Step | Hyp | Ref
| Expression |
1 | | difeq2 4047 |
. . . . . . 7
⊢ (𝑢 = 𝑥 → (𝐴 ∖ 𝑢) = (𝐴 ∖ 𝑥)) |
2 | 1 | eleq1d 2823 |
. . . . . 6
⊢ (𝑢 = 𝑥 → ((𝐴 ∖ 𝑢) ∈ 𝑌 ↔ (𝐴 ∖ 𝑥) ∈ 𝑌)) |
3 | 2 | elrab 3617 |
. . . . 5
⊢ (𝑥 ∈ {𝑢 ∈ 𝒫 𝐴 ∣ (𝐴 ∖ 𝑢) ∈ 𝑌} ↔ (𝑥 ∈ 𝒫 𝐴 ∧ (𝐴 ∖ 𝑥) ∈ 𝑌)) |
4 | | difeq2 4047 |
. . . . . . 7
⊢ (𝑢 = 𝑦 → (𝐴 ∖ 𝑢) = (𝐴 ∖ 𝑦)) |
5 | 4 | eleq1d 2823 |
. . . . . 6
⊢ (𝑢 = 𝑦 → ((𝐴 ∖ 𝑢) ∈ 𝑌 ↔ (𝐴 ∖ 𝑦) ∈ 𝑌)) |
6 | 5 | elrab 3617 |
. . . . 5
⊢ (𝑦 ∈ {𝑢 ∈ 𝒫 𝐴 ∣ (𝐴 ∖ 𝑢) ∈ 𝑌} ↔ (𝑦 ∈ 𝒫 𝐴 ∧ (𝐴 ∖ 𝑦) ∈ 𝑌)) |
7 | | an4 652 |
. . . . . 6
⊢ (((𝑥 ∈ 𝒫 𝐴 ∧ (𝐴 ∖ 𝑥) ∈ 𝑌) ∧ (𝑦 ∈ 𝒫 𝐴 ∧ (𝐴 ∖ 𝑦) ∈ 𝑌)) ↔ ((𝑥 ∈ 𝒫 𝐴 ∧ 𝑦 ∈ 𝒫 𝐴) ∧ ((𝐴 ∖ 𝑥) ∈ 𝑌 ∧ (𝐴 ∖ 𝑦) ∈ 𝑌))) |
8 | 7 | biimpi 215 |
. . . . 5
⊢ (((𝑥 ∈ 𝒫 𝐴 ∧ (𝐴 ∖ 𝑥) ∈ 𝑌) ∧ (𝑦 ∈ 𝒫 𝐴 ∧ (𝐴 ∖ 𝑦) ∈ 𝑌)) → ((𝑥 ∈ 𝒫 𝐴 ∧ 𝑦 ∈ 𝒫 𝐴) ∧ ((𝐴 ∖ 𝑥) ∈ 𝑌 ∧ (𝐴 ∖ 𝑦) ∈ 𝑌))) |
9 | 3, 6, 8 | syl2anb 597 |
. . . 4
⊢ ((𝑥 ∈ {𝑢 ∈ 𝒫 𝐴 ∣ (𝐴 ∖ 𝑢) ∈ 𝑌} ∧ 𝑦 ∈ {𝑢 ∈ 𝒫 𝐴 ∣ (𝐴 ∖ 𝑢) ∈ 𝑌}) → ((𝑥 ∈ 𝒫 𝐴 ∧ 𝑦 ∈ 𝒫 𝐴) ∧ ((𝐴 ∖ 𝑥) ∈ 𝑌 ∧ (𝐴 ∖ 𝑦) ∈ 𝑌))) |
10 | | sorpssi 7560 |
. . . . . . . 8
⊢ ((
[⊊] Or 𝑌
∧ ((𝐴 ∖ 𝑥) ∈ 𝑌 ∧ (𝐴 ∖ 𝑦) ∈ 𝑌)) → ((𝐴 ∖ 𝑥) ⊆ (𝐴 ∖ 𝑦) ∨ (𝐴 ∖ 𝑦) ⊆ (𝐴 ∖ 𝑥))) |
11 | 10 | expcom 413 |
. . . . . . 7
⊢ (((𝐴 ∖ 𝑥) ∈ 𝑌 ∧ (𝐴 ∖ 𝑦) ∈ 𝑌) → ( [⊊] Or 𝑌 → ((𝐴 ∖ 𝑥) ⊆ (𝐴 ∖ 𝑦) ∨ (𝐴 ∖ 𝑦) ⊆ (𝐴 ∖ 𝑥)))) |
12 | | velpw 4535 |
. . . . . . . . . . 11
⊢ (𝑥 ∈ 𝒫 𝐴 ↔ 𝑥 ⊆ 𝐴) |
13 | | dfss4 4189 |
. . . . . . . . . . 11
