MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  uniex2 Structured version   Visualization version   GIF version

Theorem uniex2 7569
Description: The Axiom of Union using the standard abbreviation for union. Given any set 𝑥, its union 𝑦 exists. (Contributed by NM, 4-Jun-2006.)
Assertion
Ref Expression
uniex2 𝑦 𝑦 = 𝑥
Distinct variable group:   𝑥,𝑦

Proof of Theorem uniex2
Dummy variables 𝑤 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ax-un 7566 . . . 4 𝑦𝑧(∃𝑤(𝑧𝑤𝑤𝑥) → 𝑧𝑦)
2 eluni 4839 . . . . . . 7 (𝑧 𝑥 ↔ ∃𝑤(𝑧𝑤𝑤𝑥))
32imbi1i 349 . . . . . 6 ((𝑧 𝑥𝑧𝑦) ↔ (∃𝑤(𝑧𝑤𝑤𝑥) → 𝑧𝑦))
43albii 1823 . . . . 5 (∀𝑧(𝑧 𝑥𝑧𝑦) ↔ ∀𝑧(∃𝑤(𝑧𝑤𝑤𝑥) → 𝑧𝑦))
54exbii 1851 . . . 4 (∃𝑦𝑧(𝑧 𝑥𝑧𝑦) ↔ ∃𝑦𝑧(∃𝑤(𝑧𝑤𝑤𝑥) → 𝑧𝑦))
61, 5mpbir 230 . . 3 𝑦𝑧(𝑧 𝑥𝑧𝑦)
76bm1.3ii 5221 . 2 𝑦𝑧(𝑧𝑦𝑧 𝑥)
8 dfcleq 2731 . . 3 (𝑦 = 𝑥 ↔ ∀𝑧(𝑧𝑦𝑧 𝑥))
98exbii 1851 . 2 (∃𝑦 𝑦 = 𝑥 ↔ ∃𝑦𝑧(𝑧𝑦𝑧 𝑥))
107, 9mpbir 230 1 𝑦 𝑦 = 𝑥
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395  wal 1537   = wceq 1539  wex 1783  wcel 2108   cuni 4836
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-ext 2709  ax-sep 5218  ax-un 7566
This theorem depends on definitions:  df-bi 206  df-an 396  df-tru 1542  df-ex 1784  df-sb 2069  df-clab 2716  df-cleq 2730  df-clel 2817  df-v 3424  df-uni 4837
This theorem is referenced by:  vuniex  7570
  Copyright terms: Public domain W3C validator