| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > uniex2 | Structured version Visualization version GIF version | ||
| Description: The Axiom of Union using the standard abbreviation for union. Given any set 𝑥, its union 𝑦 exists. (Contributed by NM, 4-Jun-2006.) |
| Ref | Expression |
|---|---|
| uniex2 | ⊢ ∃𝑦 𝑦 = ∪ 𝑥 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ax-un 7755 | . . . 4 ⊢ ∃𝑦∀𝑧(∃𝑤(𝑧 ∈ 𝑤 ∧ 𝑤 ∈ 𝑥) → 𝑧 ∈ 𝑦) | |
| 2 | eluni 4910 | . . . . . . 7 ⊢ (𝑧 ∈ ∪ 𝑥 ↔ ∃𝑤(𝑧 ∈ 𝑤 ∧ 𝑤 ∈ 𝑥)) | |
| 3 | 2 | imbi1i 349 | . . . . . 6 ⊢ ((𝑧 ∈ ∪ 𝑥 → 𝑧 ∈ 𝑦) ↔ (∃𝑤(𝑧 ∈ 𝑤 ∧ 𝑤 ∈ 𝑥) → 𝑧 ∈ 𝑦)) |
| 4 | 3 | albii 1819 | . . . . 5 ⊢ (∀𝑧(𝑧 ∈ ∪ 𝑥 → 𝑧 ∈ 𝑦) ↔ ∀𝑧(∃𝑤(𝑧 ∈ 𝑤 ∧ 𝑤 ∈ 𝑥) → 𝑧 ∈ 𝑦)) |
| 5 | 4 | exbii 1848 | . . . 4 ⊢ (∃𝑦∀𝑧(𝑧 ∈ ∪ 𝑥 → 𝑧 ∈ 𝑦) ↔ ∃𝑦∀𝑧(∃𝑤(𝑧 ∈ 𝑤 ∧ 𝑤 ∈ 𝑥) → 𝑧 ∈ 𝑦)) |
| 6 | 1, 5 | mpbir 231 | . . 3 ⊢ ∃𝑦∀𝑧(𝑧 ∈ ∪ 𝑥 → 𝑧 ∈ 𝑦) |
| 7 | 6 | sepexi 5301 | . 2 ⊢ ∃𝑦∀𝑧(𝑧 ∈ 𝑦 ↔ 𝑧 ∈ ∪ 𝑥) |
| 8 | dfcleq 2730 | . . 3 ⊢ (𝑦 = ∪ 𝑥 ↔ ∀𝑧(𝑧 ∈ 𝑦 ↔ 𝑧 ∈ ∪ 𝑥)) | |
| 9 | 8 | exbii 1848 | . 2 ⊢ (∃𝑦 𝑦 = ∪ 𝑥 ↔ ∃𝑦∀𝑧(𝑧 ∈ 𝑦 ↔ 𝑧 ∈ ∪ 𝑥)) |
| 10 | 7, 9 | mpbir 231 | 1 ⊢ ∃𝑦 𝑦 = ∪ 𝑥 |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∀wal 1538 = wceq 1540 ∃wex 1779 ∈ wcel 2108 ∪ cuni 4907 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2708 ax-sep 5296 ax-un 7755 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2065 df-clab 2715 df-cleq 2729 df-clel 2816 df-v 3482 df-uni 4908 |
| This theorem is referenced by: vuniex 7759 |
| Copyright terms: Public domain | W3C validator |