| Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > HSE Home > Th. List > eigrei | Structured version Visualization version GIF version | ||
| Description: A necessary and sufficient condition (that holds when 𝑇 is a Hermitian operator) for an eigenvalue 𝐵 to be real. Generalization of Equation 1.30 of [Hughes] p. 49. (Contributed by NM, 21-Jan-2005.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| eigre.1 | ⊢ 𝐴 ∈ ℋ |
| eigre.2 | ⊢ 𝐵 ∈ ℂ |
| Ref | Expression |
|---|---|
| eigrei | ⊢ (((𝑇‘𝐴) = (𝐵 ·ℎ 𝐴) ∧ 𝐴 ≠ 0ℎ) → ((𝐴 ·ih (𝑇‘𝐴)) = ((𝑇‘𝐴) ·ih 𝐴) ↔ 𝐵 ∈ ℝ)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | oveq2 7418 | . . . . 5 ⊢ ((𝑇‘𝐴) = (𝐵 ·ℎ 𝐴) → (𝐴 ·ih (𝑇‘𝐴)) = (𝐴 ·ih (𝐵 ·ℎ 𝐴))) | |
| 2 | eigre.2 | . . . . . 6 ⊢ 𝐵 ∈ ℂ | |
| 3 | eigre.1 | . . . . . 6 ⊢ 𝐴 ∈ ℋ | |
| 4 | his5 31072 | . . . . . 6 ⊢ ((𝐵 ∈ ℂ ∧ 𝐴 ∈ ℋ ∧ 𝐴 ∈ ℋ) → (𝐴 ·ih (𝐵 ·ℎ 𝐴)) = ((∗‘𝐵) · (𝐴 ·ih 𝐴))) | |
| 5 | 2, 3, 3, 4 | mp3an 1463 | . . . . 5 ⊢ (𝐴 ·ih (𝐵 ·ℎ 𝐴)) = ((∗‘𝐵) · (𝐴 ·ih 𝐴)) |
| 6 | 1, 5 | eqtrdi 2787 | . . . 4 ⊢ ((𝑇‘𝐴) = (𝐵 ·ℎ 𝐴) → (𝐴 ·ih (𝑇‘𝐴)) = ((∗‘𝐵) · (𝐴 ·ih 𝐴))) |
| 7 | oveq1 7417 | . . . . 5 ⊢ ((𝑇‘𝐴) = (𝐵 ·ℎ 𝐴) → ((𝑇‘𝐴) ·ih 𝐴) = ((𝐵 ·ℎ 𝐴) ·ih 𝐴)) | |
| 8 | ax-his3 31070 | . . . . . 6 ⊢ ((𝐵 ∈ ℂ ∧ 𝐴 ∈ ℋ ∧ 𝐴 ∈ ℋ) → ((𝐵 ·ℎ 𝐴) ·ih 𝐴) = (𝐵 · (𝐴 ·ih 𝐴))) | |
| 9 | 2, 3, 3, 8 | mp3an 1463 | . . . . 5 ⊢ ((𝐵 ·ℎ 𝐴) ·ih 𝐴) = (𝐵 · (𝐴 ·ih 𝐴)) |
| 10 | 7, 9 | eqtrdi 2787 | . . . 4 ⊢ ((𝑇‘𝐴) = (𝐵 ·ℎ 𝐴) → ((𝑇‘𝐴) ·ih 𝐴) = (𝐵 · (𝐴 ·ih 𝐴))) |
| 11 | 6, 10 | eqeq12d 2752 | . . 3 ⊢ ((𝑇‘𝐴) = (𝐵 ·ℎ 𝐴) → ((𝐴 ·ih (𝑇‘𝐴)) = ((𝑇‘𝐴) ·ih 𝐴) ↔ ((∗‘𝐵) · (𝐴 ·ih 𝐴)) = (𝐵 · (𝐴 ·ih 𝐴)))) |
| 12 | 3, 3 | hicli 31067 | . . . 4 ⊢ (𝐴 ·ih 𝐴) ∈ ℂ |
| 13 | ax-his4 31071 | . . . . . 6 ⊢ ((𝐴 ∈ ℋ ∧ 𝐴 ≠ 0ℎ) → 0 < (𝐴 ·ih 𝐴)) | |
| 14 | 3, 13 | mpan 690 | . . . . 5 ⊢ (𝐴 ≠ 0ℎ → 0 < (𝐴 ·ih 𝐴)) |
| 15 | 14 | gt0ne0d 11806 | . . . 4 ⊢ (𝐴 ≠ 0ℎ → (𝐴 ·ih 𝐴) ≠ 0) |
| 16 | 2 | cjcli 15193 | . . . . 5 ⊢ (∗‘𝐵) ∈ ℂ |
| 17 | mulcan2 11880 | . . . . 5 ⊢ (((∗‘𝐵) ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ ((𝐴 ·ih 𝐴) ∈ ℂ ∧ (𝐴 ·ih 𝐴) ≠ 0)) → (((∗‘𝐵) · (𝐴 ·ih 𝐴)) = (𝐵 · (𝐴 ·ih 𝐴)) ↔ (∗‘𝐵) = 𝐵)) | |
| 18 | 16, 2, 17 | mp3an12 1453 | . . . 4 ⊢ (((𝐴 ·ih 𝐴) ∈ ℂ ∧ (𝐴 ·ih 𝐴) ≠ 0) → (((∗‘𝐵) · (𝐴 ·ih 𝐴)) = (𝐵 · (𝐴 ·ih 𝐴)) ↔ (∗‘𝐵) = 𝐵)) |
