HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  normgt0 Structured version   Visualization version   GIF version

Theorem normgt0 31040
Description: The norm of nonzero vector is positive. (Contributed by NM, 10-Apr-2006.) (New usage is discouraged.)
Assertion
Ref Expression
normgt0 (𝐴 ∈ ℋ → (𝐴 ≠ 0 ↔ 0 < (norm𝐴)))

Proof of Theorem normgt0
StepHypRef Expression
1 hiidrcl 31008 . . . . . 6 (𝐴 ∈ ℋ → (𝐴 ·ih 𝐴) ∈ ℝ)
21adantr 480 . . . . 5 ((𝐴 ∈ ℋ ∧ 𝐴 ≠ 0) → (𝐴 ·ih 𝐴) ∈ ℝ)
3 ax-his4 30998 . . . . 5 ((𝐴 ∈ ℋ ∧ 𝐴 ≠ 0) → 0 < (𝐴 ·ih 𝐴))
4 sqrtgt0 15264 . . . . 5 (((𝐴 ·ih 𝐴) ∈ ℝ ∧ 0 < (𝐴 ·ih 𝐴)) → 0 < (√‘(𝐴 ·ih 𝐴)))
52, 3, 4syl2anc 584 . . . 4 ((𝐴 ∈ ℋ ∧ 𝐴 ≠ 0) → 0 < (√‘(𝐴 ·ih 𝐴)))
65ex 412 . . 3 (𝐴 ∈ ℋ → (𝐴 ≠ 0 → 0 < (√‘(𝐴 ·ih 𝐴))))
7 oveq1 7406 . . . . . . . . 9 (𝐴 = 0 → (𝐴 ·ih 𝐴) = (0 ·ih 𝐴))
8 hi01 31009 . . . . . . . . 9 (𝐴 ∈ ℋ → (0 ·ih 𝐴) = 0)
97, 8sylan9eqr 2791 . . . . . . . 8 ((𝐴 ∈ ℋ ∧ 𝐴 = 0) → (𝐴 ·ih 𝐴) = 0)
109fveq2d 6876 . . . . . . 7 ((𝐴 ∈ ℋ ∧ 𝐴 = 0) → (√‘(𝐴 ·ih 𝐴)) = (√‘0))
11 sqrt0 15247 . . . . . . 7 (√‘0) = 0
1210, 11eqtrdi 2785 . . . . . 6 ((𝐴 ∈ ℋ ∧ 𝐴 = 0) → (√‘(𝐴 ·ih 𝐴)) = 0)
1312ex 412 . . . . 5 (𝐴 ∈ ℋ → (𝐴 = 0 → (√‘(𝐴 ·ih 𝐴)) = 0))
14 hiidge0 31011 . . . . . . . 8 (𝐴 ∈ ℋ → 0 ≤ (𝐴 ·ih 𝐴))
151, 14resqrtcld 15423 . . . . . . 7 (𝐴 ∈ ℋ → (√‘(𝐴 ·ih 𝐴)) ∈ ℝ)
16 0re 11229 . . . . . . 7 0 ∈ ℝ
17 lttri3 11310 . . . . . . 7 (((√‘(𝐴 ·ih 𝐴)) ∈ ℝ ∧ 0 ∈ ℝ) → ((√‘(𝐴 ·ih 𝐴)) = 0 ↔ (¬ (√‘(𝐴 ·ih 𝐴)) < 0 ∧ ¬ 0 < (√‘(𝐴 ·ih 𝐴)))))
1815, 16, 17sylancl 586 . . . . . 6 (𝐴 ∈ ℋ → ((√‘(𝐴 ·ih 𝐴)) = 0 ↔ (¬ (√‘(𝐴 ·ih 𝐴)) < 0 ∧ ¬ 0 < (√‘(𝐴 ·ih 𝐴)))))
19 simpr 484 . . . . . 6 ((¬ (√‘(𝐴 ·ih 𝐴)) < 0 ∧ ¬ 0 < (√‘(𝐴 ·ih 𝐴))) → ¬ 0 < (√‘(𝐴 ·ih 𝐴)))
2018, 19biimtrdi 253 . . . . 5 (𝐴 ∈ ℋ → ((√‘(𝐴 ·ih 𝐴)) = 0 → ¬ 0 < (√‘(𝐴 ·ih 𝐴))))
2113, 20syld 47 . . . 4 (𝐴 ∈ ℋ → (𝐴 = 0 → ¬ 0 < (√‘(𝐴 ·ih 𝐴))))
2221necon2ad 2946 . . 3 (𝐴 ∈ ℋ → (0 < (√‘(𝐴 ·ih 𝐴)) → 𝐴 ≠ 0))
236, 22impbid 212 . 2 (𝐴 ∈ ℋ → (𝐴 ≠ 0 ↔ 0 < (√‘(𝐴 ·ih 𝐴))))
24 normval 31037 . . 3 (𝐴 ∈ ℋ → (norm𝐴) = (√‘(𝐴 ·ih 𝐴)))
2524breq2d 5128 . 2 (𝐴 ∈ ℋ → (0 < (norm𝐴) ↔ 0 < (√‘(𝐴 ·ih 𝐴))))
2623, 25bitr4d 282 1 (𝐴 ∈ ℋ → (𝐴 ≠ 0 ↔ 0 < (norm𝐴)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395   = wceq 1539  wcel 2107  wne 2931   class class class wbr 5116  cfv 6527  (class class class)co 7399  cr 11120  0cc0 11121   < clt 11261  csqrt 15239  chba 30832   ·ih csp 30835  normcno 30836  0c0v 30837
