . . . . 6 ((𝐴 ∈ ℋ ∧ 𝐴 ≠ 0) → 0 < (𝐴 ·ih 𝐴))
205, 19mpan 673 . . . . 5 (𝐴 ≠ 0 → 0 < (𝐴 ·ih 𝐴))
2120ad2antll 711 . . . 4 ((((𝐴 ·ih (𝑇𝐴)) ∈ ℝ ∧ 0 ≤ (𝐴 ·ih (𝑇𝐴))) ∧ ((𝑇𝐴) = (𝐵 · 𝐴) ∧ 𝐴 ≠ 0)) → 0 < (𝐴 ·ih 𝐴))
2218, 21elrpd 12103 . . 3 ((((𝐴 ·ih (𝑇𝐴)) ∈ ℝ ∧ 0 ≤ (𝐴 ·ih (𝑇𝐴))) ∧ ((𝑇𝐴) = (𝐵 · 𝐴) ∧ 𝐴 ≠ 0)) → (𝐴 ·ih 𝐴) ∈ ℝ+)
23 simplr 776 . . . 4 ((((𝐴 ·ih (𝑇𝐴)) ∈ ℝ ∧ 0 ≤ (𝐴 ·ih (𝑇𝐴))) ∧ ((𝑇𝐴) = (𝐵 · 𝐴) ∧ 𝐴 ≠ 0)) → 0 ≤ (𝐴 ·ih (𝑇𝐴)))
241ad2antrl 710 . . . . 5 ((((𝐴 ·ih (𝑇𝐴)) ∈ ℝ ∧ 0 ≤ (𝐴 ·ih (𝑇𝐴))) ∧ ((𝑇𝐴) = (𝐵 · 𝐴) ∧ 𝐴 ≠ 0)) → (𝐴 ·ih (𝑇𝐴)) = (𝐴 ·ih (𝐵 · 𝐴)))
25 his5 28294 . . . . . . 7 ((𝐵 ∈ ℂ ∧ 𝐴 ∈ ℋ ∧ 𝐴 ∈ ℋ) → (𝐴 ·ih (𝐵 · 𝐴)) = ((∗‘𝐵) · (𝐴 ·ih 𝐴)))
266, 5, 5, 25mp3an 1578 . . . . . 6 (𝐴 ·ih (𝐵 · 𝐴)) = ((∗‘𝐵) · (𝐴 ·ih 𝐴))
2716cjred 14209 . . . . . . 7 ((((𝐴 ·ih (𝑇𝐴)) ∈ ℝ ∧ 0 ≤ (𝐴 ·ih (𝑇𝐴))) ∧ ((𝑇𝐴) = (𝐵 · 𝐴) ∧ 𝐴 ≠ 0)) → (∗‘𝐵) = 𝐵)
2827oveq1d 6899 . . . . . 6 ((((𝐴 ·ih (𝑇𝐴)) ∈ ℝ ∧ 0 ≤ (𝐴 ·ih (𝑇𝐴))) ∧ ((𝑇𝐴) = (𝐵 · 𝐴) ∧ 𝐴 ≠ 0)) → ((∗‘𝐵) · (𝐴 ·ih 𝐴)) = (𝐵 · (𝐴 ·ih 𝐴)))
2926, 28syl5eq 2863 . . . . 5 ((((𝐴 ·ih (𝑇𝐴)) ∈ ℝ ∧ 0 ≤ (𝐴 ·ih (𝑇𝐴))) ∧ ((𝑇𝐴) = (𝐵 · 𝐴) ∧ 𝐴 ≠ 0)) → (𝐴 ·ih (𝐵 · 𝐴)) = (𝐵 · (𝐴 ·ih 𝐴)))
3024, 29eqtrd 2851 . . . 4 ((((𝐴 ·ih (𝑇𝐴)) ∈ ℝ ∧ 0 ≤ (𝐴 ·ih (𝑇𝐴))) ∧ ((𝑇𝐴) = (𝐵 · 𝐴) ∧ 𝐴 ≠ 0)) → (𝐴 ·ih (𝑇𝐴)) = (𝐵 · (𝐴 ·ih 𝐴)))
3123, 30breqtrd 4881 . . 3 ((((𝐴 ·ih (𝑇𝐴)) ∈ ℝ ∧ 0 ≤ (𝐴 ·ih (𝑇𝐴))) ∧ ((𝑇𝐴) = (𝐵 · 𝐴) ∧ 𝐴 ≠ 0)) → 0 ≤ (𝐵 · (𝐴 ·ih 𝐴)))
3216, 22, 31prodge0ld 12172 . 2 ((((𝐴 ·ih (𝑇𝐴)) ∈ ℝ ∧ 0 ≤ (𝐴 ·ih (𝑇𝐴))) ∧ ((𝑇𝐴) = (𝐵 · 𝐴) ∧ 𝐴 ≠ 0)) → 0 ≤ 𝐵)
3316, 32jca 503 1 ((((𝐴 ·ih (𝑇𝐴)) ∈ ℝ ∧ 0 ≤ (𝐴 ·ih (𝑇𝐴))) ∧ ((𝑇𝐴) = (𝐵 · 𝐴) ∧ 𝐴 ≠ 0)) → (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 197  wa 384   = wceq 1637  wcel 2157  wne 2989   class class class wbr 4855  cfv 6111  (class class class)co 6884  cc 10229  cr 10230  0cc0 10231   · cmul 10236   < clt 10369  cle 10370  ccj 14079  chil 28127   · csm 28129   ·ih csp 28130  0c0v 28132
