| Metamath Proof Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > MPE Home > Th. List > ax-un | Structured version Visualization version GIF version | ||
| Description: Axiom of Union.  An axiom
of Zermelo-Fraenkel set theory.  It states
       that a set 𝑦 exists that includes the union of a
given set 𝑥
       i.e. the collection of all members of the members of 𝑥.  The
       variant axun2 7740 states that the union itself exists.  A
version with the
       standard abbreviation for union is uniex2 7741.  A version using class
       notation is uniex 7744.
 The union of a class df-uni 4890 should not be confused with the union of two classes df-un 3938. Their relationship is shown in unipr 4906. (Contributed by NM, 23-Dec-1993.)  | 
| Ref | Expression | 
|---|---|
| ax-un | ⊢ ∃𝑦∀𝑧(∃𝑤(𝑧 ∈ 𝑤 ∧ 𝑤 ∈ 𝑥) → 𝑧 ∈ 𝑦) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | vz | . . . . . . 7 setvar 𝑧 | |
| 2 | vw | . . . . . . 7 setvar 𝑤 | |
| 3 | 1, 2 | wel 2108 | . . . . . 6 wff 𝑧 ∈ 𝑤 | 
| 4 | vx | . . . . . . 7 setvar 𝑥 | |
| 5 | 2, 4 | wel 2108 | . . . . . 6 wff 𝑤 ∈ 𝑥 | 
| 6 | 3, 5 | wa 395 | . . . . 5 wff (𝑧 ∈ 𝑤 ∧ 𝑤 ∈ 𝑥) | 
| 7 | 6, 2 | wex 1778 | . . . 4 wff ∃𝑤(𝑧 ∈ 𝑤 ∧ 𝑤 ∈ 𝑥) | 
| 8 | vy | . . . . 5 setvar 𝑦 | |
| 9 | 1, 8 | wel 2108 | . . . 4 wff 𝑧 ∈ 𝑦 | 
| 10 | 7, 9 | wi 4 | . . 3 wff (∃𝑤(𝑧 ∈ 𝑤 ∧ 𝑤 ∈ 𝑥) → 𝑧 ∈ 𝑦) | 
| 11 | 10, 1 | wal 1537 | . 2 wff ∀𝑧(∃𝑤(𝑧 ∈ 𝑤 ∧ 𝑤 ∈ 𝑥) → 𝑧 ∈ 𝑦) | 
| 12 | 11, 8 | wex 1778 | 1 wff ∃𝑦∀𝑧(∃𝑤(𝑧 ∈ 𝑤 ∧ 𝑤 ∈ 𝑥) → 𝑧 ∈ 𝑦) | 
| Colors of variables: wff setvar class | 
| This axiom is referenced by: zfun 7739 axun2 7740 uniex2 7741 | 
| Copyright terms: Public domain | W3C validator |