HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  hiidge0 Structured version   Visualization version   GIF version

Theorem hiidge0 28654
Description: Inner product with self is not negative. (Contributed by NM, 29-May-1999.) (New usage is discouraged.)
Assertion
Ref Expression
hiidge0 (𝐴 ∈ ℋ → 0 ≤ (𝐴 ·ih 𝐴))

Proof of Theorem hiidge0
StepHypRef Expression
1 pm2.1 880 . . 3 𝐴 = 0𝐴 = 0)
2 df-ne 2969 . . . . . 6 (𝐴 ≠ 0 ↔ ¬ 𝐴 = 0)
3 ax-his4 28641 . . . . . 6 ((𝐴 ∈ ℋ ∧ 𝐴 ≠ 0) → 0 < (𝐴 ·ih 𝐴))
42, 3sylan2br 585 . . . . 5 ((𝐴 ∈ ℋ ∧ ¬ 𝐴 = 0) → 0 < (𝐴 ·ih 𝐴))
54ex 405 . . . 4 (𝐴 ∈ ℋ → (¬ 𝐴 = 0 → 0 < (𝐴 ·ih 𝐴)))
6 oveq1 6983 . . . . . . 7 (𝐴 = 0 → (𝐴 ·ih 𝐴) = (0 ·ih 𝐴))
7 hi01 28652 . . . . . . 7 (𝐴 ∈ ℋ → (0 ·ih 𝐴) = 0)
86, 7sylan9eqr 2837 . . . . . 6 ((𝐴 ∈ ℋ ∧ 𝐴 = 0) → (𝐴 ·ih 𝐴) = 0)
98eqcomd 2785 . . . . 5 ((𝐴 ∈ ℋ ∧ 𝐴 = 0) → 0 = (𝐴 ·ih 𝐴))
109ex 405 . . . 4 (𝐴 ∈ ℋ → (𝐴 = 0 → 0 = (𝐴 ·ih 𝐴)))
115, 10orim12d 947 . . 3 (𝐴 ∈ ℋ → ((¬ 𝐴 = 0𝐴 = 0) → (0 < (𝐴 ·ih 𝐴) ∨ 0 = (𝐴 ·ih 𝐴))))
121, 11mpi 20 . 2 (𝐴 ∈ ℋ → (0 < (𝐴 ·ih 𝐴) ∨ 0 = (𝐴 ·ih 𝐴)))
13 0re 10441 . . 3 0 ∈ ℝ
14 hiidrcl 28651 . . 3 (𝐴 ∈ ℋ → (𝐴 ·ih 𝐴) ∈ ℝ)
15 leloe 10527 . . 3 ((0 ∈ ℝ ∧ (𝐴 ·ih 𝐴) ∈ ℝ) → (0 ≤ (𝐴 ·ih 𝐴) ↔ (0 < (𝐴 ·ih 𝐴) ∨ 0 = (𝐴 ·ih 𝐴))))
1613, 14, 15sylancr 578 . 2 (𝐴 ∈ ℋ → (0 ≤ (𝐴 ·ih 𝐴) ↔ (0 < (𝐴 ·ih 𝐴) ∨ 0 = (𝐴 ·ih 𝐴))))
1712, 16mpbird 249 1 (𝐴 ∈ ℋ → 0 ≤ (𝐴 ·ih 𝐴))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 198  wa 387  wo 833   = wceq 1507  wcel 2050  wne 2968   class class class wbr 4929  (class class class)co 6976  cr 10334  0cc0 10335   < clt 10474  cle 10475  chba 28475   ·ih csp 28478  0c0v 28480
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1758  ax-4 1772  ax-5 1869  ax-6 1928  ax-7 1965  ax-8 2052  ax-9 2059  ax-10 2079  ax-11 2093  ax-12 2106  ax-13 2301  ax-ext 2751  ax-sep 5060  ax-nul 5067  ax-pow 5119  ax-pr 5186  ax-un 7279  ax-resscn 10392  ax-1cn 10393  ax-icn 10394  ax-addcl 10395  ax-addrcl 10396  ax-mulcl 10397  ax-mulrcl 10398  ax-mulcom 10399  ax-addass 10400  ax-mulass 10401  ax-distr 10402  ax-i2m1 10403  ax-1ne0 10404  ax-1rid 10405  ax-rnegex 10406  ax-rrecex 10407  ax-cnre 10408  ax-pre-lttri 10409  ax-pre-lttrn 10410  ax-pre-ltadd 10411  ax-pre-mulgt0 10412  ax-hv0cl 28559  ax-hvmul0 28566  ax-hfi 28635  ax-his1 28638  ax-his3 28640  ax-his4 28641
This theorem depends on definitions:  df-bi 199  df-an 388  df-or 834  df-3or 1069  df-3an 1070  df-tru 1510  df-ex 1743  df-nf 1747  df-sb 2016  df-mo 2547  df-eu 2584  df-clab 2760  df-cleq 2772  df-clel 2847  df-nfc 2919  df-ne 2969  df-nel 3075  df-ral 3094  df-rex 3095  df-reu 3096  df-rmo 3097  df-rab 3098  df-v 3418  df-sbc 3683  df-csb 3788  df-dif 3833  df-un 3835  df-in 3837  df-ss 3844  df-nul 4180  df-if 4351  df-pw 4424  df-sn 4442  df-pr 4444  df-op 4448  df-uni 4713  df-iun 4794  df-br 4930  df-opab 4992  df-mpt 5009  df-id 5312  df-po 5326  df-so 5327  df-xp 5413  df-rel 5414  df-cnv 5415  df-co 5416  df-dm 5417  df-rn 5418  df-res 5419  df-ima 5420  df-iota 6152  df-fun 6190  df-fn 6191  df-f 6192  df-f1 6193  df-fo 6194  df-f1o 6195  df-fv 6196  df-riota 6937  df-ov 6979  df-oprab 6980  df-mpo 6981  df-er 8089  df-en 8307  df-dom 8308  df-sdom 8309  df-pnf 10476  df-mnf 10477  df-xr 10478  df-ltxr 10479  df-le 10480  df-sub 10672  df-neg 10673  df-div 11099  df-2 11503  df-cj 14319  df-re 14320  df-im 14321
This theorem is referenced by:  normlem5  28670  normlem6  28671  normlem7  28672  normf  28679  normge0  28682  normgt0  28683  normsqi  28688  norm-ii-i  28693  norm-iii-i  28695  bcsiALT  28735  pjhthlem1  28949  cnlnadjlem7  29631  branmfn  29663  leopsq  29687  idleop  29689
  Copyright terms: Public domain W3C validator