| Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > HSE Home > Th. List > eigrei | Structured version Visualization version GIF version | ||
| Description: A necessary and sufficient condition (that holds when 𝑇 is a Hermitian operator) for an eigenvalue 𝐵 to be real. Generalization of Equation 1.30 of [Hughes] p. 49. (Contributed by NM, 21-Jan-2005.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| eigre.1 | ⊢ 𝐴 ∈ ℋ |
| eigre.2 | ⊢ 𝐵 ∈ ℂ |
| Ref | Expression |
|---|---|
| eigrei | ⊢ (((𝑇‘𝐴) = (𝐵 ·ℎ 𝐴) ∧ 𝐴 ≠ 0ℎ) → ((𝐴 ·ih (𝑇‘𝐴)) = ((𝑇‘𝐴) ·ih 𝐴) ↔ 𝐵 ∈ ℝ)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | oveq2 7395 | . . . . 5 ⊢ ((𝑇‘𝐴) = (𝐵 ·ℎ 𝐴) → (𝐴 ·ih (𝑇‘𝐴)) = (𝐴 ·ih (𝐵 ·ℎ 𝐴))) | |
| 2 | eigre.2 | . . . . . 6 ⊢ 𝐵 ∈ ℂ | |
| 3 | eigre.1 | . . . . . 6 ⊢ 𝐴 ∈ ℋ | |
| 4 | his5 31015 | . . . . . 6 ⊢ ((𝐵 ∈ ℂ ∧ 𝐴 ∈ ℋ ∧ 𝐴 ∈ ℋ) → (𝐴 ·ih (𝐵 ·ℎ 𝐴)) = ((∗‘𝐵) · (𝐴 ·ih 𝐴))) | |
| 5 | 2, 3, 3, 4 | mp3an 1463 | . . . . 5 ⊢ (𝐴 ·ih (𝐵 ·ℎ 𝐴)) = ((∗‘𝐵) · (𝐴 ·ih 𝐴)) |
| 6 | 1, 5 | eqtrdi 2780 | . . . 4 ⊢ ((𝑇‘𝐴) = (𝐵 ·ℎ 𝐴) → (𝐴 ·ih (𝑇‘𝐴)) = ((∗‘𝐵) · (𝐴 ·ih 𝐴))) |
| 7 | oveq1 7394 | . . . . 5 ⊢ ((𝑇‘𝐴) = (𝐵 ·ℎ 𝐴) → ((𝑇‘𝐴) ·ih 𝐴) = ((𝐵 ·ℎ 𝐴) ·ih 𝐴)) | |
| 8 | ax-his3 31013 | . . . . . 6 ⊢ ((𝐵 ∈ ℂ ∧ 𝐴 ∈ ℋ ∧ 𝐴 ∈ ℋ) → ((𝐵 ·ℎ 𝐴) ·ih 𝐴) = (𝐵 · (𝐴 ·ih 𝐴))) | |
| 9 | 2, 3, 3, 8 | mp3an 1463 | . . . . 5 ⊢ ((𝐵 ·ℎ 𝐴) ·ih 𝐴) = (𝐵 · (𝐴 ·ih 𝐴)) |
| 10 | 7, 9 | eqtrdi 2780 | . . . 4 ⊢ ((𝑇‘𝐴) = (𝐵 ·ℎ 𝐴) → ((𝑇‘𝐴) ·ih 𝐴) = (𝐵 · (𝐴 ·ih 𝐴))) |
| 11 | 6, 10 | eqeq12d 2745 | . . 3 ⊢ ((𝑇‘𝐴) = (𝐵 ·ℎ 𝐴) → ((𝐴 ·ih (𝑇‘𝐴)) = ((𝑇‘𝐴) ·ih 𝐴) ↔ ((∗‘𝐵) · (𝐴 ·ih 𝐴)) = (𝐵 · (𝐴 ·ih 𝐴)))) |
| 12 | 3, 3 | hicli 31010 | . . . 4 ⊢ (𝐴 ·ih 𝐴) ∈ ℂ |
| 13 | ax-his4 31014 | . . . . . 6 ⊢ ((𝐴 ∈ ℋ ∧ 𝐴 ≠ 0ℎ) → 0 < (𝐴 ·ih 𝐴)) | |
| 14 | 3, 13 | mpan 690 | . . . . 5 ⊢ (𝐴 ≠ 0ℎ → 0 < (𝐴 ·ih 𝐴)) |
| 15 | 14 | gt0ne0d 11742 | . . . 4 ⊢ (𝐴 ≠ 0ℎ → (𝐴 ·ih 𝐴) ≠ 0) |
| 16 | 2 | cjcli 15135 | . . . . 5 ⊢ (∗‘𝐵) ∈ ℂ |
| 17 | mulcan2 11816 | . . . . 5 ⊢ (((∗‘𝐵) ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ ((𝐴 ·ih 𝐴) ∈ ℂ ∧ (𝐴 ·ih 𝐴) ≠ 0)) → (((∗‘𝐵) · (𝐴 ·ih 𝐴)) = (𝐵 · (𝐴 ·ih 𝐴)) ↔ (∗‘𝐵) = 𝐵)) | |
