Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > HSE Home > Th. List > his5 | Structured version Visualization version GIF version |
Description: Associative law for inner product. Lemma 3.1(S5) of [Beran] p. 95. (Contributed by NM, 29-Jul-1999.) (New usage is discouraged.) |
Ref | Expression |
---|---|
his5 | ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ) → (𝐵 ·ih (𝐴 ·ℎ 𝐶)) = ((∗‘𝐴) · (𝐵 ·ih 𝐶))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | hvmulcl 29375 | . . . . 5 ⊢ ((𝐴 ∈ ℂ ∧ 𝐶 ∈ ℋ) → (𝐴 ·ℎ 𝐶) ∈ ℋ) | |
2 | ax-his1 29444 | . . . . 5 ⊢ ((𝐵 ∈ ℋ ∧ (𝐴 ·ℎ 𝐶) ∈ ℋ) → (𝐵 ·ih (𝐴 ·ℎ 𝐶)) = (∗‘((𝐴 ·ℎ 𝐶) ·ih 𝐵))) | |
3 | 1, 2 | sylan2 593 | . . . 4 ⊢ ((𝐵 ∈ ℋ ∧ (𝐴 ∈ ℂ ∧ 𝐶 ∈ ℋ)) → (𝐵 ·ih (𝐴 ·ℎ 𝐶)) = (∗‘((𝐴 ·ℎ 𝐶) ·ih 𝐵))) |
4 | 3 | 3impb 1114 | . . 3 ⊢ ((𝐵 ∈ ℋ ∧ 𝐴 ∈ ℂ ∧ 𝐶 ∈ ℋ) → (𝐵 ·ih (𝐴 ·ℎ 𝐶)) = (∗‘((𝐴 ·ℎ 𝐶) ·ih 𝐵))) |
5 | 4 | 3com12 1122 | . 2 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ) → (𝐵 ·ih (𝐴 ·ℎ 𝐶)) = (∗‘((𝐴 ·ℎ 𝐶) ·ih 𝐵))) |
6 | ax-his3 29446 | . . . 4 ⊢ ((𝐴 ∈ ℂ ∧ 𝐶 ∈ ℋ ∧ 𝐵 ∈ ℋ) → ((𝐴 ·ℎ 𝐶) ·ih 𝐵) = (𝐴 · (𝐶 ·ih 𝐵))) | |
7 | 6 | 3com23 1125 | . . 3 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ) → ((𝐴 ·ℎ 𝐶) ·ih 𝐵) = (𝐴 · (𝐶 ·ih 𝐵))) |
8 | 7 | fveq2d 6778 | . 2 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ) → (∗‘((𝐴 ·ℎ 𝐶) ·ih 𝐵)) = (∗‘(𝐴 · (𝐶 ·ih 𝐵)))) |
9 | hicl 29442 | . . . . . 6 ⊢ ((𝐶 ∈ ℋ ∧ 𝐵 ∈ ℋ) → (𝐶 ·ih 𝐵) ∈ ℂ) | |
10 | cjmul 14853 | . . . . . 6 ⊢ ((𝐴 ∈ ℂ ∧ (𝐶 ·ih 𝐵) ∈ ℂ) → (∗‘(𝐴 · (𝐶 ·ih 𝐵))) = ((∗‘𝐴) · (∗‘(𝐶 ·ih 𝐵)))) | |
11 | 9, 10 | sylan2 593 | . . . . 5 ⊢ ((𝐴 ∈ ℂ ∧ (𝐶 ∈ ℋ ∧ 𝐵 ∈ ℋ)) → (∗‘(𝐴 · (𝐶 ·ih 𝐵))) = ((∗‘𝐴) · (∗‘(𝐶 ·ih 𝐵)))) |
12 | 11 | 3impb 1114 | . . . 4 ⊢ ((𝐴 ∈ ℂ ∧ 𝐶 ∈ ℋ ∧ 𝐵 ∈ ℋ) → (∗‘(𝐴 · (𝐶 ·ih 𝐵))) = ((∗‘𝐴) · (∗‘(𝐶 ·ih 𝐵)))) |
13 | 12 | 3com23 1125 | . . 3 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ) → (∗‘(𝐴 · (𝐶 ·ih 𝐵))) = ((∗‘𝐴) · (∗‘(𝐶 ·ih 𝐵)))) |
14 | ax-his1 29444 | . . . . 5 ⊢ ((𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ) → (𝐵 ·ih 𝐶) = (∗‘(𝐶 ·ih 𝐵))) | |
15 | 14 | 3adant1 1129 | . . . 4 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ) → (𝐵 ·ih 𝐶) = (∗‘(𝐶 ·ih 𝐵))) |
16 | 15 | oveq2d 7291 | . . 3 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ) → ((∗‘𝐴) · (𝐵 ·ih 𝐶)) = ((∗‘𝐴) · (∗‘(𝐶 ·ih 𝐵)))) |
17 | 13, 16 | eqtr4d 2781 | . 2 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ) → (∗‘(𝐴 · (𝐶 ·ih 𝐵))) = ((∗‘𝐴) · (𝐵 ·ih 𝐶))) |
18 | 5, 8, 17 | 3eqtrd 2782 | 1 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ) → (𝐵 ·ih (𝐴 ·ℎ 𝐶)) = ((∗‘𝐴) · (𝐵 ·ih 𝐶))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 ∧ w3a 1086 = wceq 1539 ∈ wcel 2106 ‘cfv 6433 (class class class)co 7275 ℂcc 10869 · cmul 10876 ∗ccj 14807 ℋchba 29281 ·ℎ csm 29283 ·ih csp 29284 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7588 ax-resscn 10928 ax-1cn 10929 ax-icn 10930 ax-addcl 10931 ax-addrcl 10932 ax-mulcl 10933 ax-mulrcl 10934 ax-mulcom 10935 ax-addass 10936 ax-mulass 10937 ax-distr 10938 ax-i2m1 10939 ax-1ne0 10940 ax-1rid 10941 ax-rnegex 10942 ax-rrecex 10943 ax-cnre 10944 ax-pre-lttri 10945 ax-pre-lttrn 10946 ax-pre-ltadd 10947 ax-pre-mulgt0 10948 ax-hfvmul 29367 ax-hfi 29441 ax-his1 29444 ax-his3 29446 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-nel 3050 df-ral 3069 df-rex 3070 df-rmo 3071 df-reu 3072 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-iun 4926 df-br 5075 df-opab 5137 df-mpt 5158 df-id 5489 df-po 5503 df-so 5504 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 df-fv 6441 df-riota 7232 df-ov 7278 df-oprab 7279 df-mpo 7280 df-er 8498 df-en 8734 df-dom 8735 df-sdom 8736 df-pnf 11011 df-mnf 11012 df-xr 11013 df-ltxr 11014 df-le 11015 df-sub 11207 df-neg 11208 df-div 11633 df-2 12036 df-cj 14810 df-re 14811 df-im 14812 |
This theorem is referenced by: his52 29449 his35 29450 normlem0 29471 normlem9 29480 bcseqi 29482 polid2i 29519 pjhthlem1 29753 eigrei 30196 eigposi 30198 eigorthi 30199 brafnmul 30313 lnopunilem1 30372 hmopm 30383 cnlnadjlem6 30434 adjlnop 30448 |
Copyright terms: Public domain | W3C validator |