![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > unipr | Structured version Visualization version GIF version |
Description: The union of a pair is the union of its members. Proposition 5.7 of [TakeutiZaring] p. 16. (Contributed by NM, 23-Aug-1993.) (Proof shortened by BJ, 1-Sep-2024.) |
Ref | Expression |
---|---|
unipr.1 | ⊢ 𝐴 ∈ V |
unipr.2 | ⊢ 𝐵 ∈ V |
Ref | Expression |
---|---|
unipr | ⊢ ∪ {𝐴, 𝐵} = (𝐴 ∪ 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | unipr.1 | . 2 ⊢ 𝐴 ∈ V | |
2 | unipr.2 | . 2 ⊢ 𝐵 ∈ V | |
3 | uniprg 4925 | . 2 ⊢ ((𝐴 ∈ V ∧ 𝐵 ∈ V) → ∪ {𝐴, 𝐵} = (𝐴 ∪ 𝐵)) | |
4 | 1, 2, 3 | mp2an 690 | 1 ⊢ ∪ {𝐴, 𝐵} = (𝐴 ∪ 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1541 ∈ wcel 2106 Vcvv 3474 ∪ cun 3946 {cpr 4630 ∪ cuni 4908 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2703 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-tru 1544 df-ex 1782 df-sb 2068 df-clab 2710 df-cleq 2724 df-clel 2810 df-v 3476 df-un 3953 df-sn 4629 df-pr 4631 df-uni 4909 |
This theorem is referenced by: uniprgOLD 4928 uniintsn 4991 uniop 5515 unex 7732 nlim2 8489 rankxplim 9873 mrcun 17565 indistps 22513 indistps2 22514 leordtval2 22715 ex-uni 29676 mnuprdlem1 43021 mnuprdlem2 43022 mnurndlem1 43030 fouriersw 44937 |
Copyright terms: Public domain | W3C validator |