| Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > HSE Home > Th. List > his5 | Structured version Visualization version GIF version | ||
| Description: Associative law for inner product. Lemma 3.1(S5) of [Beran] p. 95. (Contributed by NM, 29-Jul-1999.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| his5 | ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ) → (𝐵 ·ih (𝐴 ·ℎ 𝐶)) = ((∗‘𝐴) · (𝐵 ·ih 𝐶))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | hvmulcl 30994 | . . . . 5 ⊢ ((𝐴 ∈ ℂ ∧ 𝐶 ∈ ℋ) → (𝐴 ·ℎ 𝐶) ∈ ℋ) | |
| 2 | ax-his1 31063 | . . . . 5 ⊢ ((𝐵 ∈ ℋ ∧ (𝐴 ·ℎ 𝐶) ∈ ℋ) → (𝐵 ·ih (𝐴 ·ℎ 𝐶)) = (∗‘((𝐴 ·ℎ 𝐶) ·ih 𝐵))) | |
| 3 | 1, 2 | sylan2 593 | . . . 4 ⊢ ((𝐵 ∈ ℋ ∧ (𝐴 ∈ ℂ ∧ 𝐶 ∈ ℋ)) → (𝐵 ·ih (𝐴 ·ℎ 𝐶)) = (∗‘((𝐴 ·ℎ 𝐶) ·ih 𝐵))) |
| 4 | 3 | 3impb 1114 | . . 3 ⊢ ((𝐵 ∈ ℋ ∧ 𝐴 ∈ ℂ ∧ 𝐶 ∈ ℋ) → (𝐵 ·ih (𝐴 ·ℎ 𝐶)) = (∗‘((𝐴 ·ℎ 𝐶) ·ih 𝐵))) |
| 5 | 4 | 3com12 1123 | . 2 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ) → (𝐵 ·ih (𝐴 ·ℎ 𝐶)) = (∗‘((𝐴 ·ℎ 𝐶) ·ih 𝐵))) |
| 6 | ax-his3 31065 | . . . 4 ⊢ ((𝐴 ∈ ℂ ∧ 𝐶 ∈ ℋ ∧ 𝐵 ∈ ℋ) → ((𝐴 ·ℎ 𝐶) ·ih 𝐵) = (𝐴 · (𝐶 ·ih 𝐵))) | |
| 7 | 6 | 3com23 1126 | . . 3 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ) → ((𝐴 ·ℎ 𝐶) ·ih 𝐵) = (𝐴 · (𝐶 ·ih 𝐵))) |
| 8 | 7 | fveq2d 6880 | . 2 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ) → (∗‘((𝐴 ·ℎ 𝐶) ·ih 𝐵)) = (∗‘(𝐴 · (𝐶 ·ih 𝐵)))) |
| 9 | hicl 31061 | . . . . . 6 ⊢ ((𝐶 ∈ ℋ ∧ 𝐵 ∈ ℋ) → (𝐶 ·ih 𝐵) ∈ ℂ) | |
| 10 | cjmul 15161 | . . . . . 6 ⊢ ((𝐴 ∈ ℂ ∧ (𝐶 ·ih 𝐵) ∈ ℂ) → (∗‘(𝐴 · (𝐶 ·ih 𝐵))) = ((∗‘𝐴) · (∗‘(𝐶 ·ih 𝐵)))) | |
| 11 | 9, 10 | sylan2 593 | . . . . 5 ⊢ ((𝐴 ∈ ℂ ∧ (𝐶 ∈ ℋ ∧ 𝐵 ∈ ℋ)) → (∗‘(𝐴 · (𝐶 ·ih 𝐵))) = ((∗‘𝐴) · (∗‘(𝐶 ·ih 𝐵)))) |
| 12 | 11 | 3impb 1114 | . . . 4 ⊢ ((𝐴 ∈ ℂ ∧ 𝐶 ∈ ℋ ∧ 𝐵 ∈ ℋ) → (∗‘(𝐴 · (𝐶 ·ih 𝐵))) = ((∗‘𝐴) · (∗‘(𝐶 ·ih 𝐵)))) |
| 13 | 12 | 3com23 1126 | . . 3 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ) → (∗‘(𝐴 · (𝐶 ·ih 𝐵))) = ((∗‘𝐴) · (∗‘(𝐶 ·ih 𝐵)))) |
| 14 | ax-his1 31063 | . . . . 5 ⊢ ((𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ) → (𝐵 ·ih 𝐶) = (∗‘(𝐶 ·ih 𝐵))) | |
| 15 | 14 | 3adant1 1130 | . . . 4 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ) → (𝐵 ·ih 𝐶) = (∗‘(𝐶 ·ih 𝐵))) |
