| Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > HSE Home > Th. List > normgt0 | Structured version Visualization version GIF version | ||
| Description: The norm of nonzero vector is positive. (Contributed by NM, 10-Apr-2006.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| normgt0 | ⊢ (𝐴 ∈ ℋ → (𝐴 ≠ 0ℎ ↔ 0 < (normℎ‘𝐴))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | hiidrcl 31114 | . . . . . 6 ⊢ (𝐴 ∈ ℋ → (𝐴 ·ih 𝐴) ∈ ℝ) | |
| 2 | 1 | adantr 480 | . . . . 5 ⊢ ((𝐴 ∈ ℋ ∧ 𝐴 ≠ 0ℎ) → (𝐴 ·ih 𝐴) ∈ ℝ) |
| 3 | ax-his4 31104 | . . . . 5 ⊢ ((𝐴 ∈ ℋ ∧ 𝐴 ≠ 0ℎ) → 0 < (𝐴 ·ih 𝐴)) | |
| 4 | sqrtgt0 15297 | . . . . 5 ⊢ (((𝐴 ·ih 𝐴) ∈ ℝ ∧ 0 < (𝐴 ·ih 𝐴)) → 0 < (√‘(𝐴 ·ih 𝐴))) | |
| 5 | 2, 3, 4 | syl2anc 584 | . . . 4 ⊢ ((𝐴 ∈ ℋ ∧ 𝐴 ≠ 0ℎ) → 0 < (√‘(𝐴 ·ih 𝐴))) |
| 6 | 5 | ex 412 | . . 3 ⊢ (𝐴 ∈ ℋ → (𝐴 ≠ 0ℎ → 0 < (√‘(𝐴 ·ih 𝐴)))) |
| 7 | oveq1 7438 | . . . . . . . . 9 ⊢ (𝐴 = 0ℎ → (𝐴 ·ih 𝐴) = (0ℎ ·ih 𝐴)) | |
| 8 | hi01 31115 | . . . . . . . . 9 ⊢ (𝐴 ∈ ℋ → (0ℎ ·ih 𝐴) = 0) | |
| 9 | 7, 8 | sylan9eqr 2799 | . . . . . . . 8 ⊢ ((𝐴 ∈ ℋ ∧ 𝐴 = 0ℎ) → (𝐴 ·ih 𝐴) = 0) |
| 10 | 9 | fveq2d 6910 | . . . . . . 7 ⊢ ((𝐴 ∈ ℋ ∧ 𝐴 = 0ℎ) → (√‘(𝐴 ·ih 𝐴)) = (√‘0)) |
| 11 | sqrt0 15280 | . . . . . . 7 ⊢ (√‘0) = 0 | |
| 12 | 10, 11 | eqtrdi 2793 | . . . . . 6 ⊢ ((𝐴 ∈ ℋ ∧ 𝐴 = 0ℎ) → (√‘(𝐴 ·ih 𝐴)) = 0) |
| 13 | 12 | ex 412 | . . . . 5 ⊢ (𝐴 ∈ ℋ → (𝐴 = 0ℎ → (√‘(𝐴 ·ih 𝐴)) = 0)) |
| 14 | hiidge0 31117 | . . . . . . . 8 ⊢ (𝐴 ∈ ℋ → 0 ≤ (𝐴 ·ih 𝐴)) | |
| 15 | 1, 14 | resqrtcld 15456 | . . . . . . 7 ⊢ (𝐴 ∈ ℋ → (√‘(𝐴 ·ih 𝐴)) ∈ ℝ) |
| 16 | 0re 11263 | . . . . . . 7 ⊢ 0 ∈ ℝ | |
| 17 | lttri3 11344 | . . . . . . 7 ⊢ (((√‘(𝐴 ·ih 𝐴)) ∈ ℝ ∧ 0 ∈ ℝ) → ((√‘(𝐴 ·ih 𝐴)) = 0 ↔ (¬ (√‘(𝐴 ·ih 𝐴)) < 0 ∧ ¬ 0 < (√‘(𝐴 ·ih 𝐴))))) | |
| 18 | 15, 16, 17 | sylancl 586 | . . . . . 6 ⊢ (𝐴 ∈ ℋ → ((√‘(𝐴 ·ih 𝐴)) = 0 ↔ (¬ (√‘(𝐴 ·ih 𝐴)) < 0 ∧ ¬ 0 < (√‘(𝐴 ·ih 𝐴))))) |
| 19 | simpr 484 | . . . . . 6 ⊢ ((¬ (√‘(𝐴 ·ih 𝐴)) < 0 ∧ ¬ 0 < (√‘(𝐴 ·ih 𝐴))) → ¬ 0 < (√‘(𝐴 ·ih 𝐴))) | |
| 20 | 18, 19 | biimtrdi 253 | . . . . 5 ⊢ (𝐴 ∈ ℋ → ((√‘(𝐴 ·ih 𝐴)) = 0 → ¬ 0 < (√‘(𝐴 ·ih 𝐴)))) |
| 21 | 13, 20 | syld 47 | . . . 4 ⊢ (𝐴 ∈ ℋ → (𝐴 = 0ℎ → ¬ 0 < (√‘(𝐴 ·ih 𝐴)))) |
| 22 | 21 | necon2ad 2955 | . . 3 ⊢ (𝐴 ∈ ℋ → (0 < (√‘(𝐴 ·ih 𝐴)) → 𝐴 ≠ 0ℎ)) |
| 23 | 6, 22 | impbid 212 | . 2 ⊢ (𝐴 ∈ ℋ → (𝐴 ≠ 0ℎ ↔ 0 < (√‘(𝐴 ·ih 𝐴)))) |
| 24 | normval 31143 | . . 3 ⊢ (𝐴 ∈ ℋ → (normℎ‘𝐴) = (√‘(𝐴 ·ih 𝐴))) | |
