| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > unipr | Structured version Visualization version GIF version | ||
| Description: The union of a pair is the union of its members. Proposition 5.7 of [TakeutiZaring] p. 16. (Contributed by NM, 23-Aug-1993.) (Proof shortened by BJ, 1-Sep-2024.) |
| Ref | Expression |
|---|---|
| unipr.1 | ⊢ 𝐴 ∈ V |
| unipr.2 | ⊢ 𝐵 ∈ V |
| Ref | Expression |
|---|---|
| unipr | ⊢ ∪ {𝐴, 𝐵} = (𝐴 ∪ 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | unipr.1 | . 2 ⊢ 𝐴 ∈ V | |
| 2 | unipr.2 | . 2 ⊢ 𝐵 ∈ V | |
| 3 | uniprg 4874 | . 2 ⊢ ((𝐴 ∈ V ∧ 𝐵 ∈ V) → ∪ {𝐴, 𝐵} = (𝐴 ∪ 𝐵)) | |
| 4 | 1, 2, 3 | mp2an 692 | 1 ⊢ ∪ {𝐴, 𝐵} = (𝐴 ∪ 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1541 ∈ wcel 2113 Vcvv 3437 ∪ cun 3896 {cpr 4577 ∪ cuni 4858 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-ext 2705 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1544 df-ex 1781 df-sb 2068 df-clab 2712 df-cleq 2725 df-clel 2808 df-v 3439 df-un 3903 df-sn 4576 df-pr 4578 df-uni 4859 |
| This theorem is referenced by: uniintsn 4935 uniop 5458 unexOLD 7684 nlim2 8411 rankxplim 9779 mrcun 17530 indistps 22927 indistps2 22928 leordtval2 23128 ex-uni 30408 mnuprdlem1 44389 mnuprdlem2 44390 mnurndlem1 44398 fouriersw 46353 |
| Copyright terms: Public domain | W3C validator |