MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  unipr Structured version   Visualization version   GIF version

Theorem unipr 4905
Description: The union of a pair is the union of its members. Proposition 5.7 of [TakeutiZaring] p. 16. (Contributed by NM, 23-Aug-1993.) (Proof shortened by BJ, 1-Sep-2024.)
Hypotheses
Ref Expression
unipr.1 𝐴 ∈ V
unipr.2 𝐵 ∈ V
Assertion
Ref Expression
unipr {𝐴, 𝐵} = (𝐴𝐵)

Proof of Theorem unipr
StepHypRef Expression
1 unipr.1 . 2 𝐴 ∈ V
2 unipr.2 . 2 𝐵 ∈ V
3 uniprg 4904 . 2 ((𝐴 ∈ V ∧ 𝐵 ∈ V) → {𝐴, 𝐵} = (𝐴𝐵))
41, 2, 3mp2an 692 1 {𝐴, 𝐵} = (𝐴𝐵)
Colors of variables: wff setvar class
Syntax hints:   = wceq 1540  wcel 2109  Vcvv 3464  cun 3929  {cpr 4608   cuni 4888
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2708
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-tru 1543  df-ex 1780  df-sb 2066  df-clab 2715  df-cleq 2728  df-clel 2810  df-v 3466  df-un 3936  df-sn 4607  df-pr 4609  df-uni 4889
This theorem is referenced by:  uniintsn  4966  uniop  5495  unexOLD  7744  nlim2  8507  rankxplim  9898  mrcun  17639  indistps  22954  indistps2  22955  leordtval2  23155  ex-uni  30412  mnuprdlem1  44263  mnuprdlem2  44264  mnurndlem1  44272  fouriersw  46227
  Copyright terms: Public domain W3C validator