| 25 | 24 | breq2d 5155 | . 2 ⊢ (𝐴 ∈ ℋ → (0 < (normℎ‘𝐴) ↔ 0 < (√‘(𝐴 ·ih 𝐴)))) |
| 26 | 23, 25 | bitr4d 282 | 1 ⊢ (𝐴 ∈ ℋ → (𝐴 ≠ 0ℎ ↔ 0 < (normℎ‘𝐴))) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2108 ≠ wne 2940 class class class wbr 5143 ‘cfv 6561 (class class class)co 7431 ℝcr 11154 0cc0 11155 < clt 11295 √csqrt 15272 ℋchba 30938 ·ih csp 30941 normℎcno 30942 0ℎc0v 30943 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2708 ax-sep 5296 ax-nul 5306 ax-pow 5365 ax-pr 5432 ax-un 7755 ax-cnex 11211 ax-resscn 11212 ax-1cn 11213 ax-icn 11214 ax-addcl 11215 ax-addrcl 11216 ax-mulcl 11217 ax-mulrcl 11218 ax-mulcom 11219 ax-addass 11220 ax-mulass 11221 ax-distr 11222 ax-i2m1 11223 ax-1ne0 11224 ax-1rid 11225 ax-rnegex 11226 ax-rrecex 11227 ax-cnre 11228 ax-pre-lttri 11229 ax-pre-lttrn 11230 ax-pre-ltadd 11231 ax-pre-mulgt0 11232 ax-pre-sup 11233 ax-hv0cl 31022 ax-hvmul0 31029 ax-hfi 31098 ax-his1 31101 ax-his3 31103 ax-his4 31104 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3or 1088 df-3an 1089 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2892 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rmo 3380 df-reu 3381 df-rab 3437 df-v 3482 df-sbc 3789 df-csb 3900 df-dif 3954 df-un 3956 df-in 3958 df-ss 3968 df-pss 3971 df-nul 4334 df-if 4526 df-pw 4602 df-sn 4627 df-pr 4629 df-op 4633 df-uni 4908 df-iun 4993 df-br 5144 df-opab 5206 df-mpt 5226 df-tr 5260 df-id 5578 df-eprel 5584 df-po 5592 df-so 5593 df-fr 5637 df-we 5639 df-xp 5691 df-rel 5692 df-cnv 5693 df-co 5694 df-dm 5695 df-rn 5696 df-res 5697 df-ima 5698 df-pred 6321 df-ord 6387 df-on 6388 df-lim 6389 df-suc 6390 df-iota 6514 df-fun 6563 df-fn 6564 df-f 6565 df-f1 6566 df-fo 6567 df-f1o 6568 df-fv 6569 df-riota 7388 df-ov 7434 df-oprab 7435 df-mpo 7436 df-om 7888 df-2nd 8015 df-frecs 8306 df-wrecs 8337 df-recs 8411 df-rdg 8450 df-er 8745 df-en 8986 df-dom 8987 df-sdom 8988 df-sup 9482 df-pnf 11297 df-mnf 11298 df-xr 11299 df-ltxr 11300 df-le 11301 df-sub 11494 df-neg 11495 df-div 11921 df-nn 12267 df-2 12329 df-3 12330 df-n0 12527 df-z 12614 df-uz 12879 df-rp 13035 df-seq 14043 df-exp 14103 df-cj 15138 df-re 15139 df-im 15140 df-sqrt 15274 df-hnorm 30987 |
| This theorem is referenced by: norm-i 31148 norm1 31268 nmlnop0iALT 32014 nmbdoplbi 32043 nmcoplbi 32047 nmbdfnlbi 32068 nmcfnlbi 32071 branmfn 32124 strlem1 32269 |
| Copyright terms: Public domain | W3C validator |