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2706  ax-sep 5263  ax-nul 5273  ax-pow 5332  ax-pr 5399  ax-un 7723  ax-cnex 11177  ax-resscn 11178  ax-1cn 11179  ax-icn 11180  ax-addcl 11181  ax-addrcl 11182  ax-mulcl 11183  ax-mulrcl 11184  ax-mulcom 11185  ax-addass 11186  ax-mulass 11187  ax-distr 11188  ax-i2m1 11189  ax-1ne0 11190  ax-1rid 11191  ax-rnegex 11192  ax-rrecex 11193  ax-cnre 11194  ax-pre-lttri 11195  ax-pre-lttrn 11196  ax-pre-ltadd 11197  ax-pre-mulgt0 11198  ax-pre-sup 11199  ax-hv0cl 30916  ax-hvmul0 30923  ax-hfi 30992  ax-his1 30995  ax-his3 30997  ax-his4 30998
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2726  df-clel 2808  df-nfc 2884  df-ne 2932  df-nel 3036  df-ral 3051  df-rex 3060  df-rmo 3357  df-reu 3358  df-rab 3414  df-v 3459  df-sbc 3764  df-csb 3873  df-dif 3927  df-un 3929  df-in 3931  df-ss 3941  df-pss 3944  df-nul 4307  df-if 4499  df-pw 4575  df-sn 4600  df-pr 4602  df-op 4606  df-uni 4881  df-iun 4966  df-br 5117  df-opab 5179  df-mpt 5199  df-tr 5227  df-id 5545  df-eprel 5550  df-po 5558  df-so 5559  df-fr 5603  df-we 5605  df-xp 5657  df-rel 5658  df-cnv 5659  df-co 5660  df-dm 5661  df-rn 5662  df-res 5663  df-ima 5664  df-pred 6287  df-ord 6352  df-on 6353  df-lim 6354  df-suc 6355  df-iota 6480  df-fun 6529  df-fn 6530  df-f 6531  df-f1 6532  df-fo 6533  df-f1o 6534  df-fv 6535  df-riota 7356  df-ov 7402  df-oprab 7403  df-mpo 7404  df-om 7856  df-2nd 7983  df-frecs 8274  df-wrecs 8305  df-recs 8379  df-rdg 8418  df-er 8713  df-en 8954  df-dom 8955  df-sdom 8956  df-sup 9448  df-pnf 11263  df-mnf 11264  df-xr 11265  df-ltxr 11266  df-le 11267  df-sub 11460  df-neg 11461  df-div 11887  df-nn 12233  df-2 12295  df-3 12296  df-n0 12494  df-z 12581  df-uz 12845  df-rp 13001  df-seq 14009  df-exp 14069  df-cj 15105  df-re 15106  df-im 15107  df-sqrt 15241  df-hnorm 30881
This theorem is referenced by:  norm-i  31042  norm1  31162  nmlnop0iALT  31908  nmbdoplbi  31937  nmcoplbi  31941  nmbdfnlbi  31962  nmcfnlbi  31965  branmfn  32018  strlem1  32163
  Copyright terms: Public domain W3C validator