Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > ax-un | Structured version Visualization version GIF version |
Description: Axiom of Union. An axiom
of Zermelo-Fraenkel set theory. It states
that a set 𝑦 exists that includes the union of a
given set 𝑥
i.e. the collection of all members of the members of 𝑥. The
variant axun2 7565 states that the union itself exists. A
version with the
standard abbreviation for union is uniex2 7566. A version using class
notation is uniex 7569.
The union of a class df-uni 4837 should not be confused with the union of two classes df-un 3889. Their relationship is shown in unipr 4854. (Contributed by NM, 23-Dec-1993.) |
Ref | Expression |
---|---|
ax-un | ⊢ ∃𝑦∀𝑧(∃𝑤(𝑧 ∈ 𝑤 ∧ 𝑤 ∈ 𝑥) → 𝑧 ∈ 𝑦) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | vz | . . . . . . 7 setvar 𝑧 | |
2 | vw | . . . . . . 7 setvar 𝑤 | |
3 | 1, 2 | wel 2113 | . . . . . 6 wff 𝑧 ∈ 𝑤 |
4 | vx | . . . . . . 7 setvar 𝑥 | |
5 | 2, 4 | wel 2113 | . . . . . 6 wff 𝑤 ∈ 𝑥 |
6 | 3, 5 | wa 399 | . . . . 5 wff (𝑧 ∈ 𝑤 ∧ 𝑤 ∈ 𝑥) |
7 | 6, 2 | wex 1787 | . . . 4 wff ∃𝑤(𝑧 ∈ 𝑤 ∧ 𝑤 ∈ 𝑥) |
8 | vy | . . . . 5 setvar 𝑦 | |
9 | 1, 8 | wel 2113 | . . . 4 wff 𝑧 ∈ 𝑦 |
10 | 7, 9 | wi 4 | . . 3 wff (∃𝑤(𝑧 ∈ 𝑤 ∧ 𝑤 ∈ 𝑥) → 𝑧 ∈ 𝑦) |
11 | 10, 1 | wal 1541 | . 2 wff ∀𝑧(∃𝑤(𝑧 ∈ 𝑤 ∧ 𝑤 ∈ 𝑥) → 𝑧 ∈ 𝑦) |
12 | 11, 8 | wex 1787 | 1 wff ∃𝑦∀𝑧(∃𝑤(𝑧 ∈ 𝑤 ∧ 𝑤 ∈ 𝑥) → 𝑧 ∈ 𝑦) |
Colors of variables: wff setvar class |
This axiom is referenced by: zfun 7564 axun2 7565 uniex2 7566 |
Copyright terms: Public domain | W3C validator |