![]() |
Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > HSE Home > Th. List > eigrei | Structured version Visualization version GIF version |
Description: A necessary and sufficient condition (that holds when 𝑇 is a Hermitian operator) for an eigenvalue 𝐵 to be real. Generalization of Equation 1.30 of [Hughes] p. 49. (Contributed by NM, 21-Jan-2005.) (New usage is discouraged.) |
Ref | Expression |
---|---|
eigre.1 | ⊢ 𝐴 ∈ ℋ |
eigre.2 | ⊢ 𝐵 ∈ ℂ |
Ref | Expression |
---|---|
eigrei | ⊢ (((𝑇‘𝐴) = (𝐵 ·ℎ 𝐴) ∧ 𝐴 ≠ 0ℎ) → ((𝐴 ·ih (𝑇‘𝐴)) = ((𝑇‘𝐴) ·ih 𝐴) ↔ 𝐵 ∈ ℝ)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | oveq2 7434 | . . . . 5 ⊢ ((𝑇‘𝐴) = (𝐵 ·ℎ 𝐴) → (𝐴 ·ih (𝑇‘𝐴)) = (𝐴 ·ih (𝐵 ·ℎ 𝐴))) | |
2 | eigre.2 | . . . . . 6 ⊢ 𝐵 ∈ ℂ | |
3 | eigre.1 | . . . . . 6 ⊢ 𝐴 ∈ ℋ | |
4 | his5 30916 | . . . . . 6 ⊢ ((𝐵 ∈ ℂ ∧ 𝐴 ∈ ℋ ∧ 𝐴 ∈ ℋ) → (𝐴 ·ih (𝐵 ·ℎ 𝐴)) = ((∗‘𝐵) · (𝐴 ·ih 𝐴))) | |
5 | 2, 3, 3, 4 | mp3an 1457 | . . . . 5 ⊢ (𝐴 ·ih (𝐵 ·ℎ 𝐴)) = ((∗‘𝐵) · (𝐴 ·ih 𝐴)) |
6 | 1, 5 | eqtrdi 2784 | . . . 4 ⊢ ((𝑇‘𝐴) = (𝐵 ·ℎ 𝐴) → (𝐴 ·ih (𝑇‘𝐴)) = ((∗‘𝐵) · (𝐴 ·ih 𝐴))) |
7 | oveq1 7433 | . . . . 5 ⊢ ((𝑇‘𝐴) = (𝐵 ·ℎ 𝐴) → ((𝑇‘𝐴) ·ih 𝐴) = ((𝐵 ·ℎ 𝐴) ·ih 𝐴)) | |
8 | ax-his3 30914 | . . . . . 6 ⊢ ((𝐵 ∈ ℂ ∧ 𝐴 ∈ ℋ ∧ 𝐴 ∈ ℋ) → ((𝐵 ·ℎ 𝐴) ·ih 𝐴) = (𝐵 · (𝐴 ·ih 𝐴))) | |
9 | 2, 3, 3, 8 | mp3an 1457 | . . . . 5 ⊢ ((𝐵 ·ℎ 𝐴) ·ih 𝐴) = (𝐵 · (𝐴 ·ih 𝐴)) |
10 | 7, 9 | eqtrdi 2784 | . . . 4 ⊢ ((𝑇‘𝐴) = (𝐵 ·ℎ 𝐴) → ((𝑇‘𝐴) ·ih 𝐴) = (𝐵 · (𝐴 ·ih 𝐴))) |
11 | 6, 10 | eqeq12d 2744 | . . 3 ⊢ ((𝑇‘𝐴) = (𝐵 ·ℎ 𝐴) → ((𝐴 ·ih (𝑇‘𝐴)) = ((𝑇‘𝐴) ·ih 𝐴) ↔ ((∗‘𝐵) · (𝐴 ·ih 𝐴)) = (𝐵 · (𝐴 ·ih 𝐴)))) |
12 | 3, 3 | hicli 30911 | . . . 4 ⊢ (𝐴 ·ih 𝐴) ∈ ℂ |
13 | ax-his4 30915 | . . . . . 6 ⊢ ((𝐴 ∈ ℋ ∧ 𝐴 ≠ 0ℎ) → 0 < (𝐴 ·ih 𝐴)) | |
14 | 3, 13 | mpan 688 | . . . . 5 ⊢ (𝐴 ≠ 0ℎ → 0 < (𝐴 ·ih 𝐴)) |
15 | 14 | gt0ne0d 11816 | . . . 4 ⊢ (𝐴 ≠ 0ℎ → (𝐴 ·ih 𝐴) ≠ 0) |
16 | 2 | cjcli 15156 | . . . . 5 ⊢ (∗‘𝐵) ∈ ℂ |
17 | mulcan2 11890 | . . . . 5 ⊢ (((∗‘𝐵) ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ ((𝐴 ·ih 𝐴) ∈ ℂ ∧ (𝐴 ·ih 𝐴) ≠ 0)) → (((∗‘𝐵) · (𝐴 ·ih 𝐴)) = (𝐵 · (𝐴 ·ih 𝐴)) ↔ (∗‘𝐵) = 𝐵)) | |
18 | 16, 2, 17 | mp3an12 1447 | . . . 4 ⊢ (((𝐴 ·ih 𝐴) ∈ ℂ ∧ (𝐴 ·ih 𝐴) ≠ 0) → (((∗‘𝐵) · (𝐴 ·ih 𝐴)) = (𝐵 · (𝐴 ·ih 𝐴)) ↔ (∗‘𝐵) = 𝐵)) |
