MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  unipr Structured version   Visualization version   GIF version

Theorem unipr 4926
Description: The union of a pair is the union of its members. Proposition 5.7 of [TakeutiZaring] p. 16. (Contributed by NM, 23-Aug-1993.) (Proof shortened by BJ, 1-Sep-2024.)
Hypotheses
Ref Expression
unipr.1 𝐴 ∈ V
unipr.2 𝐵 ∈ V
Assertion
Ref Expression
unipr {𝐴, 𝐵} = (𝐴𝐵)

Proof of Theorem unipr
StepHypRef Expression
1 unipr.1 . 2 𝐴 ∈ V
2 unipr.2 . 2 𝐵 ∈ V
3 uniprg 4925 . 2 ((𝐴 ∈ V ∧ 𝐵 ∈ V) → {𝐴, 𝐵} = (𝐴𝐵))
41, 2, 3mp2an 690 1 {𝐴, 𝐵} = (𝐴𝐵)
Colors of variables: wff setvar class
Syntax hints:   = wceq 1541  wcel 2106  Vcvv 3474  cun 3946  {cpr 4630   cuni 4908
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-ext 2703
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-tru 1544  df-ex 1782  df-sb 2068  df-clab 2710  df-cleq 2724  df-clel 2810  df-v 3476  df-un 3953  df-sn 4629  df-pr 4631  df-uni 4909
This theorem is referenced by:  uniprgOLD  4928  uniintsn  4991  uniop  5515  unex  7732  nlim2  8489  rankxplim  9873  mrcun  17565  indistps  22513  indistps2  22514  leordtval2  22715  ex-uni  29676  mnuprdlem1  43021  mnuprdlem2  43022  mnurndlem1  43030  fouriersw  44937
  Copyright terms: Public domain W3C validator