| Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > HSE Home > Th. List > normgt0 | Structured version Visualization version GIF version | ||
| Description: The norm of nonzero vector is positive. (Contributed by NM, 10-Apr-2006.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| normgt0 | ⊢ (𝐴 ∈ ℋ → (𝐴 ≠ 0ℎ ↔ 0 < (normℎ‘𝐴))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | hiidrcl 31022 | . . . . . 6 ⊢ (𝐴 ∈ ℋ → (𝐴 ·ih 𝐴) ∈ ℝ) | |
| 2 | 1 | adantr 480 | . . . . 5 ⊢ ((𝐴 ∈ ℋ ∧ 𝐴 ≠ 0ℎ) → (𝐴 ·ih 𝐴) ∈ ℝ) |
| 3 | ax-his4 31012 | . . . . 5 ⊢ ((𝐴 ∈ ℋ ∧ 𝐴 ≠ 0ℎ) → 0 < (𝐴 ·ih 𝐴)) | |
| 4 | sqrtgt0 15275 | . . . . 5 ⊢ (((𝐴 ·ih 𝐴) ∈ ℝ ∧ 0 < (𝐴 ·ih 𝐴)) → 0 < (√‘(𝐴 ·ih 𝐴))) | |
| 5 | 2, 3, 4 | syl2anc 584 | . . . 4 ⊢ ((𝐴 ∈ ℋ ∧ 𝐴 ≠ 0ℎ) → 0 < (√‘(𝐴 ·ih 𝐴))) |
| 6 | 5 | ex 412 | . . 3 ⊢ (𝐴 ∈ ℋ → (𝐴 ≠ 0ℎ → 0 < (√‘(𝐴 ·ih 𝐴)))) |
| 7 | oveq1 7410 | . . . . . . . . 9 ⊢ (𝐴 = 0ℎ → (𝐴 ·ih 𝐴) = (0ℎ ·ih 𝐴)) | |
| 8 | hi01 31023 | . . . . . . . . 9 ⊢ (𝐴 ∈ ℋ → (0ℎ ·ih 𝐴) = 0) | |
| 9 | 7, 8 | sylan9eqr 2792 | . . . . . . . 8 ⊢ ((𝐴 ∈ ℋ ∧ 𝐴 = 0ℎ) → (𝐴 ·ih 𝐴) = 0) |
| 10 | 9 | fveq2d 6879 | . . . . . . 7 ⊢ ((𝐴 ∈ ℋ ∧ 𝐴 = 0ℎ) → (√‘(𝐴 ·ih 𝐴)) = (√‘0)) |
| 11 | sqrt0 15258 | . . . . . . 7 ⊢ (√‘0) = 0 | |
| 12 | 10, 11 | eqtrdi 2786 | . . . . . 6 ⊢ ((𝐴 ∈ ℋ ∧ 𝐴 = 0ℎ) → (√‘(𝐴 ·ih 𝐴)) = 0) |
| 13 | 12 | ex 412 | . . . . 5 ⊢ (𝐴 ∈ ℋ → (𝐴 = 0ℎ → (√‘(𝐴 ·ih 𝐴)) = 0)) |
| 14 | hiidge0 31025 | . . . . . . . 8 ⊢ (𝐴 ∈ ℋ → 0 ≤ (𝐴 ·ih 𝐴)) | |
| 15 | 1, 14 | resqrtcld 15434 | . . . . . . 7 ⊢ (𝐴 ∈ ℋ → (√‘(𝐴 ·ih 𝐴)) ∈ ℝ) |
| 16 | 0re 11235 | . . . . . . 7 ⊢ 0 ∈ ℝ | |
| 17 | lttri3 11316 | . . . . . . 7 ⊢ (((√‘(𝐴 ·ih 𝐴)) ∈ ℝ ∧ 0 ∈ ℝ) → ((√‘(𝐴 ·ih 𝐴)) = 0 ↔ (¬ (√‘(𝐴 ·ih 𝐴)) < 0 ∧ ¬ 0 < (√‘(𝐴 ·ih 𝐴))))) | |
| 18 | 15, 16, 17 | sylancl 586 | . . . . . 6 ⊢ (𝐴 ∈ ℋ → ((√‘(𝐴 ·ih 𝐴)) = 0 ↔ (¬ (√‘(𝐴 ·ih 𝐴)) < 0 ∧ ¬ 0 < (√‘(𝐴 ·ih 𝐴))))) |
| 19 | simpr 484 | . . . . . 6 ⊢ ((¬ (√‘(𝐴 ·ih 𝐴)) < 0 ∧ ¬ 0 < (√‘(𝐴 ·ih 𝐴))) → ¬ 0 < (√‘(𝐴 ·ih 𝐴))) | |
| 20 | 18, 19 | biimtrdi 253 | . . . . 5 ⊢ (𝐴 ∈ ℋ → ((√‘(𝐴 ·ih 𝐴)) = 0 → ¬ 0 < (√‘(𝐴 ·ih 𝐴)))) |
| 21 | 13, 20 | syld 47 | . . . 4 ⊢ (𝐴 ∈ ℋ → (𝐴 = 0ℎ → ¬ 0 < (√‘(𝐴 ·ih 𝐴)))) |
| 22 | 21 | necon2ad 2947 | . . 3 ⊢ (𝐴 ∈ ℋ → (0 < (√‘(𝐴 ·ih 𝐴)) → 𝐴 ≠ 0ℎ)) |
| 23 | 6, 22 | impbid 212 | . 2 ⊢ (𝐴 ∈ ℋ → (𝐴 ≠ 0ℎ ↔ 0 < (√‘(𝐴 ·ih 𝐴)))) |
