| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > unipr | Structured version Visualization version GIF version | ||
| Description: The union of a pair is the union of its members. Proposition 5.7 of [TakeutiZaring] p. 16. (Contributed by NM, 23-Aug-1993.) (Proof shortened by BJ, 1-Sep-2024.) |
| Ref | Expression |
|---|---|
| unipr.1 | ⊢ 𝐴 ∈ V |
| unipr.2 | ⊢ 𝐵 ∈ V |
| Ref | Expression |
|---|---|
| unipr | ⊢ ∪ {𝐴, 𝐵} = (𝐴 ∪ 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | unipr.1 | . 2 ⊢ 𝐴 ∈ V | |
| 2 | unipr.2 | . 2 ⊢ 𝐵 ∈ V | |
| 3 | uniprg 4904 | . 2 ⊢ ((𝐴 ∈ V ∧ 𝐵 ∈ V) → ∪ {𝐴, 𝐵} = (𝐴 ∪ 𝐵)) | |
| 4 | 1, 2, 3 | mp2an 692 | 1 ⊢ ∪ {𝐴, 𝐵} = (𝐴 ∪ 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 ∈ wcel 2109 Vcvv 3464 ∪ cun 3929 {cpr 4608 ∪ cuni 4888 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2708 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2715 df-cleq 2728 df-clel 2810 df-v 3466 df-un 3936 df-sn 4607 df-pr 4609 df-uni 4889 |
| This theorem is referenced by: uniintsn 4966 uniop 5495 unexOLD 7744 nlim2 8507 rankxplim 9898 mrcun 17639 indistps 22954 indistps2 22955 leordtval2 23155 ex-uni 30412 mnuprdlem1 44263 mnuprdlem2 44264 mnurndlem1 44272 fouriersw 46227 |
| Copyright terms: Public domain | W3C validator |