19 | 12, 15, 18 | sylancr 585 | . . 3 ⊢ (𝐴 ≠ 0ℎ → (((∗‘𝐵) · (𝐴 ·ih 𝐴)) = (𝐵 · (𝐴 ·ih 𝐴)) ↔ (∗‘𝐵) = 𝐵)) |
20 | 11, 19 | sylan9bb 508 | . 2 ⊢ (((𝑇‘𝐴) = (𝐵 ·ℎ 𝐴) ∧ 𝐴 ≠ 0ℎ) → ((𝐴 ·ih (𝑇‘𝐴)) = ((𝑇‘𝐴) ·ih 𝐴) ↔ (∗‘𝐵) = 𝐵)) |
21 | 2 | cjrebi 15161 | . 2 ⊢ (𝐵 ∈ ℝ ↔ (∗‘𝐵) = 𝐵) |
22 | 20, 21 | bitr4di 288 | 1 ⊢ (((𝑇‘𝐴) = (𝐵 ·ℎ 𝐴) ∧ 𝐴 ≠ 0ℎ) → ((𝐴 ·ih (𝑇‘𝐴)) = ((𝑇‘𝐴) ·ih 𝐴) ↔ 𝐵 ∈ ℝ)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 394 = wceq 1533 ∈ wcel 2098 ≠ wne 2937 class class class wbr 5152 ‘cfv 6553 (class class class)co 7426 ℂcc 11144 ℝcr 11145 0cc0 11146 · cmul 11151 < clt 11286 ∗ccj 15083 ℋchba 30749 ·ℎ csm 30751 ·ih csp 30752 0ℎc0v 30754 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2699 ax-sep 5303 ax-nul 5310 ax-pow 5369 ax-pr 5433 ax-un 7746 ax-resscn 11203 ax-1cn 11204 ax-icn 11205 ax-addcl 11206 ax-addrcl 11207 ax-mulcl 11208 ax-mulrcl 11209 ax-mulcom 11210 ax-addass 11211 ax-mulass 11212 ax-distr 11213 ax-i2m1 11214 ax-1ne0 11215 ax-1rid 11216 ax-rnegex 11217 ax-rrecex 11218 ax-cnre 11219 ax-pre-lttri 11220 ax-pre-lttrn 11221 ax-pre-ltadd 11222 ax-pre-mulgt0 11223 ax-hfvmul 30835 ax-hfi 30909 ax-his1 30912 ax-his3 30914 ax-his4 30915 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2529 df-eu 2558 df-clab 2706 df-cleq 2720 df-clel 2806 df-nfc 2881 df-ne 2938 df-nel 3044 df-ral 3059 df-rex 3068 df-rmo 3374 df-reu 3375 df-rab 3431 df-v 3475 df-sbc 3779 df-csb 3895 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-nul 4327 df-if 4533 df-pw 4608 df-sn 4633 df-pr 4635 df-op 4639 df-uni 4913 df-iun 5002 df-br 5153 df-opab 5215 df-mpt 5236 df-id 5580 df-po 5594 df-so 5595 df-xp 5688 df-rel 5689 df-cnv 5690 df-co 5691 df-dm 5692 df-rn 5693 df-res 5694 df-ima 5695 df-iota 6505 df-fun 6555 df-fn 6556 df-f 6557 df-f1 6558 df-fo 6559 df-f1o 6560 df-fv 6561 df-riota 7382 df-ov 7429 df-oprab 7430 df-mpo 7431 df-er 8731 df-en 8971 df-dom 8972 df-sdom 8973 df-pnf 11288 df-mnf 11289 df-xr 11290 df-ltxr 11291 df-le 11292 df-sub 11484 df-neg 11485 df-div 11910 df-2 12313 df-cj 15086 df-re 15087 df-im 15088 |
This theorem is referenced by: eigre 31665 eigposi 31666 |
Copyright terms: Public domain | W3C validator |