![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > unipr | Structured version Visualization version GIF version |
Description: The union of a pair is the union of its members. Proposition 5.7 of [TakeutiZaring] p. 16. (Contributed by NM, 23-Aug-1993.) (Proof shortened by BJ, 1-Sep-2024.) |
Ref | Expression |
---|---|
unipr.1 | ⊢ 𝐴 ∈ V |
unipr.2 | ⊢ 𝐵 ∈ V |
Ref | Expression |
---|---|
unipr | ⊢ ∪ {𝐴, 𝐵} = (𝐴 ∪ 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | unipr.1 | . 2 ⊢ 𝐴 ∈ V | |
2 | unipr.2 | . 2 ⊢ 𝐵 ∈ V | |
3 | uniprg 4868 | . 2 ⊢ ((𝐴 ∈ V ∧ 𝐵 ∈ V) → ∪ {𝐴, 𝐵} = (𝐴 ∪ 𝐵)) | |
4 | 1, 2, 3 | mp2an 689 | 1 ⊢ ∪ {𝐴, 𝐵} = (𝐴 ∪ 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1540 ∈ wcel 2105 Vcvv 3441 ∪ cun 3895 {cpr 4574 ∪ cuni 4851 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-ext 2707 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-tru 1543 df-ex 1781 df-sb 2067 df-clab 2714 df-cleq 2728 df-clel 2814 df-v 3443 df-un 3902 df-sn 4573 df-pr 4575 df-uni 4852 |
This theorem is referenced by: uniprgOLD 4871 uniintsn 4932 uniop 5453 unex 7650 nlim2 8383 rankxplim 9728 mrcun 17420 indistps 22259 indistps2 22260 leordtval2 22461 ex-uni 28991 mnuprdlem1 42200 mnuprdlem2 42201 mnurndlem1 42209 fouriersw 44097 |
Copyright terms: Public domain | W3C validator |