Hilbert Space Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  HSE Home  >  Th. List  >  eigrei Structured version   Visualization version   GIF version

Theorem eigrei 29716
 Description: A necessary and sufficient condition (that holds when 𝑇 is a Hermitian operator) for an eigenvalue 𝐵 to be real. Generalization of Equation 1.30 of [Hughes] p. 49. (Contributed by NM, 21-Jan-2005.) (New usage is discouraged.)
Hypotheses
Ref Expression
eigre.1 𝐴 ∈ ℋ
eigre.2 𝐵 ∈ ℂ
Assertion
Ref Expression
eigrei (((𝑇𝐴) = (𝐵 · 𝐴) ∧ 𝐴 ≠ 0) → ((𝐴 ·ih (𝑇𝐴)) = ((𝑇𝐴) ·ih 𝐴) ↔ 𝐵 ∈ ℝ))

Proof of Theorem eigrei
StepHypRef Expression
1 oveq2 7158 . . . . 5 ((𝑇𝐴) = (𝐵 · 𝐴) → (𝐴 ·ih (𝑇𝐴)) = (𝐴 ·ih (𝐵 · 𝐴)))
2 eigre.2 . . . . . 6 𝐵 ∈ ℂ
3 eigre.1 . . . . . 6 𝐴 ∈ ℋ
4 his5 28968 . . . . . 6 ((𝐵 ∈ ℂ ∧ 𝐴 ∈ ℋ ∧ 𝐴 ∈ ℋ) → (𝐴 ·ih (𝐵 · 𝐴)) = ((∗‘𝐵) · (𝐴 ·ih 𝐴)))
52, 3, 3, 4mp3an 1458 . . . . 5 (𝐴 ·ih (𝐵 · 𝐴)) = ((∗‘𝐵) · (𝐴 ·ih 𝐴))
61, 5eqtrdi 2809 . . . 4 ((𝑇𝐴) = (𝐵 · 𝐴) → (𝐴 ·ih (𝑇𝐴)) = ((∗‘𝐵) · (𝐴 ·ih 𝐴)))
7 oveq1 7157 . . . . 5 ((𝑇𝐴) = (𝐵 · 𝐴) → ((𝑇𝐴) ·ih 𝐴) = ((𝐵 · 𝐴) ·ih 𝐴))
8 ax-his3 28966 . . . . . 6 ((𝐵 ∈ ℂ ∧ 𝐴 ∈ ℋ ∧ 𝐴 ∈ ℋ) → ((𝐵 · 𝐴) ·ih 𝐴) = (𝐵 · (𝐴 ·ih 𝐴)))
92, 3, 3, 8mp3an 1458 . . . . 5 ((𝐵 · 𝐴) ·ih 𝐴) = (𝐵 · (𝐴 ·ih 𝐴))
107, 9eqtrdi 2809 . . . 4 ((𝑇𝐴) = (𝐵 · 𝐴) → ((𝑇𝐴) ·ih 𝐴) = (𝐵 · (𝐴 ·ih 𝐴)))
116, 10eqeq12d 2774 . . 3 ((𝑇𝐴) = (𝐵 · 𝐴) → ((𝐴 ·ih (𝑇𝐴)) = ((𝑇𝐴) ·ih 𝐴) ↔ ((∗‘𝐵) · (𝐴 ·ih 𝐴)) = (𝐵 · (𝐴 ·ih 𝐴))))
123, 3hicli 28963 . . . 4 (𝐴 ·ih 𝐴) ∈ ℂ
13 ax-his4 28967 . . . . . 6 ((𝐴 ∈ ℋ ∧ 𝐴 ≠ 0) → 0 < (𝐴 ·ih 𝐴))
143, 13mpan 689 . . . . 5 (𝐴 ≠ 0 → 0 < (𝐴 ·ih 𝐴))
1514gt0ne0d 11242 . . . 4 (𝐴 ≠ 0 → (𝐴 ·ih 𝐴) ≠ 0)
162cjcli 14576 . . . . 5 (∗‘𝐵) ∈ ℂ
17 mulcan2 11316 . . . . 5 (((∗‘𝐵) ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ ((𝐴 ·ih 𝐴) ∈ ℂ ∧ (𝐴 ·ih 𝐴) ≠ 0)) → (((∗‘𝐵) · (𝐴 ·ih 𝐴)) = (𝐵 · (𝐴 ·ih 𝐴)) ↔ (∗‘𝐵) = 𝐵))
1816, 2, 17mp3an12 1448 . . . 4 (((𝐴 ·ih 𝐴) ∈ ℂ ∧ (𝐴 ·ih 𝐴) ≠ 0) → (((∗‘𝐵) · (𝐴 ·ih 𝐴)) = (𝐵 · (𝐴 ·ih 𝐴)) ↔ (∗‘𝐵) = 𝐵))
1912, 15, 18sylancr 590 . . 3 (𝐴 ≠ 0 → (((∗‘𝐵) · (𝐴 ·ih 𝐴)) = (𝐵 · (𝐴 ·ih 𝐴)) ↔ (∗‘𝐵) = 𝐵))
2011, 19sylan9bb 513 . 2 (((𝑇𝐴) = (𝐵 · 𝐴) ∧ 𝐴 ≠ 0) → ((𝐴 ·ih (𝑇𝐴)) = ((𝑇𝐴) ·ih 𝐴) ↔ (∗‘𝐵) = 𝐵))
