HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  normgt0 Structured version   Visualization version   GIF version

Theorem normgt0 31029
Description: The norm of nonzero vector is positive. (Contributed by NM, 10-Apr-2006.) (New usage is discouraged.)
Assertion
Ref Expression
normgt0 (𝐴 ∈ ℋ → (𝐴 ≠ 0 ↔ 0 < (norm𝐴)))

Proof of Theorem normgt0
StepHypRef Expression
1 hiidrcl 30997 . . . . . 6 (𝐴 ∈ ℋ → (𝐴 ·ih 𝐴) ∈ ℝ)
21adantr 480 . . . . 5 ((𝐴 ∈ ℋ ∧ 𝐴 ≠ 0) → (𝐴 ·ih 𝐴) ∈ ℝ)
3 ax-his4 30987 . . . . 5 ((𝐴 ∈ ℋ ∧ 𝐴 ≠ 0) → 0 < (𝐴 ·ih 𝐴))
4 sqrtgt0 15200 . . . . 5 (((𝐴 ·ih 𝐴) ∈ ℝ ∧ 0 < (𝐴 ·ih 𝐴)) → 0 < (√‘(𝐴 ·ih 𝐴)))
52, 3, 4syl2anc 584 . . . 4 ((𝐴 ∈ ℋ ∧ 𝐴 ≠ 0) → 0 < (√‘(𝐴 ·ih 𝐴)))
65ex 412 . . 3 (𝐴 ∈ ℋ → (𝐴 ≠ 0 → 0 < (√‘(𝐴 ·ih 𝐴))))
7 oveq1 7376 . . . . . . . . 9 (𝐴 = 0 → (𝐴 ·ih 𝐴) = (0 ·ih 𝐴))
8 hi01 30998 . . . . . . . . 9 (𝐴 ∈ ℋ → (0 ·ih 𝐴) = 0)
97, 8sylan9eqr 2786 . . . . . . . 8 ((𝐴 ∈ ℋ ∧ 𝐴 = 0) → (𝐴 ·ih 𝐴) = 0)
109fveq2d 6844 . . . . . . 7 ((𝐴 ∈ ℋ ∧ 𝐴 = 0) → (√‘(𝐴 ·ih 𝐴)) = (√‘0))
11 sqrt0 15183 . . . . . . 7 (√‘0) = 0
1210, 11eqtrdi 2780 . . . . . 6 ((𝐴 ∈ ℋ ∧ 𝐴 = 0) → (√‘(𝐴 ·ih 𝐴)) = 0)
1312ex 412 . . . . 5 (𝐴 ∈ ℋ → (𝐴 = 0 → (√‘(𝐴 ·ih 𝐴)) = 0))
14 hiidge0 31000 . . . . . . . 8 (𝐴 ∈ ℋ → 0 ≤ (𝐴 ·ih 𝐴))
151, 14resqrtcld 15360 . . . . . . 7 (𝐴 ∈ ℋ → (√‘(𝐴 ·ih 𝐴)) ∈ ℝ)
16 0re 11152 . . . . . . 7 0 ∈ ℝ
17 lttri3 11233 . . . . . . 7 (((√‘(𝐴 ·ih 𝐴)) ∈ ℝ ∧ 0 ∈ ℝ) → ((√‘(𝐴 ·ih 𝐴)) = 0 ↔ (¬ (√‘(𝐴 ·ih 𝐴)) < 0 ∧ ¬ 0 < (√‘(𝐴 ·ih 𝐴)))))
1815, 16, 17sylancl 586 . . . . . 6 (𝐴 ∈ ℋ → ((√‘(𝐴 ·ih 𝐴)) = 0 ↔ (¬ (√‘(𝐴 ·ih 𝐴)) < 0 ∧ ¬ 0 < (√‘(𝐴 ·ih 𝐴)))))
19 simpr 484 . . . . . 6 ((¬ (√‘(𝐴 ·ih 𝐴)) < 0 ∧ ¬ 0 < (√‘(𝐴 ·ih 𝐴))) → ¬ 0 < (√‘(𝐴 ·ih 𝐴)))
2018, 19biimtrdi 253 . . . . 5 (𝐴 ∈ ℋ → ((√‘(𝐴 ·ih 𝐴)) = 0 → ¬ 0 < (√‘(𝐴 ·ih 𝐴))))
2113, 20syld 47 . . . 4 (𝐴 ∈ ℋ → (𝐴 = 0 → ¬ 0 < (√‘(𝐴 ·ih 𝐴))))
2221necon2ad 2940 . . 3 (𝐴 ∈ ℋ → (0 < (√‘(𝐴 ·ih 𝐴)) → 𝐴 ≠ 0))
236, 22impbid 212 . 2 (𝐴 ∈ ℋ → (𝐴 ≠ 0 ↔ 0 < (√‘(𝐴 ·ih 𝐴))))
24 normval 31026 . . 3 (𝐴 ∈ ℋ → (norm𝐴) = (√‘(𝐴 ·ih 𝐴)))
2524breq2d 5114 . 2 (𝐴 ∈ ℋ → (0 < (norm𝐴) ↔ 0 < (√‘(𝐴 ·ih 𝐴))))
2623, 25bitr4d 282 1 (𝐴 ∈ ℋ → (𝐴 ≠ 0 ↔ 0 < (norm𝐴)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  wne 2925   class class class wbr 5102  cfv 6499  (class class class)co 7369  cr 11043  0cc0 11044   < clt 11184  csqrt 15175  chba 30821   ·ih csp 30824  normcno 30825  0c0v 30826
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691  ax-cnex 11100  ax-resscn 11101  ax-1cn 11102  ax-icn 11103  ax-addcl 11104  ax-addrcl 11105  ax-mulcl 11106  ax-mulrcl 11107  ax-mulcom 11108  ax-addass 11109  ax-mulass 11110  ax-distr 11111  ax-i2m1 11112  ax-1ne0 11113  ax-1rid 11114  ax-rnegex 11115  ax-rrecex 11116  ax-cnre 11117  ax-pre-lttri 11118  ax-pre-lttrn 11119  ax-pre-ltadd 11120  ax-pre-mulgt0 11121  ax-pre-sup 11122  ax-hv0cl 30905  ax-hvmul0 30912  ax-hfi 30981  ax-his1 30984  ax-his3 30986  ax-his4 30987
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3351  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-iun 4953  df-br 5103  df-opab 5165  df-mpt 5184  df-tr 5210  df-id 5526  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-we 5586  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-pred 6262  df-ord 6323  df-on 6324  df-lim 6325  df-suc 6326  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-riota 7326  df-ov 7372  df-oprab 7373  df-mpo 7374  df-om 7823  df-2nd 7948  df-frecs 8237  df-wrecs 8268  df-recs 8317  df-rdg 8355  df-er 8648  df-en 8896  df-dom 8897  df-sdom 8898  df-sup 9369  df-pnf 11186  df-mnf 11187  df-xr 11188  df-ltxr 11189  df-le 11190  df-sub 11383  df-neg 11384  df-div 11812  df-nn 12163  df-2 12225  df-3 12226  df-n0 12419  df-z 12506  df-uz 12770  df-rp 12928  df-seq 13943  df-exp 14003  df-cj 15041  df-re 15042  df-im 15043  df-sqrt 15177  df-hnorm 30870
This theorem is referenced by:  norm-i  31031  norm1  31151  nmlnop0iALT  31897  nmbdoplbi  31926  nmcoplbi  31930  nmbdfnlbi  31951  nmcfnlbi  31954  branmfn  32007  strlem1  32152
  Copyright terms: Public domain W3C validator