Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > HSE Home > Th. List > normgt0 | Structured version Visualization version GIF version |
Description: The norm of nonzero vector is positive. (Contributed by NM, 10-Apr-2006.) (New usage is discouraged.) |
Ref | Expression |
---|---|
normgt0 | ⊢ (𝐴 ∈ ℋ → (𝐴 ≠ 0ℎ ↔ 0 < (normℎ‘𝐴))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | hiidrcl 29436 | . . . . . 6 ⊢ (𝐴 ∈ ℋ → (𝐴 ·ih 𝐴) ∈ ℝ) | |
2 | 1 | adantr 480 | . . . . 5 ⊢ ((𝐴 ∈ ℋ ∧ 𝐴 ≠ 0ℎ) → (𝐴 ·ih 𝐴) ∈ ℝ) |
3 | ax-his4 29426 | . . . . 5 ⊢ ((𝐴 ∈ ℋ ∧ 𝐴 ≠ 0ℎ) → 0 < (𝐴 ·ih 𝐴)) | |
4 | sqrtgt0 14951 | . . . . 5 ⊢ (((𝐴 ·ih 𝐴) ∈ ℝ ∧ 0 < (𝐴 ·ih 𝐴)) → 0 < (√‘(𝐴 ·ih 𝐴))) | |
5 | 2, 3, 4 | syl2anc 583 | . . . 4 ⊢ ((𝐴 ∈ ℋ ∧ 𝐴 ≠ 0ℎ) → 0 < (√‘(𝐴 ·ih 𝐴))) |
6 | 5 | ex 412 | . . 3 ⊢ (𝐴 ∈ ℋ → (𝐴 ≠ 0ℎ → 0 < (√‘(𝐴 ·ih 𝐴)))) |
7 | oveq1 7275 | . . . . . . . . 9 ⊢ (𝐴 = 0ℎ → (𝐴 ·ih 𝐴) = (0ℎ ·ih 𝐴)) | |
8 | hi01 29437 | . . . . . . . . 9 ⊢ (𝐴 ∈ ℋ → (0ℎ ·ih 𝐴) = 0) | |
9 | 7, 8 | sylan9eqr 2801 | . . . . . . . 8 ⊢ ((𝐴 ∈ ℋ ∧ 𝐴 = 0ℎ) → (𝐴 ·ih 𝐴) = 0) |
10 | 9 | fveq2d 6772 | . . . . . . 7 ⊢ ((𝐴 ∈ ℋ ∧ 𝐴 = 0ℎ) → (√‘(𝐴 ·ih 𝐴)) = (√‘0)) |
11 | sqrt0 14934 | . . . . . . 7 ⊢ (√‘0) = 0 | |
12 | 10, 11 | eqtrdi 2795 | . . . . . 6 ⊢ ((𝐴 ∈ ℋ ∧ 𝐴 = 0ℎ) → (√‘(𝐴 ·ih 𝐴)) = 0) |
13 | 12 | ex 412 | . . . . 5 ⊢ (𝐴 ∈ ℋ → (𝐴 = 0ℎ → (√‘(𝐴 ·ih 𝐴)) = 0)) |
14 | hiidge0 29439 | . . . . . . . 8 ⊢ (𝐴 ∈ ℋ → 0 ≤ (𝐴 ·ih 𝐴)) | |
15 | 1, 14 | resqrtcld 15110 | . . . . . . 7 ⊢ (𝐴 ∈ ℋ → (√‘(𝐴 ·ih 𝐴)) ∈ ℝ) |
16 | 0re 10961 | . . . . . . 7 ⊢ 0 ∈ ℝ | |
17 | lttri3 11042 | . . . . . . 7 ⊢ (((√‘(𝐴 ·ih 𝐴)) ∈ ℝ ∧ 0 ∈ ℝ) → ((√‘(𝐴 ·ih 𝐴)) = 0 ↔ (¬ (√‘(𝐴 ·ih 𝐴)) < 0 ∧ ¬ 0 < (√‘(𝐴 ·ih 𝐴))))) | |
18 | 15, 16, 17 | sylancl 585 | . . . . . 6 ⊢ (𝐴 ∈ ℋ → ((√‘(𝐴 ·ih 𝐴)) = 0 ↔ (¬ (√‘(𝐴 ·ih 𝐴)) < 0 ∧ ¬ 0 < (√‘(𝐴 ·ih 𝐴))))) |
19 | simpr 484 | . . . . . 6 ⊢ ((¬ (√‘(𝐴 ·ih 𝐴)) < 0 ∧ ¬ 0 < (√‘(𝐴 ·ih 𝐴))) → ¬ 0 < (√‘(𝐴 ·ih 𝐴))) | |
20 | 18, 19 | syl6bi 252 | . . . . 5 ⊢ (𝐴 ∈ ℋ → ((√‘(𝐴 ·ih 𝐴)) = 0 → ¬ 0 < (√‘(𝐴 ·ih 𝐴)))) |
21 | 13, 20 | syld 47 | . . . 4 ⊢ (𝐴 ∈ ℋ → (𝐴 = 0ℎ → ¬ 0 < (√‘(𝐴 ·ih 𝐴)))) |
22 | 21 | necon2ad 2959 | . . 3 ⊢ (𝐴 ∈ ℋ → (0 < (√‘(𝐴 ·ih 𝐴)) → 𝐴 ≠ 0ℎ)) |
23 | 6, 22 | impbid 211 | . 2 ⊢ (𝐴 ∈ ℋ → (𝐴 ≠ 0ℎ ↔ 0 < (√‘(𝐴 ·ih 𝐴)))) |
24 | normval 29465 | . . 3 ⊢ (𝐴 ∈ ℋ → (normℎ‘𝐴) = (√‘(𝐴 ·ih 𝐴))) | |
25 | 24 | breq2d 5090 | . 2 ⊢ (𝐴 ∈ ℋ → (0 < (normℎ‘𝐴) ↔ 0 < (√‘(𝐴 ·ih 𝐴)))) |