⊢ (𝑥 ⊆ 𝐴 ↔ (𝐴 ∖ (𝐴 ∖ 𝑥)) = 𝑥) |
14 | 12, 13 | bitri 274 |
. . . . . . . . . 10
⊢ (𝑥 ∈ 𝒫 𝐴 ↔ (𝐴 ∖ (𝐴 ∖ 𝑥)) = 𝑥) |
15 | | velpw 4535 |
. . . . . . . . . . 11
⊢ (𝑦 ∈ 𝒫 𝐴 ↔ 𝑦 ⊆ 𝐴) |
16 | | dfss4 4189 |
. . . . . . . . . . 11
⊢ (𝑦 ⊆ 𝐴 ↔ (𝐴 ∖ (𝐴 ∖ 𝑦)) = 𝑦) |
17 | 15, 16 | bitri 274 |
. . . . . . . . . 10
⊢ (𝑦 ∈ 𝒫 𝐴 ↔ (𝐴 ∖ (𝐴 ∖ 𝑦)) = 𝑦) |
18 | | sscon 4069 |
. . . . . . . . . . . 12
⊢ ((𝐴 ∖ 𝑦) ⊆ (𝐴 ∖ 𝑥) → (𝐴 ∖ (𝐴 ∖ 𝑥)) ⊆ (𝐴 ∖ (𝐴 ∖ 𝑦))) |
19 | | sseq12 3944 |
. . . . . . . . . . . 12
⊢ (((𝐴 ∖ (𝐴 ∖ 𝑥)) = 𝑥 ∧ (𝐴 ∖ (𝐴 ∖ 𝑦)) = 𝑦) → ((𝐴 ∖ (𝐴 ∖ 𝑥)) ⊆ (𝐴 ∖ (𝐴 ∖ 𝑦)) ↔ 𝑥 ⊆ 𝑦)) |
20 | 18, 19 | syl5ib 243 |
. . . . . . . . . . 11
⊢ (((𝐴 ∖ (𝐴 ∖ 𝑥)) = 𝑥 ∧ (𝐴 ∖ (𝐴 ∖ 𝑦)) = 𝑦) → ((𝐴 ∖ 𝑦) ⊆ (𝐴 ∖ 𝑥) → 𝑥 ⊆ 𝑦)) |
21 | | sscon 4069 |
. . . . . . . . . . . 12
⊢ ((𝐴 ∖ 𝑥) ⊆ (𝐴 ∖ 𝑦) → (𝐴 ∖ (𝐴 ∖ 𝑦)) ⊆ (𝐴 ∖ (𝐴 ∖ 𝑥))) |
22 | | sseq12 3944 |
. . . . . . . . . . . . 13
⊢ (((𝐴 ∖ (𝐴 ∖ 𝑦)) = 𝑦 ∧ (𝐴 ∖ (𝐴 ∖ 𝑥)) = 𝑥) → ((𝐴 ∖ (𝐴 ∖ 𝑦)) ⊆ (𝐴 ∖ (𝐴 ∖ 𝑥)) ↔ 𝑦 ⊆ 𝑥)) |
23 | 22 | ancoms 458 |
. . . . . . . . . . . 12
⊢ (((𝐴 ∖ (𝐴 ∖ 𝑥)) = 𝑥 ∧ (𝐴 ∖ (𝐴 ∖ 𝑦)) = 𝑦) → ((𝐴 ∖ (𝐴 ∖ 𝑦)) ⊆ (𝐴 ∖ (𝐴 ∖ 𝑥)) ↔ 𝑦 ⊆ 𝑥)) |
24 | 21, 23 | syl5ib 243 |
. . . . . . . . . . 11
⊢ (((𝐴 ∖ (𝐴 ∖ 𝑥)) = 𝑥 ∧ (𝐴 ∖ (𝐴 ∖ 𝑦)) = 𝑦) → ((𝐴 ∖ 𝑥) ⊆ (𝐴 ∖ 𝑦) → 𝑦 ⊆ 𝑥)) |
25 | 20, 24 | orim12d 961 |
. . . . . . . . . 10
