Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > HSE Home > Th. List > eigrei | Structured version Visualization version GIF version |
Description: A necessary and sufficient condition (that holds when 𝑇 is a Hermitian operator) for an eigenvalue 𝐵 to be real. Generalization of Equation 1.30 of [Hughes] p. 49. (Contributed by NM, 21-Jan-2005.) (New usage is discouraged.) |
Ref | Expression |
---|---|
eigre.1 | ⊢ 𝐴 ∈ ℋ |
eigre.2 | ⊢ 𝐵 ∈ ℂ |
Ref | Expression |
---|---|
eigrei | ⊢ (((𝑇‘𝐴) = (𝐵 ·ℎ 𝐴) ∧ 𝐴 ≠ 0ℎ) → ((𝐴 ·ih (𝑇‘𝐴)) = ((𝑇‘𝐴) ·ih 𝐴) ↔ 𝐵 ∈ ℝ)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | oveq2 7158 | . . . . 5 ⊢ ((𝑇‘𝐴) = (𝐵 ·ℎ 𝐴) → (𝐴 ·ih (𝑇‘𝐴)) = (𝐴 ·ih (𝐵 ·ℎ 𝐴))) | |
2 | eigre.2 | . . . . . 6 ⊢ 𝐵 ∈ ℂ | |
3 | eigre.1 | . . . . . 6 ⊢ 𝐴 ∈ ℋ | |
4 | his5 28968 | . . . . . 6 ⊢ ((𝐵 ∈ ℂ ∧ 𝐴 ∈ ℋ ∧ 𝐴 ∈ ℋ) → (𝐴 ·ih (𝐵 ·ℎ 𝐴)) = ((∗‘𝐵) · (𝐴 ·ih 𝐴))) | |
5 | 2, 3, 3, 4 | mp3an 1458 | . . . . 5 ⊢ (𝐴 ·ih (𝐵 ·ℎ 𝐴)) = ((∗‘𝐵) · (𝐴 ·ih 𝐴)) |
6 | 1, 5 | eqtrdi 2809 | . . . 4 ⊢ ((𝑇‘𝐴) = (𝐵 ·ℎ 𝐴) → (𝐴 ·ih (𝑇‘𝐴)) = ((∗‘𝐵) · (𝐴 ·ih 𝐴))) |
7 | oveq1 7157 | . . . . 5 ⊢ ((𝑇‘𝐴) = (𝐵 ·ℎ 𝐴) → ((𝑇‘𝐴) ·ih 𝐴) = ((𝐵 ·ℎ 𝐴) ·ih 𝐴)) | |
8 | ax-his3 28966 | . . . . . 6 ⊢ ((𝐵 ∈ ℂ ∧ 𝐴 ∈ ℋ ∧ 𝐴 ∈ ℋ) → ((𝐵 ·ℎ 𝐴) ·ih 𝐴) = (𝐵 · (𝐴 ·ih 𝐴))) | |
9 | 2, 3, 3, 8 | mp3an 1458 | . . . . 5 ⊢ ((𝐵 ·ℎ 𝐴) ·ih 𝐴) = (𝐵 · (𝐴 ·ih 𝐴)) |
10 | 7, 9 | eqtrdi 2809 | . . . 4 ⊢ ((𝑇‘𝐴) = (𝐵 ·ℎ 𝐴) → ((𝑇‘𝐴) ·ih 𝐴) = (𝐵 · (𝐴 ·ih 𝐴))) |
11 | 6, 10 | eqeq12d 2774 | . . 3 ⊢ ((𝑇‘𝐴) = (𝐵 ·ℎ 𝐴) → ((𝐴 ·ih (𝑇‘𝐴)) = ((𝑇‘𝐴) ·ih 𝐴) ↔ ((∗‘𝐵) · (𝐴 ·ih 𝐴)) = (𝐵 · (𝐴 ·ih 𝐴)))) |
12 | 3, 3 | hicli 28963 | . . . 4 ⊢ (𝐴 ·ih 𝐴) ∈ ℂ |
13 | ax-his4 28967 | . . . . . 6 ⊢ ((𝐴 ∈ ℋ ∧ 𝐴 ≠ 0ℎ) → 0 < (𝐴 ·ih 𝐴)) | |
14 | 3, 13 | mpan 689 | . . . . 5 ⊢ (𝐴 ≠ 0ℎ → 0 < (𝐴 ·ih 𝐴)) |
15 | 14 | gt0ne0d 11242 | . . . 4 ⊢ (𝐴 ≠ 0ℎ → (𝐴 ·ih 𝐴) ≠ 0) |
16 | 2 | cjcli 14576 | . . . . 5 ⊢ (∗‘𝐵) ∈ ℂ |
17 | mulcan2 11316 | . . . . 5 ⊢ (((∗‘𝐵) ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ ((𝐴 ·ih 𝐴) ∈ ℂ ∧ (𝐴 ·ih 𝐴) ≠ 0)) → (((∗‘𝐵) · (𝐴 ·ih 𝐴)) = (𝐵 · (𝐴 ·ih 𝐴)) ↔ (∗‘𝐵) = 𝐵)) | |
18 | 16, 2, 17 | mp3an12 1448 | . . . 4 ⊢ (((𝐴 ·ih 𝐴) ∈ ℂ ∧ (𝐴 ·ih 𝐴) ≠ 0) → (((∗‘𝐵) · (𝐴 ·ih 𝐴)) = (𝐵 · (𝐴 ·ih 𝐴)) ↔ (∗‘𝐵) = 𝐵)) |
19 | 12, 15, 18 | sylancr 590 | . . 3 ⊢ (𝐴 ≠ 0ℎ → (((∗‘𝐵) · (𝐴 ·ih 𝐴)) = (𝐵 · (𝐴 ·ih 𝐴)) ↔ (∗‘𝐵) = 𝐵)) |
