Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > HSE Home > Th. List > normgt0 | Structured version Visualization version GIF version |
Description: The norm of nonzero vector is positive. (Contributed by NM, 10-Apr-2006.) (New usage is discouraged.) |
Ref | Expression |
---|---|
normgt0 | ⊢ (𝐴 ∈ ℋ → (𝐴 ≠ 0ℎ ↔ 0 < (normℎ‘𝐴))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | hiidrcl 29208 | . . . . . 6 ⊢ (𝐴 ∈ ℋ → (𝐴 ·ih 𝐴) ∈ ℝ) | |
2 | 1 | adantr 484 | . . . . 5 ⊢ ((𝐴 ∈ ℋ ∧ 𝐴 ≠ 0ℎ) → (𝐴 ·ih 𝐴) ∈ ℝ) |
3 | ax-his4 29198 | . . . . 5 ⊢ ((𝐴 ∈ ℋ ∧ 𝐴 ≠ 0ℎ) → 0 < (𝐴 ·ih 𝐴)) | |
4 | sqrtgt0 14855 | . . . . 5 ⊢ (((𝐴 ·ih 𝐴) ∈ ℝ ∧ 0 < (𝐴 ·ih 𝐴)) → 0 < (√‘(𝐴 ·ih 𝐴))) | |
5 | 2, 3, 4 | syl2anc 587 | . . . 4 ⊢ ((𝐴 ∈ ℋ ∧ 𝐴 ≠ 0ℎ) → 0 < (√‘(𝐴 ·ih 𝐴))) |
6 | 5 | ex 416 | . . 3 ⊢ (𝐴 ∈ ℋ → (𝐴 ≠ 0ℎ → 0 < (√‘(𝐴 ·ih 𝐴)))) |
7 | oveq1 7242 | . . . . . . . . 9 ⊢ (𝐴 = 0ℎ → (𝐴 ·ih 𝐴) = (0ℎ ·ih 𝐴)) | |
8 | hi01 29209 | . . . . . . . . 9 ⊢ (𝐴 ∈ ℋ → (0ℎ ·ih 𝐴) = 0) | |
9 | 7, 8 | sylan9eqr 2802 | . . . . . . . 8 ⊢ ((𝐴 ∈ ℋ ∧ 𝐴 = 0ℎ) → (𝐴 ·ih 𝐴) = 0) |
10 | 9 | fveq2d 6743 | . . . . . . 7 ⊢ ((𝐴 ∈ ℋ ∧ 𝐴 = 0ℎ) → (√‘(𝐴 ·ih 𝐴)) = (√‘0)) |
11 | sqrt0 14838 | . . . . . . 7 ⊢ (√‘0) = 0 | |
12 | 10, 11 | eqtrdi 2796 | . . . . . 6 ⊢ ((𝐴 ∈ ℋ ∧ 𝐴 = 0ℎ) → (√‘(𝐴 ·ih 𝐴)) = 0) |
13 | 12 | ex 416 | . . . . 5 ⊢ (𝐴 ∈ ℋ → (𝐴 = 0ℎ → (√‘(𝐴 ·ih 𝐴)) = 0)) |
14 | hiidge0 29211 | . . . . . . . 8 ⊢ (𝐴 ∈ ℋ → 0 ≤ (𝐴 ·ih 𝐴)) | |
15 | 1, 14 | resqrtcld 15014 | . . . . . . 7 ⊢ (𝐴 ∈ ℋ → (√‘(𝐴 ·ih 𝐴)) ∈ ℝ) |
16 | 0re 10865 | . . . . . . 7 ⊢ 0 ∈ ℝ | |
17 | lttri3 10946 | . . . . . . 7 ⊢ (((√‘(𝐴 ·ih 𝐴)) ∈ ℝ ∧ 0 ∈ ℝ) → ((√‘(𝐴 ·ih 𝐴)) = 0 ↔ (¬ (√‘(𝐴 ·ih 𝐴)) < 0 ∧ ¬ 0 < (√‘(𝐴 ·ih 𝐴))))) | |
18 | 15, 16, 17 | sylancl 589 | . . . . . 6 ⊢ (𝐴 ∈ ℋ → ((√‘(𝐴 ·ih 𝐴)) = 0 ↔ (¬ (√‘(𝐴 ·ih 𝐴)) < 0 ∧ ¬ 0 < (√‘(𝐴 ·ih 𝐴))))) |
19 | simpr 488 | . . . . . 6 ⊢ ((¬ (√‘(𝐴 ·ih 𝐴)) < 0 ∧ ¬ 0 < (√‘(𝐴 ·ih 𝐴))) → ¬ 0 < (√‘(𝐴 ·ih 𝐴))) | |
20 | 18, 19 | syl6bi 256 | . . . . 5 ⊢ (𝐴 ∈ ℋ → ((√‘(𝐴 ·ih 𝐴)) = 0 → ¬ 0 < (√‘(𝐴 ·ih 𝐴)))) |
21 | 13, 20 | syld 47 | . . . 4 ⊢ (𝐴 ∈ ℋ → (𝐴 = 0ℎ → ¬ 0 < (√‘(𝐴 ·ih 𝐴)))) |
22 | 21 | necon2ad 2958 | . . 3 ⊢ (𝐴 ∈ ℋ → (0 < (√‘(𝐴 ·ih 𝐴)) → 𝐴 ≠ 0ℎ)) |
23 | 6, 22 | impbid 215 | . 2 ⊢ (𝐴 ∈ ℋ → (𝐴 ≠ 0ℎ ↔ 0 < (√‘(𝐴 ·ih 𝐴)))) |
24 | normval 29237 | . . 3 ⊢ (𝐴 ∈ ℋ → (normℎ‘𝐴) = (√‘(𝐴 ·ih 𝐴))) | |
25 | 24 | breq2d 5082 | . 2 ⊢ (𝐴 ∈ ℋ → (0 < (normℎ‘𝐴) ↔ 0 < (√‘(𝐴 ·ih 𝐴)))) |