⊢ (((𝐴 ∖ (𝐴 ∖ 𝑥)) = 𝑥 ∧ (𝐴 ∖ (𝐴 ∖ 𝑦)) = 𝑦) → (((𝐴 ∖ 𝑦) ⊆ (𝐴 ∖ 𝑥) ∨ (𝐴 ∖ 𝑥) ⊆ (𝐴 ∖ 𝑦)) → (𝑥 ⊆ 𝑦 ∨ 𝑦 ⊆ 𝑥))) |
26 | 14, 17, 25 | syl2anb 597 |
. . . . . . . . 9
⊢ ((𝑥 ∈ 𝒫 𝐴 ∧ 𝑦 ∈ 𝒫 𝐴) → (((𝐴 ∖ 𝑦) ⊆ (𝐴 ∖ 𝑥) ∨ (𝐴 ∖ 𝑥) ⊆ (𝐴 ∖ 𝑦)) → (𝑥 ⊆ 𝑦 ∨ 𝑦 ⊆ 𝑥))) |
27 | 26 | com12 32 |
. . . . . . . 8
⊢ (((𝐴 ∖ 𝑦) ⊆ (𝐴 ∖ 𝑥) ∨ (𝐴 ∖ 𝑥) ⊆ (𝐴 ∖ 𝑦)) → ((𝑥 ∈ 𝒫 𝐴 ∧ 𝑦 ∈ 𝒫 𝐴) → (𝑥 ⊆ 𝑦 ∨ 𝑦 ⊆ 𝑥))) |
28 | 27 | orcoms 868 |
. . . . . . 7
⊢ (((𝐴 ∖ 𝑥) ⊆ (𝐴 ∖ 𝑦) ∨ (𝐴 ∖ 𝑦) ⊆ (𝐴 ∖ 𝑥)) → ((𝑥 ∈ 𝒫 𝐴 ∧ 𝑦 ∈ 𝒫 𝐴) → (𝑥 ⊆ 𝑦 ∨ 𝑦 ⊆ 𝑥))) |
29 | 11, 28 | syl6 35 |
. . . . . 6
⊢ (((𝐴 ∖ 𝑥) ∈ 𝑌 ∧ (𝐴 ∖ 𝑦) ∈ 𝑌) → ( [⊊] Or 𝑌 → ((𝑥 ∈ 𝒫 𝐴 ∧ 𝑦 ∈ 𝒫 𝐴) → (𝑥 ⊆ 𝑦 ∨ 𝑦 ⊆ 𝑥)))) |
30 | 29 | com3l 89 |
. . . . 5
⊢ (
[⊊] Or 𝑌
→ ((𝑥 ∈ 𝒫
𝐴 ∧ 𝑦 ∈ 𝒫 𝐴) → (((𝐴 ∖ 𝑥) ∈ 𝑌 ∧ (𝐴 ∖ 𝑦) ∈ 𝑌) → (𝑥 ⊆ 𝑦 ∨ 𝑦 ⊆ 𝑥)))) |
31 | 30 | impd 410 |
. . . 4
⊢ (
[⊊] Or 𝑌
→ (((𝑥 ∈
𝒫 𝐴 ∧ 𝑦 ∈ 𝒫 𝐴) ∧ ((𝐴 ∖ 𝑥) ∈ 𝑌 ∧ (𝐴 ∖ 𝑦) ∈ 𝑌)) → (𝑥 ⊆ 𝑦 ∨ 𝑦 ⊆ 𝑥))) |
32 | 9, 31 | syl5 34 |
. . 3
⊢ (
[⊊] Or 𝑌
→ ((𝑥 ∈ {𝑢 ∈ 𝒫 𝐴 ∣ (𝐴 ∖ 𝑢) ∈ 𝑌} ∧ 𝑦 ∈ {𝑢 ∈ 𝒫 𝐴 ∣ (𝐴 ∖ 𝑢) ∈ 𝑌}) → (𝑥 ⊆ 𝑦 ∨ 𝑦 ⊆ 𝑥))) |
33 | 32 | ralrimivv 3113 |
. 2
⊢ (
[⊊] Or 𝑌
→ ∀𝑥 ∈
{𝑢 ∈ 𝒫 𝐴 ∣ (𝐴 ∖ 𝑢) ∈ 𝑌}∀𝑦 ∈ {𝑢 ∈ 𝒫 𝐴 ∣ (𝐴 ∖ 𝑢) ∈ 𝑌} (𝑥 ⊆ 𝑦 ∨ 𝑦 ⊆ 𝑥)) |
34 | | sorpss 7559 |
. 2
⊢ (
[⊊] Or {𝑢
∈ 𝒫 𝐴 ∣
(𝐴 ∖ 𝑢) ∈ 𝑌} ↔ ∀𝑥 ∈ {𝑢 ∈ 𝒫 𝐴 ∣ (𝐴 ∖ 𝑢) ∈ 𝑌}∀𝑦 ∈ {𝑢 ∈ 𝒫 𝐴 ∣ (𝐴 ∖ 𝑢) ∈ 𝑌} (𝑥 ⊆ 𝑦 ∨ 𝑦 ⊆ 𝑥)) |
35 | 33, 34 | sylibr 233 |
1
⊢ (
[⊊] Or 𝑌
→ [⊊] Or {𝑢 ∈ 𝒫 𝐴 ∣ (𝐴 ∖ 𝑢) ∈ 𝑌}) |