| 16 | 15 | oveq2d 7421 | . . 3 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ) → ((∗‘𝐴) · (𝐵 ·ih 𝐶)) = ((∗‘𝐴) · (∗‘(𝐶 ·ih 𝐵)))) |
| 17 | 13, 16 | eqtr4d 2773 | . 2 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ) → (∗‘(𝐴 · (𝐶 ·ih 𝐵))) = ((∗‘𝐴) · (𝐵 ·ih 𝐶))) |
| 18 | 5, 8, 17 | 3eqtrd 2774 | 1 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ) → (𝐵 ·ih (𝐴 ·ℎ 𝐶)) = ((∗‘𝐴) · (𝐵 ·ih 𝐶))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2108 ‘cfv 6531 (class class class)co 7405 ℂcc 11127 · cmul 11134 ∗ccj 15115 ℋchba 30900 ·ℎ csm 30902 ·ih csp 30903 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 ax-un 7729 ax-resscn 11186 ax-1cn 11187 ax-icn 11188 ax-addcl 11189 ax-addrcl 11190 ax-mulcl 11191 ax-mulrcl 11192 ax-mulcom 11193 ax-addass 11194 ax-mulass 11195 ax-distr 11196 ax-i2m1 11197 ax-1ne0 11198 ax-1rid 11199 ax-rnegex 11200 ax-rrecex 11201 ax-cnre 11202 ax-pre-lttri 11203 ax-pre-lttrn 11204 ax-pre-ltadd 11205 ax-pre-mulgt0 11206 ax-hfvmul 30986 ax-hfi 31060 ax-his1 31063 ax-his3 31065 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-nel 3037 df-ral 3052 df-rex 3061 df-rmo 3359 df-reu 3360 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-pss 3946 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-iun 4969 df-br 5120 df-opab 5182 df-mpt 5202 df-tr 5230 df-id 5548 df-eprel 5553 df-po 5561 df-so 5562 df-fr 5606 df-we 5608 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-pred 6290 df-ord 6355 df-on 6356 df-lim 6357 df-suc 6358 df-iota 6484 df-fun 6533 df-fn 6534 df-f 6535 df-f1 6536 df-fo 6537 df-f1o 6538 df-fv 6539 df-riota 7362 df-ov 7408 df-oprab 7409 df-mpo 7410 df-om 7862 df-2nd 7989 df-frecs 8280 df-wrecs 8311 df-recs 8385 df-rdg 8424 df-er 8719 df-en 8960 df-dom 8961 df-sdom 8962 df-pnf 11271 df-mnf 11272 df-xr 11273 df-ltxr 11274 df-le 11275 df-sub 11468 df-neg 11469 df-div 11895 df-nn 12241 df-2 12303 df-cj 15118 df-re 15119 df-im 15120 |
| This theorem is referenced by: his52 31068 his35 31069 normlem0 31090 normlem9 31099 bcseqi 31101 polid2i 31138 pjhthlem1 31372 eigrei 31815 eigposi 31817 eigorthi 31818 brafnmul 31932 lnopunilem1 31991 hmopm 32002 cnlnadjlem6 32053 adjlnop 32067 |
| Copyright terms: Public domain | W3C validator |