HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  hiidge0 Structured version   Visualization version   GIF version

Theorem hiidge0 28306
Description: Inner product with self is not negative. (Contributed by NM, 29-May-1999.) (New usage is discouraged.)
Assertion
Ref Expression
hiidge0 (𝐴 ∈ ℋ → 0 ≤ (𝐴 ·ih 𝐴))

Proof of Theorem hiidge0
StepHypRef Expression
1 pm2.1 911 . . 3 𝐴 = 0𝐴 = 0)
2 df-ne 2990 . . . . . 6 (𝐴 ≠ 0 ↔ ¬ 𝐴 = 0)
3 ax-his4 28293 . . . . . 6 ((𝐴 ∈ ℋ ∧ 𝐴 ≠ 0) → 0 < (𝐴 ·ih 𝐴))
42, 3sylan2br 584 . . . . 5 ((𝐴 ∈ ℋ ∧ ¬ 𝐴 = 0) → 0 < (𝐴 ·ih 𝐴))
54ex 399 . . . 4 (𝐴 ∈ ℋ → (¬ 𝐴 = 0 → 0 < (𝐴 ·ih 𝐴)))
6 oveq1 6891 . . . . . . 7 (𝐴 = 0 → (𝐴 ·ih 𝐴) = (0 ·ih 𝐴))
7 hi01 28304 . . . . . . 7 (𝐴 ∈ ℋ → (0 ·ih 𝐴) = 0)
86, 7sylan9eqr 2873 . . . . . 6 ((𝐴 ∈ ℋ ∧ 𝐴 = 0) → (𝐴 ·ih 𝐴) = 0)
98eqcomd 2823 . . . . 5 ((𝐴 ∈ ℋ ∧ 𝐴 = 0) → 0 = (𝐴 ·ih 𝐴))
109ex 399 . . . 4 (𝐴 ∈ ℋ → (𝐴 = 0 → 0 = (𝐴 ·ih 𝐴)))
115, 10orim12d 978 . . 3 (𝐴 ∈ ℋ → ((¬ 𝐴 = 0𝐴 = 0) → (0 < (𝐴 ·ih 𝐴) ∨ 0 = (𝐴 ·ih 𝐴))))
121, 11mpi 20 . 2 (𝐴 ∈ ℋ → (0 < (𝐴 ·ih 𝐴) ∨ 0 = (𝐴 ·ih 𝐴)))
13 0re 10337 . . 3 0 ∈ ℝ
14 hiidrcl 28303 . . 3 (𝐴 ∈ ℋ → (𝐴 ·ih 𝐴) ∈ ℝ)
15 leloe 10419 . . 3 ((0 ∈ ℝ ∧ (𝐴 ·ih 𝐴) ∈ ℝ) → (0 ≤ (𝐴 ·ih 𝐴) ↔ (0 < (𝐴 ·ih 𝐴) ∨ 0 = (𝐴 ·ih 𝐴))))
1613, 14, 15sylancr 577 . 2 (𝐴 ∈ ℋ → (0 ≤ (𝐴 ·ih 𝐴) ↔ (0 < (𝐴 ·ih 𝐴) ∨ 0 = (𝐴 ·ih 𝐴))))
1712, 16mpbird 248 1 (𝐴 ∈ ℋ → 0 ≤ (𝐴 ·ih 𝐴))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 197  wa 384  wo 865   = wceq 1637  wcel 2157  wne 2989   class class class wbr 4855  (class class class)co 6884  cr 10230  0cc0 10231   < clt 10369  cle 10370  chil 28127   ·ih csp 28130  0c0v 28132
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1877  ax-4 1894  ax-5 2001  ax-6 2069  ax-7 2105  ax-8 2159  ax-9 2166  ax-10 2186  ax-11 2202  ax-12 2215  ax-13 2422  ax-ext 2795  ax-sep 4988  ax-nul 4996  ax-pow 5048  ax-pr 5109  ax-un 7189  ax-resscn 10288  ax-1cn 10289  ax-icn 10290  ax-addcl 10291  ax-addrcl 10292  ax-mulcl 10293  ax-mulrcl 10294  ax-mulcom 10295  ax-addass 10296  ax-mulass 10297  ax-distr 10298  ax-i2m1 10299  ax-1ne0 10300  ax-1rid 10301  ax-rnegex 10302  ax-rrecex 10303  ax-cnre 10304  ax-pre-lttri 10305  ax-pre-lttrn 10306  ax-pre-ltadd 10307  ax-pre-mulgt0 10308  ax-hv0cl 28211  ax-hvmul0 28218  ax-hfi 28287  ax-his1 28290  ax-his3 28292  ax-his4 28293
This theorem depends on definitions:  df-bi 198  df-an 385  df-or 866  df-3or 1101  df-3an 1102  df-tru 1641  df-ex 1860  df-nf 1864  df-sb 2062  df-mo 2635  df-eu 2642  df-clab 2804  df-cleq 2810  df-clel 2813  df-nfc 2948  df-ne 2990  df-nel 3093  df-ral 3112  df-rex 3113  df-reu 3114  df-rmo 3115  df-rab 3116  df-v 3404  df-sbc 3645  df-csb 3740  df-dif 3783  df-un 3785  df-in 3787  df-ss 3794  df-nul 4128  df-if 4291  df-pw 4364  df-sn 4382  df-pr 4384  df-op 4388  df-uni 4642  df-iun 4725  df-br 4856  df-opab 4918  df-mpt 4935  df-id 5232  df-po 5245  df-so 5246  df-xp 5330  df-rel 5331  df-cnv 5332  df-co 5333  df-dm 5334  df-rn 5335  df-res 5336  df-ima 5337  df-iota 6074  df-fun 6113  df-fn 6114  df-f 6115  df-f1 6116  df-fo 6117  df-f1o 6118  df-fv 6119  df-riota 6845  df-ov 6887  df-oprab 6888  df-mpt2 6889  df-er 7989  df-en 8203  df-dom 8204  df-sdom 8205  df-pnf 10371  df-mnf 10372  df-xr 10373  df-ltxr 10374  df-le 10375  df-sub 10563  df-neg 10564  df-div 10980  df-2 11376  df-cj 14082  df-re 14083  df-im 14084
This theorem is referenced by:  normlem5  28322  normlem6  28323  normlem7  28324  normf  28331  normge0  28334  normgt0  28335  normsqi  28340  norm-ii-i  28345  norm-iii-i  28347  bcsiALT  28387  pjhthlem1  28601  cnlnadjlem7  29283  branmfn  29315  leopsq  29339  idleop  29341
  Copyright terms: Public domain W3C validator