26 | 23, 25 | bitr4d 285 | 1 ⊢ (𝐴 ∈ ℋ → (𝐴 ≠ 0ℎ ↔ 0 < (normℎ‘𝐴))) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 209 ∧ wa 399 = wceq 1543 ∈ wcel 2112 ≠ wne 2943 class class class wbr 5070 ‘cfv 6401 (class class class)co 7235 ℝcr 10758 0cc0 10759 < clt 10897 √csqrt 14829 ℋchba 29032 ·ih csp 29035 normℎcno 29036 0ℎc0v 29037 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1803 ax-4 1817 ax-5 1918 ax-6 1976 ax-7 2016 ax-8 2114 ax-9 2122 ax-10 2143 ax-11 2160 ax-12 2177 ax-ext 2710 ax-sep 5209 ax-nul 5216 ax-pow 5275 ax-pr 5339 ax-un 7545 ax-cnex 10815 ax-resscn 10816 ax-1cn 10817 ax-icn 10818 ax-addcl 10819 ax-addrcl 10820 ax-mulcl 10821 ax-mulrcl 10822 ax-mulcom 10823 ax-addass 10824 ax-mulass 10825 ax-distr 10826 ax-i2m1 10827 ax-1ne0 10828 ax-1rid 10829 ax-rnegex 10830 ax-rrecex 10831 ax-cnre 10832 ax-pre-lttri 10833 ax-pre-lttrn 10834 ax-pre-ltadd 10835 ax-pre-mulgt0 10836 ax-pre-sup 10837 ax-hv0cl 29116 ax-hvmul0 29123 ax-hfi 29192 ax-his1 29195 ax-his3 29197 ax-his4 29198 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 848 df-3or 1090 df-3an 1091 df-tru 1546 df-fal 1556 df-ex 1788 df-nf 1792 df-sb 2073 df-mo 2541 df-eu 2570 df-clab 2717 df-cleq 2731 df-clel 2818 df-nfc 2889 df-ne 2944 df-nel 3050 df-ral 3069 df-rex 3070 df-reu 3071 df-rmo 3072 df-rab 3073 df-v 3425 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4255 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5153 df-tr 5179 df-id 5472 df-eprel 5478 df-po 5486 df-so 5487 df-fr 5527 df-we 5529 df-xp 5575 df-rel 5576 df-cnv 5577 df-co 5578 df-dm 5579 df-rn 5580 df-res 5581 df-ima 5582 df-pred 6179 df-ord 6237 df-on 6238 df-lim 6239 df-suc 6240 df-iota 6359 df-fun 6403 df-fn 6404 df-f 6405 df-f1 6406 df-fo 6407 df-f1o 6408 df-fv 6409 df-riota 7192 df-ov 7238 df-oprab 7239 df-mpo 7240 df-om 7667 df-2nd 7784 df-wrecs 8071 df-recs 8132 df-rdg 8170 df-er 8415 df-en 8651 df-dom 8652 df-sdom 8653 df-sup 9088 df-pnf 10899 df-mnf 10900 df-xr 10901 df-ltxr 10902 df-le 10903 df-sub 11094 df-neg 11095 df-div 11520 df-nn 11861 df-2 11923 df-3 11924 df-n0 12121 df-z 12207 df-uz 12469 df-rp 12617 df-seq 13607 df-exp 13668 df-cj 14695 df-re 14696 df-im 14697 df-sqrt 14831 df-hnorm 29081 |
This theorem is referenced by: norm-i 29242 norm1 29362 nmlnop0iALT 30108 nmbdoplbi 30137 nmcoplbi 30141 nmbdfnlbi 30162 nmcfnlbi 30165 branmfn 30218 strlem1 30363 |
Copyright terms: Public domain | W3C validator |