26 | 23, 25 | bitr4d 281 | 1 ⊢ (𝐴 ∈ ℋ → (𝐴 ≠ 0ℎ ↔ 0 < (normℎ‘𝐴))) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 205 ∧ wa 395 = wceq 1541 ∈ wcel 2109 ≠ wne 2944 class class class wbr 5078 ‘cfv 6430 (class class class)co 7268 ℝcr 10854 0cc0 10855 < clt 10993 √csqrt 14925 ℋchba 29260 ·ih csp 29263 normℎcno 29264 0ℎc0v 29265 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1801 ax-4 1815 ax-5 1916 ax-6 1974 ax-7 2014 ax-8 2111 ax-9 2119 ax-10 2140 ax-11 2157 ax-12 2174 ax-ext 2710 ax-sep 5226 ax-nul 5233 ax-pow 5291 ax-pr 5355 ax-un 7579 ax-cnex 10911 ax-resscn 10912 ax-1cn 10913 ax-icn 10914 ax-addcl 10915 ax-addrcl 10916 ax-mulcl 10917 ax-mulrcl 10918 ax-mulcom 10919 ax-addass 10920 ax-mulass 10921 ax-distr 10922 ax-i2m1 10923 ax-1ne0 10924 ax-1rid 10925 ax-rnegex 10926 ax-rrecex 10927 ax-cnre 10928 ax-pre-lttri 10929 ax-pre-lttrn 10930 ax-pre-ltadd 10931 ax-pre-mulgt0 10932 ax-pre-sup 10933 ax-hv0cl 29344 ax-hvmul0 29351 ax-hfi 29420 ax-his1 29423 ax-his3 29425 ax-his4 29426 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1544 df-fal 1554 df-ex 1786 df-nf 1790 df-sb 2071 df-mo 2541 df-eu 2570 df-clab 2717 df-cleq 2731 df-clel 2817 df-nfc 2890 df-ne 2945 df-nel 3051 df-ral 3070 df-rex 3071 df-reu 3072 df-rmo 3073 df-rab 3074 df-v 3432 df-sbc 3720 df-csb 3837 df-dif 3894 df-un 3896 df-in 3898 df-ss 3908 df-pss 3910 df-nul 4262 df-if 4465 df-pw 4540 df-sn 4567 df-pr 4569 df-tp 4571 df-op 4573 df-uni 4845 df-iun 4931 df-br 5079 df-opab 5141 df-mpt 5162 df-tr 5196 df-id 5488 df-eprel 5494 df-po 5502 df-so 5503 df-fr 5543 df-we 5545 df-xp 5594 df-rel 5595 df-cnv 5596 df-co 5597 df-dm 5598 df-rn 5599 df-res 5600 df-ima 5601 df-pred 6199 df-ord 6266 df-on 6267 df-lim 6268 df-suc 6269 df-iota 6388 df-fun 6432 df-fn 6433 df-f 6434 df-f1 6435 df-fo 6436 df-f1o 6437 df-fv 6438 df-riota 7225 df-ov 7271 df-oprab 7272 df-mpo 7273 df-om 7701 df-2nd 7818 df-frecs 8081 df-wrecs 8112 df-recs 8186 df-rdg 8225 df-er 8472 df-en 8708 df-dom 8709 df-sdom 8710 df-sup 9162 df-pnf 10995 df-mnf 10996 df-xr 10997 df-ltxr 10998 df-le 10999 df-sub 11190 df-neg 11191 df-div 11616 df-nn 11957 df-2 12019 df-3 12020 df-n0 12217 df-z 12303 df-uz 12565 df-rp 12713 df-seq 13703 df-exp 13764 df-cj 14791 df-re 14792 df-im 14793 df-sqrt 14927 df-hnorm 29309 |
This theorem is referenced by: norm-i 29470 norm1 29590 nmlnop0iALT 30336 nmbdoplbi 30365 nmcoplbi 30369 nmbdfnlbi 30390 nmcfnlbi 30393 branmfn 30446 strlem1 30591 |
Copyright terms: Public domain | W3C validator |