Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > HSE Home > Th. List > hiidge0 | Structured version Visualization version GIF version |
Description: Inner product with self is not negative. (Contributed by NM, 29-May-1999.) (New usage is discouraged.) |
Ref | Expression |
---|---|
hiidge0 | ⊢ (𝐴 ∈ ℋ → 0 ≤ (𝐴 ·ih 𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pm2.1 893 | . . 3 ⊢ (¬ 𝐴 = 0ℎ ∨ 𝐴 = 0ℎ) | |
2 | df-ne 2943 | . . . . . 6 ⊢ (𝐴 ≠ 0ℎ ↔ ¬ 𝐴 = 0ℎ) | |
3 | ax-his4 29348 | . . . . . 6 ⊢ ((𝐴 ∈ ℋ ∧ 𝐴 ≠ 0ℎ) → 0 < (𝐴 ·ih 𝐴)) | |
4 | 2, 3 | sylan2br 594 | . . . . 5 ⊢ ((𝐴 ∈ ℋ ∧ ¬ 𝐴 = 0ℎ) → 0 < (𝐴 ·ih 𝐴)) |
5 | 4 | ex 412 | . . . 4 ⊢ (𝐴 ∈ ℋ → (¬ 𝐴 = 0ℎ → 0 < (𝐴 ·ih 𝐴))) |
6 | oveq1 7262 | . . . . . . 7 ⊢ (𝐴 = 0ℎ → (𝐴 ·ih 𝐴) = (0ℎ ·ih 𝐴)) | |
7 | hi01 29359 | . . . . . . 7 ⊢ (𝐴 ∈ ℋ → (0ℎ ·ih 𝐴) = 0) | |
8 | 6, 7 | sylan9eqr 2801 | . . . . . 6 ⊢ ((𝐴 ∈ ℋ ∧ 𝐴 = 0ℎ) → (𝐴 ·ih 𝐴) = 0) |
9 | 8 | eqcomd 2744 | . . . . 5 ⊢ ((𝐴 ∈ ℋ ∧ 𝐴 = 0ℎ) → 0 = (𝐴 ·ih 𝐴)) |
10 | 9 | ex 412 | . . . 4 ⊢ (𝐴 ∈ ℋ → (𝐴 = 0ℎ → 0 = (𝐴 ·ih 𝐴))) |
11 | 5, 10 | orim12d 961 | . . 3 ⊢ (𝐴 ∈ ℋ → ((¬ 𝐴 = 0ℎ ∨ 𝐴 = 0ℎ) → (0 < (𝐴 ·ih 𝐴) ∨ 0 = (𝐴 ·ih 𝐴)))) |
12 | 1, 11 | mpi 20 | . 2 ⊢ (𝐴 ∈ ℋ → (0 < (𝐴 ·ih 𝐴) ∨ 0 = (𝐴 ·ih 𝐴))) |
13 | 0re 10908 | . . 3 ⊢ 0 ∈ ℝ | |
14 | hiidrcl 29358 | . . 3 ⊢ (𝐴 ∈ ℋ → (𝐴 ·ih 𝐴) ∈ ℝ) | |
15 | leloe 10992 | . . 3 ⊢ ((0 ∈ ℝ ∧ (𝐴 ·ih 𝐴) ∈ ℝ) → (0 ≤ (𝐴 ·ih 𝐴) ↔ (0 < (𝐴 ·ih 𝐴) ∨ 0 = (𝐴 ·ih 𝐴)))) | |
16 | 13, 14, 15 | sylancr 586 | . 2 ⊢ (𝐴 ∈ ℋ → (0 ≤ (𝐴 ·ih 𝐴) ↔ (0 < (𝐴 ·ih 𝐴) ∨ 0 = (𝐴 ·ih 𝐴)))) |
17 | 12, 16 | mpbird 256 | 1 ⊢ (𝐴 ∈ ℋ → 0 ≤ (𝐴 ·ih 𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 205 ∧ wa 395 ∨ wo 843 = wceq 1539 ∈ wcel 2108 ≠ wne 2942 class class class wbr 5070 (class class class)co 7255 ℝcr 10801 0cc0 10802 < clt 10940 ≤ cle 10941 ℋchba 29182 ·ih csp 29185 0ℎc0v 29187 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 ax-resscn 10859 ax-1cn 10860 ax-icn 10861 ax-addcl 10862 ax-addrcl 10863 ax-mulcl 10864 ax-mulrcl 10865 ax-mulcom 10866 ax-addass 10867 ax-mulass 10868 ax-distr 10869 ax-i2m1 10870 ax-1ne0 10871 ax-1rid 10872 ax-rnegex 10873 ax-rrecex 10874 ax-cnre 10875 ax-pre-lttri 10876 ax-pre-lttrn 10877 ax-pre-ltadd 10878 ax-pre-mulgt0 10879 ax-hv0cl 29266 ax-hvmul0 29273 ax-hfi 29342 ax-his1 29345 ax-his3 29347 ax-his4 29348 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-nel 3049 df-ral 3068 df-rex 3069 df-reu 3070 df-rmo 3071 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-id 5480 df-po 5494 df-so 5495 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-riota 7212 df-ov 7258 df-oprab 7259 df-mpo 7260 df-er 8456 df-en 8692 df-dom 8693 df-sdom 8694 df-pnf 10942 df-mnf 10943 df-xr 10944 df-ltxr 10945 df-le 10946 df-sub 11137 df-neg 11138 df-div 11563 df-2 11966 df-cj 14738 df-re 14739 df-im 14740 |
This theorem is referenced by: normlem5 29377 normlem6 29378 normlem7 29379 normf 29386 normge0 29389 normgt0 29390 normsqi 29395 norm-ii-i 29400 norm-iii-i 29402 bcsiALT 29442 pjhthlem1 29654 cnlnadjlem7 30336 branmfn 30368 leopsq 30392 idleop 30394 |
Copyright terms: Public domain | W3C validator |