| 24 | normval 31051 | . . 3 ⊢ (𝐴 ∈ ℋ → (normℎ‘𝐴) = (√‘(𝐴 ·ih 𝐴))) | |
| 25 | 24 | breq2d 5131 | . 2 ⊢ (𝐴 ∈ ℋ → (0 < (normℎ‘𝐴) ↔ 0 < (√‘(𝐴 ·ih 𝐴)))) |
| 26 | 23, 25 | bitr4d 282 | 1 ⊢ (𝐴 ∈ ℋ → (𝐴 ≠ 0ℎ ↔ 0 < (normℎ‘𝐴))) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2108 ≠ wne 2932 class class class wbr 5119 ‘cfv 6530 (class class class)co 7403 ℝcr 11126 0cc0 11127 < clt 11267 √csqrt 15250 ℋchba 30846 ·ih csp 30849 normℎcno 30850 0ℎc0v 30851 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 ax-un 7727 ax-cnex 11183 ax-resscn 11184 ax-1cn 11185 ax-icn 11186 ax-addcl 11187 ax-addrcl 11188 ax-mulcl 11189 ax-mulrcl 11190 ax-mulcom 11191 ax-addass 11192 ax-mulass 11193 ax-distr 11194 ax-i2m1 11195 ax-1ne0 11196 ax-1rid 11197 ax-rnegex 11198 ax-rrecex 11199 ax-cnre 11200 ax-pre-lttri 11201 ax-pre-lttrn 11202 ax-pre-ltadd 11203 ax-pre-mulgt0 11204 ax-pre-sup 11205 ax-hv0cl 30930 ax-hvmul0 30937 ax-hfi 31006 ax-his1 31009 ax-his3 31011 ax-his4 31012 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-nel 3037 df-ral 3052 df-rex 3061 df-rmo 3359 df-reu 3360 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-pss 3946 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-iun 4969 df-br 5120 df-opab 5182 df-mpt 5202 df-tr 5230 df-id 5548 df-eprel 5553 df-po 5561 df-so 5562 df-fr 5606 df-we 5608 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-pred 6290 df-ord 6355 df-on 6356 df-lim 6357 df-suc 6358 df-iota 6483 df-fun 6532 df-fn 6533 df-f 6534 df-f1 6535 df-fo 6536 df-f1o 6537 df-fv 6538 df-riota 7360 df-ov 7406 df-oprab 7407 df-mpo 7408 df-om 7860 df-2nd 7987 df-frecs 8278 df-wrecs 8309 df-recs 8383 df-rdg 8422 df-er 8717 df-en 8958 df-dom 8959 df-sdom 8960 df-sup 9452 df-pnf 11269 df-mnf 11270 df-xr 11271 df-ltxr 11272 df-le 11273 df-sub 11466 df-neg 11467 df-div 11893 df-nn 12239 df-2 12301 df-3 12302 df-n0 12500 df-z 12587 df-uz 12851 df-rp 13007 df-seq 14018 df-exp 14078 df-cj 15116 df-re 15117 df-im 15118 df-sqrt 15252 df-hnorm 30895 |
| This theorem is referenced by: norm-i 31056 norm1 31176 nmlnop0iALT 31922 nmbdoplbi 31951 nmcoplbi 31955 nmbdfnlbi 31976 nmcfnlbi 31979 branmfn 32032 strlem1 32177 |
| Copyright terms: Public domain | W3C validator |