212cjrebi 14581 . 2 (𝐵 ∈ ℝ ↔ (∗‘𝐵) = 𝐵)
2220, 21bitr4di 292 1 (((𝑇𝐴) = (𝐵 · 𝐴) ∧ 𝐴 ≠ 0) → ((𝐴 ·ih (𝑇𝐴)) = ((𝑇𝐴) ·ih 𝐴) ↔ 𝐵 ∈ ℝ))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 209   ∧ wa 399   = wceq 1538   ∈ wcel 2111   ≠ wne 2951   class class class wbr 5032  ‘cfv 6335  (class class class)co 7150  ℂcc 10573  ℝcr 10574  0cc0 10575   · cmul 10580   < clt 10713  ∗ccj 14503   ℋchba 28801   ·ℎ csm 28803   ·ih csp 28804  0ℎc0v 28806 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2729  ax-sep 5169  ax-nul 5176  ax-pow 5234  ax-pr 5298  ax-un 7459  ax-resscn 10632  ax-1cn 10633  ax-icn 10634  ax-addcl 10635  ax-addrcl 10636  ax-mulcl 10637  ax-mulrcl 10638  ax-mulcom 10639  ax-addass 10640  ax-mulass 10641  ax-distr 10642  ax-i2m1 10643  ax-1ne0 10644  ax-1rid 10645  ax-rnegex 10646  ax-rrecex 10647  ax-cnre 10648  ax-pre-lttri 10649  ax-pre-lttrn 10650  ax-pre-ltadd 10651  ax-pre-mulgt0 10652  ax-hfvmul 28887  ax-hfi 28961  ax-his1 28964  ax-his3 28966  ax-his4 28967 This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-fal 1551  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2557  df-eu 2588  df-clab 2736  df-cleq 2750  df-clel 2830  df-nfc 2901  df-ne 2952  df-nel 3056  df-ral 3075  df-rex 3076  df-reu 3077  df-rmo 3078  df-rab 3079  df-v 3411  df-sbc 3697  df-csb 3806  df-dif 3861  df-un 3863  df-in 3865  df-ss 3875  df-nul 4226  df-if 4421  df-pw 4496  df-sn 4523  df-pr 4525  df-op 4529  df-uni 4799  df-iun 4885  df-br 5033  df-opab 5095  df-mpt 5113  df-id 5430  df-po 5443  df-so 5444  df-xp 5530  df-rel 5531  df-cnv 5532  df-co 5533  df-dm 5534  df-rn 5535  df-res 5536  df-ima 5537  df-iota 6294  df-fun 6337  df-fn 6338  df-f 6339  df-f1 6340  df-fo 6341  df-f1o 6342  df-fv 6343  df-riota 7108  df-ov 7153  df-oprab 7154  df-mpo 7155  df-er 8299  df-en 8528  df-dom 8529  df-sdom 8530  df-pnf 10715  df-mnf 10716  df-xr 10717  df-ltxr 10718  df-le 10719  df-sub 10910  df-neg 10911  df-div 11336  df-2 11737  df-cj 14506  df-re 14507  df-im 14508 This theorem is referenced by:  eigre  29717  eigposi  29718
 Copyright terms: Public domain W3C validator