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1877  ax-4 1894  ax-5 2001  ax-6 2069  ax-7 2105  ax-8 2159  ax-9 2166  ax-10 2186  ax-11 2202  ax-12 2215  ax-13 2422  ax-ext 2795  ax-sep 4988  ax-nul 4996  ax-pow 5048  ax-pr 5109  ax-un 7189  ax-resscn 10288  ax-1cn 10289  ax-icn 10290  ax-addcl 10291  ax-addrcl 10292  ax-mulcl 10293  ax-mulrcl 10294  ax-mulcom 10295  ax-addass 10296  ax-mulass 10297  ax-distr 10298  ax-i2m1 10299  ax-1ne0 10300  ax-1rid 10301  ax-rnegex 10302  ax-rrecex 10303  ax-cnre 10304  ax-pre-lttri 10305  ax-pre-lttrn 10306  ax-pre-ltadd 10307  ax-pre-mulgt0 10308  ax-hfvmul 28213  ax-hfi 28287  ax-his1 28290  ax-his3 28292  ax-his4 28293
This theorem depends on definitions:  df-bi 198  df-an 385  df-or 866  df-3or 1101  df-3an 1102  df-tru 1641  df-ex 1860  df-nf 1864  df-sb 2062  df-mo 2635  df-eu 2642  df-clab 2804  df-cleq 2810  df-clel 2813  df-nfc 2948  df-ne 2990  df-nel 3093  df-ral 3112  df-rex 3113  df-reu 3114  df-rmo 3115  df-rab 3116  df-v 3404  df-sbc 3645  df-csb 3740  df-dif 3783  df-un 3785  df-in 3787  df-ss 3794  df-nul 4128  df-if 4291  df-pw 4364  df-sn 4382  df-pr 4384  df-op 4388  df-uni 4642  df-iun 4725  df-br 4856  df-opab 4918  df-mpt 4935  df-id 5232  df-po 5245  df-so 5246  df-xp 5330  df-rel 5331  df-cnv 5332  df-co 5333  df-dm 5334  df-rn 5335  df-res 5336  df-ima 5337  df-iota 6074  df-fun 6113  df-fn 6114  df-f 6115  df-f1 6116  df-fo 6117  df-f1o 6118  df-fv 6119  df-riota 6845  df-ov 6887  df-oprab 6888  df-mpt2 6889  df-er 7989  df-en 8203  df-dom 8204  df-sdom 8205  df-pnf 10371  df-mnf 10372  df-xr 10373  df-ltxr 10374  df-le 10375  df-sub 10563  df-neg 10564  df-div 10980  df-2 11376  df-rp 12067  df-cj 14082  df-re 14083  df-im 14084
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator