HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  eigrei Structured version   Visualization version   GIF version

Theorem eigrei 30097
Description: A necessary and sufficient condition (that holds when 𝑇 is a Hermitian operator) for an eigenvalue 𝐵 to be real. Generalization of Equation 1.30 of [Hughes] p. 49. (Contributed by NM, 21-Jan-2005.) (New usage is discouraged.)
Hypotheses
Ref Expression
eigre.1 𝐴 ∈ ℋ
eigre.2 𝐵 ∈ ℂ
Assertion
Ref Expression
eigrei (((𝑇𝐴) = (𝐵 · 𝐴) ∧ 𝐴 ≠ 0) → ((𝐴 ·ih (𝑇𝐴)) = ((𝑇𝐴) ·ih 𝐴) ↔ 𝐵 ∈ ℝ))

Proof of Theorem eigrei
StepHypRef Expression
1 oveq2 7263 . . . . 5 ((𝑇𝐴) = (𝐵 · 𝐴) → (𝐴 ·ih (𝑇𝐴)) = (𝐴 ·ih (𝐵 · 𝐴)))
2 eigre.2 . . . . . 6 𝐵 ∈ ℂ
3 eigre.1 . . . . . 6 𝐴 ∈ ℋ
4 his5 29349 . . . . . 6 ((𝐵 ∈ ℂ ∧ 𝐴 ∈ ℋ ∧ 𝐴 ∈ ℋ) → (𝐴 ·ih (𝐵 · 𝐴)) = ((∗‘𝐵) · (𝐴 ·ih 𝐴)))
52, 3, 3, 4mp3an 1459 . . . . 5 (𝐴 ·ih (𝐵 · 𝐴)) = ((∗‘𝐵) · (𝐴 ·ih 𝐴))
61, 5eqtrdi 2795 . . . 4 ((𝑇𝐴) = (𝐵 · 𝐴) → (𝐴 ·ih (𝑇𝐴)) = ((∗‘𝐵) · (𝐴 ·ih 𝐴)))
7 oveq1 7262 . . . . 5 ((𝑇𝐴) = (𝐵 · 𝐴) → ((𝑇𝐴) ·ih 𝐴) = ((𝐵 · 𝐴) ·ih 𝐴))
8 ax-his3 29347 . . . . . 6 ((𝐵 ∈ ℂ ∧ 𝐴 ∈ ℋ ∧ 𝐴 ∈ ℋ) → ((𝐵 · 𝐴) ·ih 𝐴) = (𝐵 · (𝐴 ·ih 𝐴)))
92, 3, 3, 8mp3an 1459 . . . . 5 ((𝐵 · 𝐴) ·ih 𝐴) = (𝐵 · (𝐴 ·ih 𝐴))
107, 9eqtrdi 2795 . . . 4 ((𝑇𝐴) = (𝐵 · 𝐴) → ((𝑇𝐴) ·ih 𝐴) = (𝐵 · (𝐴 ·ih 𝐴)))
116, 10eqeq12d 2754 . . 3 ((𝑇𝐴) = (𝐵 · 𝐴) → ((𝐴 ·ih (𝑇𝐴)) = ((𝑇𝐴) ·ih 𝐴) ↔ ((∗‘𝐵) · (𝐴 ·ih 𝐴)) = (𝐵 · (𝐴 ·ih 𝐴))))
123, 3hicli 29344 . . . 4 (𝐴 ·ih 𝐴) ∈ ℂ
13 ax-his4 29348 . . . . . 6 ((𝐴 ∈ ℋ ∧ 𝐴 ≠ 0) → 0 < (𝐴 ·ih 𝐴))
143, 13mpan 686 . . . . 5 (𝐴 ≠ 0 → 0 < (𝐴 ·ih 𝐴))
1514gt0ne0d 11469 . . . 4 (𝐴 ≠ 0 → (𝐴 ·ih 𝐴) ≠ 0)
162cjcli 14808 . . . . 5 (∗‘𝐵) ∈ ℂ
17 mulcan2 11543 . . . . 5 (((∗‘𝐵) ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ ((𝐴 ·ih 𝐴) ∈ ℂ ∧ (𝐴 ·ih 𝐴) ≠ 0)) → (((∗‘𝐵) · (𝐴 ·ih 𝐴)) = (𝐵 · (𝐴 ·ih 𝐴)) ↔ (∗‘𝐵) = 𝐵))
1816, 2, 17mp3an12 1449 . . . 4 (((𝐴 ·ih 𝐴) ∈ ℂ ∧ (𝐴 ·ih 𝐴) ≠ 0) → (((∗‘𝐵) · (𝐴 ·ih 𝐴)) = (𝐵 · (𝐴 ·ih 𝐴)) ↔ (∗‘𝐵) = 𝐵))
1912, 15, 18sylancr 586 . . 3 (𝐴 ≠ 0 → (((∗‘𝐵) · (𝐴 ·ih 𝐴)) = (𝐵 · (𝐴 ·ih 𝐴)) ↔ (∗‘𝐵) = 𝐵))
2011, 19sylan9bb 509 . 2 (((𝑇𝐴) = (𝐵 · 𝐴) ∧ 𝐴 ≠ 0) → ((𝐴 ·ih (𝑇𝐴)) = ((𝑇𝐴) ·ih 𝐴) ↔ (∗‘𝐵) = 𝐵))
212cjrebi 14813 . 2 (𝐵 ∈ ℝ ↔ (∗‘𝐵) = 𝐵)
2220, 21bitr4di 288 1 (((𝑇𝐴) = (𝐵 · 𝐴) ∧ 𝐴 ≠ 0) → ((𝐴 ·ih (𝑇𝐴)) = ((𝑇𝐴) ·ih 𝐴) ↔ 𝐵 ∈ ℝ))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395   = wceq 1539  wcel 2108  wne 2942   class class class wbr 5070  cfv 6418  (class class class)co 7255  cc 10800  cr 10801  0cc0 10802   · cmul 10807   < clt 10940  ccj 14735  chba 29182   · csm 29184   ·ih csp 29185  0c0v 29187
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879  ax-hfvmul 29268  ax-hfi 29342  ax-his1 29345  ax-his3 29347  ax-his4 29348
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-id 5480  df-po 5494  df-so 5495  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-er 8456  df-en 8692  df-dom 8693  df-sdom 8694  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-div 11563  df-2 11966  df-cj 14738  df-re 14739  df-im 14740
This theorem is referenced by:  eigre  30098  eigposi  30099
  Copyright terms: Public domain W3C validator