| 19 | 12, 15, 18 | sylancr 587 | . . 3 ⊢ (𝐴 ≠ 0ℎ → (((∗‘𝐵) · (𝐴 ·ih 𝐴)) = (𝐵 · (𝐴 ·ih 𝐴)) ↔ (∗‘𝐵) = 𝐵)) |
| 20 | 11, 19 | sylan9bb 509 | . 2 ⊢ (((𝑇‘𝐴) = (𝐵 ·ℎ 𝐴) ∧ 𝐴 ≠ 0ℎ) → ((𝐴 ·ih (𝑇‘𝐴)) = ((𝑇‘𝐴) ·ih 𝐴) ↔ (∗‘𝐵) = 𝐵)) |
| 21 | 2 | cjrebi 15198 | . 2 ⊢ (𝐵 ∈ ℝ ↔ (∗‘𝐵) = 𝐵) |
| 22 | 20, 21 | bitr4di 289 | 1 ⊢ (((𝑇‘𝐴) = (𝐵 ·ℎ 𝐴) ∧ 𝐴 ≠ 0ℎ) → ((𝐴 ·ih (𝑇‘𝐴)) = ((𝑇‘𝐴) ·ih 𝐴) ↔ 𝐵 ∈ ℝ)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ≠ wne 2933 class class class wbr 5124 ‘cfv 6536 (class class class)co 7410 ℂcc 11132 ℝcr 11133 0cc0 11134 · cmul 11139 < clt 11274 ∗ccj 15120 ℋchba 30905 ·ℎ csm 30907 ·ih csp 30908 0ℎc0v 30910 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2708 ax-sep 5271 ax-nul 5281 ax-pow 5340 ax-pr 5407 ax-un 7734 ax-resscn 11191 ax-1cn 11192 ax-icn 11193 ax-addcl 11194 ax-addrcl 11195 ax-mulcl 11196 ax-mulrcl 11197 ax-mulcom 11198 ax-addass 11199 ax-mulass 11200 ax-distr 11201 ax-i2m1 11202 ax-1ne0 11203 ax-1rid 11204 ax-rnegex 11205 ax-rrecex 11206 ax-cnre 11207 ax-pre-lttri 11208 ax-pre-lttrn 11209 ax-pre-ltadd 11210 ax-pre-mulgt0 11211 ax-hfvmul 30991 ax-hfi 31065 ax-his1 31068 ax-his3 31070 ax-his4 31071 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2728 df-clel 2810 df-nfc 2886 df-ne 2934 df-nel 3038 df-ral 3053 df-rex 3062 df-rmo 3364 df-reu 3365 df-rab 3421 df-v 3466 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-pss 3951 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4889 df-iun 4974 df-br 5125 df-opab 5187 df-mpt 5207 df-tr 5235 df-id 5553 df-eprel 5558 df-po 5566 df-so 5567 df-fr 5611 df-we 5613 df-xp 5665 df-rel 5666 df-cnv 5667 df-co 5668 df-dm 5669 df-rn 5670 df-res 5671 df-ima 5672 df-pred 6295 df-ord 6360 df-on 6361 df-lim 6362 df-suc 6363 df-iota 6489 df-fun 6538 df-fn 6539 df-f 6540 df-f1 6541 df-fo 6542 df-f1o 6543 df-fv 6544 df-riota 7367 df-ov 7413 df-oprab 7414 df-mpo 7415 df-om 7867 df-2nd 7994 df-frecs 8285 df-wrecs 8316 df-recs 8390 df-rdg 8429 df-er 8724 df-en 8965 df-dom 8966 df-sdom 8967 df-pnf 11276 df-mnf 11277 df-xr 11278 df-ltxr 11279 df-le 11280 df-sub 11473 df-neg 11474 df-div 11900 df-nn 12246 df-2 12308 df-cj 15123 df-re 15124 df-im 15125 |
| This theorem is referenced by: eigre 31821 eigposi 31822 |
| Copyright terms: Public domain | W3C validator |