Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > HSE Home > Th. List > hiidge0 | Structured version Visualization version GIF version |
Description: Inner product with self is not negative. (Contributed by NM, 29-May-1999.) (New usage is discouraged.) |
Ref | Expression |
---|---|
hiidge0 | ⊢ (𝐴 ∈ ℋ → 0 ≤ (𝐴 ·ih 𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pm2.1 894 | . . 3 ⊢ (¬ 𝐴 = 0ℎ ∨ 𝐴 = 0ℎ) | |
2 | df-ne 2944 | . . . . . 6 ⊢ (𝐴 ≠ 0ℎ ↔ ¬ 𝐴 = 0ℎ) | |
3 | ax-his4 29444 | . . . . . 6 ⊢ ((𝐴 ∈ ℋ ∧ 𝐴 ≠ 0ℎ) → 0 < (𝐴 ·ih 𝐴)) | |
4 | 2, 3 | sylan2br 595 | . . . . 5 ⊢ ((𝐴 ∈ ℋ ∧ ¬ 𝐴 = 0ℎ) → 0 < (𝐴 ·ih 𝐴)) |
5 | 4 | ex 413 | . . . 4 ⊢ (𝐴 ∈ ℋ → (¬ 𝐴 = 0ℎ → 0 < (𝐴 ·ih 𝐴))) |
6 | oveq1 7284 | . . . . . . 7 ⊢ (𝐴 = 0ℎ → (𝐴 ·ih 𝐴) = (0ℎ ·ih 𝐴)) | |
7 | hi01 29455 | . . . . . . 7 ⊢ (𝐴 ∈ ℋ → (0ℎ ·ih 𝐴) = 0) | |
8 | 6, 7 | sylan9eqr 2800 | . . . . . 6 ⊢ ((𝐴 ∈ ℋ ∧ 𝐴 = 0ℎ) → (𝐴 ·ih 𝐴) = 0) |
9 | 8 | eqcomd 2744 | . . . . 5 ⊢ ((𝐴 ∈ ℋ ∧ 𝐴 = 0ℎ) → 0 = (𝐴 ·ih 𝐴)) |
10 | 9 | ex 413 | . . . 4 ⊢ (𝐴 ∈ ℋ → (𝐴 = 0ℎ → 0 = (𝐴 ·ih 𝐴))) |
11 | 5, 10 | orim12d 962 | . . 3 ⊢ (𝐴 ∈ ℋ → ((¬ 𝐴 = 0ℎ ∨ 𝐴 = 0ℎ) → (0 < (𝐴 ·ih 𝐴) ∨ 0 = (𝐴 ·ih 𝐴)))) |
12 | 1, 11 | mpi 20 | . 2 ⊢ (𝐴 ∈ ℋ → (0 < (𝐴 ·ih 𝐴) ∨ 0 = (𝐴 ·ih 𝐴))) |
13 | 0re 10975 | . . 3 ⊢ 0 ∈ ℝ | |
14 | hiidrcl 29454 | . . 3 ⊢ (𝐴 ∈ ℋ → (𝐴 ·ih 𝐴) ∈ ℝ) | |
15 | leloe 11059 | . . 3 ⊢ ((0 ∈ ℝ ∧ (𝐴 ·ih 𝐴) ∈ ℝ) → (0 ≤ (𝐴 ·ih 𝐴) ↔ (0 < (𝐴 ·ih 𝐴) ∨ 0 = (𝐴 ·ih 𝐴)))) | |
16 | 13, 14, 15 | sylancr 587 | . 2 ⊢ (𝐴 ∈ ℋ → (0 ≤ (𝐴 ·ih 𝐴) ↔ (0 < (𝐴 ·ih 𝐴) ∨ 0 = (𝐴 ·ih 𝐴)))) |
17 | 12, 16 | mpbird 256 | 1 ⊢ (𝐴 ∈ ℋ → 0 ≤ (𝐴 ·ih 𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 205 ∧ wa 396 ∨ wo 844 = wceq 1539 ∈ wcel 2106 ≠ wne 2943 class class class wbr 5076 (class class class)co 7277 ℝcr 10868 0cc0 10869 < clt 11007 ≤ cle 11008 ℋchba 29278 ·ih csp 29281 0ℎc0v 29283 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-sep 5225 ax-nul 5232 ax-pow 5290 ax-pr 5354 ax-un 7588 ax-resscn 10926 ax-1cn 10927 ax-icn 10928 ax-addcl 10929 ax-addrcl 10930 ax-mulcl 10931 ax-mulrcl 10932 ax-mulcom 10933 ax-addass 10934 ax-mulass 10935 ax-distr 10936 ax-i2m1 10937 ax-1ne0 10938 ax-1rid 10939 ax-rnegex 10940 ax-rrecex 10941 ax-cnre 10942 ax-pre-lttri 10943 ax-pre-lttrn 10944 ax-pre-ltadd 10945 ax-pre-mulgt0 10946 ax-hv0cl 29362 ax-hvmul0 29369 ax-hfi 29438 ax-his1 29441 ax-his3 29443 ax-his4 29444 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-nel 3050 df-ral 3069 df-rex 3070 df-rmo 3071 df-reu 3072 df-rab 3073 df-v 3433 df-sbc 3718 df-csb 3834 df-dif 3891 df-un 3893 df-in 3895 df-ss 3905 df-nul 4259 df-if 4462 df-pw 4537 df-sn 4564 df-pr 4566 df-op 4570 df-uni 4842 df-iun 4928 df-br 5077 df-opab 5139 df-mpt 5160 df-id 5491 df-po 5505 df-so 5506 df-xp 5597 df-rel 5598 df-cnv 5599 df-co 5600 df-dm 5601 df-rn 5602 df-res 5603 df-ima 5604 df-iota 6393 df-fun 6437 df-fn 6438 df-f 6439 df-f1 6440 df-fo 6441 df-f1o 6442 df-fv 6443 df-riota 7234 df-ov 7280 df-oprab 7281 df-mpo 7282 df-er 8496 df-en 8732 df-dom 8733 df-sdom 8734 df-pnf 11009 df-mnf 11010 df-xr 11011 df-ltxr 11012 df-le 11013 df-sub 11205 df-neg 11206 df-div 11631 df-2 12034 df-cj 14808 df-re 14809 df-im 14810 |
This theorem is referenced by: normlem5 29473 normlem6 29474 normlem7 29475 normf 29482 normge0 29485 normgt0 29486 normsqi 29491 norm-ii-i 29496 norm-iii-i 29498 bcsiALT 29538 pjhthlem1 29750 cnlnadjlem7 30432 branmfn 30464 leopsq 30488 idleop 30490 |
Copyright terms: Public domain | W3C validator |