20 | 11, 19 | sylan9bb 513 | . 2 ⊢ (((𝑇‘𝐴) = (𝐵 ·ℎ 𝐴) ∧ 𝐴 ≠ 0ℎ) → ((𝐴 ·ih (𝑇‘𝐴)) = ((𝑇‘𝐴) ·ih 𝐴) ↔ (∗‘𝐵) = 𝐵)) |
21 | 2 | cjrebi 14581 | . 2 ⊢ (𝐵 ∈ ℝ ↔ (∗‘𝐵) = 𝐵) |
22 | 20, 21 | bitr4di 292 | 1 ⊢ (((𝑇‘𝐴) = (𝐵 ·ℎ 𝐴) ∧ 𝐴 ≠ 0ℎ) → ((𝐴 ·ih (𝑇‘𝐴)) = ((𝑇‘𝐴) ·ih 𝐴) ↔ 𝐵 ∈ ℝ)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 209 ∧ wa 399 = wceq 1538 ∈ wcel 2111 ≠ wne 2951 class class class wbr 5032 ‘cfv 6335 (class class class)co 7150 ℂcc 10573 ℝcr 10574 0cc0 10575 · cmul 10580 < clt 10713 ∗ccj 14503 ℋchba 28801 ·ℎ csm 28803 ·ih csp 28804 0ℎc0v 28806 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1911 ax-6 1970 ax-7 2015 ax-8 2113 ax-9 2121 ax-10 2142 ax-11 2158 ax-12 2175 ax-ext 2729 ax-sep 5169 ax-nul 5176 ax-pow 5234 ax-pr 5298 ax-un 7459 ax-resscn 10632 ax-1cn 10633 ax-icn 10634 ax-addcl 10635 ax-addrcl 10636 ax-mulcl 10637 ax-mulrcl 10638 ax-mulcom 10639 ax-addass 10640 ax-mulass 10641 ax-distr 10642 ax-i2m1 10643 ax-1ne0 10644 ax-1rid 10645 ax-rnegex 10646 ax-rrecex 10647 ax-cnre 10648 ax-pre-lttri 10649 ax-pre-lttrn 10650 ax-pre-ltadd 10651 ax-pre-mulgt0 10652 ax-hfvmul 28887 ax-hfi 28961 ax-his1 28964 ax-his3 28966 ax-his4 28967 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 845 df-3or 1085 df-3an 1086 df-tru 1541 df-fal 1551 df-ex 1782 df-nf 1786 df-sb 2070 df-mo 2557 df-eu 2588 df-clab 2736 df-cleq 2750 df-clel 2830 df-nfc 2901 df-ne 2952 df-nel 3056 df-ral 3075 df-rex 3076 df-reu 3077 df-rmo 3078 df-rab 3079 df-v 3411 df-sbc 3697 df-csb 3806 df-dif 3861 df-un 3863 df-in 3865 df-ss 3875 df-nul 4226 df-if 4421 df-pw 4496 df-sn 4523 df-pr 4525 df-op 4529 df-uni 4799 df-iun 4885 df-br 5033 df-opab 5095 df-mpt 5113 df-id 5430 df-po 5443 df-so 5444 df-xp 5530 df-rel 5531 df-cnv 5532 df-co 5533 df-dm 5534 df-rn 5535 df-res 5536 df-ima 5537 df-iota 6294 df-fun 6337 df-fn 6338 df-f 6339 df-f1 6340 df-fo 6341 df-f1o 6342 df-fv 6343 df-riota 7108 df-ov 7153 df-oprab 7154 df-mpo 7155 df-er 8299 df-en 8528 df-dom 8529 df-sdom 8530 df-pnf 10715 df-mnf 10716 df-xr 10717 df-ltxr 10718 df-le 10719 df-sub 10910 df-neg 10911 df-div 11336 df-2 11737 df-cj 14506 df-re 14507 df-im 14508 |
This theorem is referenced by: eigre 29717 eigposi 29718 |
Copyright terms: Public domain | W3C validator |