MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  unipr Structured version   Visualization version   GIF version

Theorem unipr 4837
Description: The union of a pair is the union of its members. Proposition 5.7 of [TakeutiZaring] p. 16. (Contributed by NM, 23-Aug-1993.) (Proof shortened by BJ, 1-Sep-2024.)
Hypotheses
Ref Expression
unipr.1 𝐴 ∈ V
unipr.2 𝐵 ∈ V
Assertion
Ref Expression
unipr {𝐴, 𝐵} = (𝐴𝐵)

Proof of Theorem unipr
StepHypRef Expression
1 unipr.1 . 2 𝐴 ∈ V
2 unipr.2 . 2 𝐵 ∈ V
3 uniprg 4836 . 2 ((𝐴 ∈ V ∧ 𝐵 ∈ V) → {𝐴, 𝐵} = (𝐴𝐵))
41, 2, 3mp2an 692 1 {𝐴, 𝐵} = (𝐴𝐵)
Colors of variables: wff setvar class
Syntax hints:   = wceq 1543  wcel 2110  Vcvv 3408  cun 3864  {cpr 4543   cuni 4819
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2016  ax-8 2112  ax-9 2120  ax-ext 2708
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-tru 1546  df-ex 1788  df-sb 2071  df-clab 2715  df-cleq 2729  df-clel 2816  df-v 3410  df-un 3871  df-sn 4542  df-pr 4544  df-uni 4820
This theorem is referenced by:  uniprgOLD  4839  uniintsn  4898  uniop  5398  unex  7531  rankxplim  9495  mrcun  17125  indistps  21908  indistps2  21909  leordtval2  22109  ex-uni  28509  mnuprdlem1  41563  mnuprdlem2  41564  mnurndlem1  41572  fouriersw  43447
  Copyright terms: Public domain W3C validator