| 18 | 16, 2, 17 | mp3an12 1453 | . . . 4 ⊢ (((𝐴 ·ih 𝐴) ∈ ℂ ∧ (𝐴 ·ih 𝐴) ≠ 0) → (((∗‘𝐵) · (𝐴 ·ih 𝐴)) = (𝐵 · (𝐴 ·ih 𝐴)) ↔ (∗‘𝐵) = 𝐵)) |
| 19 | 12, 15, 18 | sylancr 587 | . . 3 ⊢ (𝐴 ≠ 0ℎ → (((∗‘𝐵) · (𝐴 ·ih 𝐴)) = (𝐵 · (𝐴 ·ih 𝐴)) ↔ (∗‘𝐵) = 𝐵)) |
| 20 | 11, 19 | sylan9bb 509 | . 2 ⊢ (((𝑇‘𝐴) = (𝐵 ·ℎ 𝐴) ∧ 𝐴 ≠ 0ℎ) → ((𝐴 ·ih (𝑇‘𝐴)) = ((𝑇‘𝐴) ·ih 𝐴) ↔ (∗‘𝐵) = 𝐵)) |
| 21 | 2 | cjrebi 15140 | . 2 ⊢ (𝐵 ∈ ℝ ↔ (∗‘𝐵) = 𝐵) |
| 22 | 20, 21 | bitr4di 289 | 1 ⊢ (((𝑇‘𝐴) = (𝐵 ·ℎ 𝐴) ∧ 𝐴 ≠ 0ℎ) → ((𝐴 ·ih (𝑇‘𝐴)) = ((𝑇‘𝐴) ·ih 𝐴) ↔ 𝐵 ∈ ℝ)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ≠ wne 2925 class class class wbr 5107 ‘cfv 6511 (class class class)co 7387 ℂcc 11066 ℝcr 11067 0cc0 11068 · cmul 11073 < clt 11208 ∗ccj 15062 ℋchba 30848 ·ℎ csm 30850 ·ih csp 30851 0ℎc0v 30853 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 ax-resscn 11125 ax-1cn 11126 ax-icn 11127 ax-addcl 11128 ax-addrcl 11129 ax-mulcl 11130 ax-mulrcl 11131 ax-mulcom 11132 ax-addass 11133 ax-mulass 11134 ax-distr 11135 ax-i2m1 11136 ax-1ne0 11137 ax-1rid 11138 ax-rnegex 11139 ax-rrecex 11140 ax-cnre 11141 ax-pre-lttri 11142 ax-pre-lttrn 11143 ax-pre-ltadd 11144 ax-pre-mulgt0 11145 ax-hfvmul 30934 ax-hfi 31008 ax-his1 31011 ax-his3 31013 ax-his4 31014 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3354 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-pss 3934 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-iun 4957 df-br 5108 df-opab 5170 df-mpt 5189 df-tr 5215 df-id 5533 df-eprel 5538 df-po 5546 df-so 5547 df-fr 5591 df-we 5593 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-pred 6274 df-ord 6335 df-on 6336 df-lim 6337 df-suc 6338 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-riota 7344 df-ov 7390 df-oprab 7391 df-mpo 7392 df-om 7843 df-2nd 7969 df-frecs 8260 df-wrecs 8291 df-recs 8340 df-rdg 8378 df-er 8671 df-en 8919 df-dom 8920 df-sdom 8921 df-pnf 11210 df-mnf 11211 df-xr 11212 df-ltxr 11213 df-le 11214 df-sub 11407 df-neg 11408 df-div 11836 df-nn 12187 df-2 12249 df-cj 15065 df-re 15066 df-im 15067 |
| This theorem is referenced by: eigre 31764 eigposi 31765 |
| Copyright terms: Public domain | W3C validator |