Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > uniex | Structured version Visualization version GIF version |
Description: The Axiom of Union in class notation. This says that if 𝐴 is a set i.e. 𝐴 ∈ V (see isset 3435), then the union of 𝐴 is also a set. Same as Axiom 3 of [TakeutiZaring] p. 16. (Contributed by NM, 11-Aug-1993.) |
Ref | Expression |
---|---|
uniex.1 | ⊢ 𝐴 ∈ V |
Ref | Expression |
---|---|
uniex | ⊢ ∪ 𝐴 ∈ V |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | uniex.1 | . 2 ⊢ 𝐴 ∈ V | |
2 | uniexg 7571 | . 2 ⊢ (𝐴 ∈ V → ∪ 𝐴 ∈ V) | |
3 | 1, 2 | ax-mp 5 | 1 ⊢ ∪ 𝐴 ∈ V |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 2108 Vcvv 3422 ∪ cuni 4836 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-ext 2709 ax-sep 5218 ax-un 7566 |
This theorem depends on definitions: df-bi 206 df-an 396 df-tru 1542 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-v 3424 df-in 3890 df-ss 3900 df-uni 4837 |
This theorem is referenced by: unex 7574 iunpw 7599 elxp4 7743 elxp5 7744 1stval 7806 2ndval 7807 fo1st 7824 fo2nd 7825 cnvf1o 7922 brtpos2 8019 ixpsnf1o 8684 dffi3 9120 cnfcom2 9390 cnfcom3lem 9391 cnfcom3 9392 trpredex 9416 trcl 9417 rankc2 9560 rankxpl 9564 rankxpsuc 9571 acnlem 9735 dfac2a 9816 fin23lem14 10020 fin23lem16 10022 fin23lem17 10025 fin23lem38 10036 fin23lem39 10037 itunisuc 10106 axdc3lem2 10138 axcclem 10144 ac5b 10165 ttukey 10205 wunex2 10425 wuncval2 10434 intgru 10501 pnfex 10959 prdsvallem 17082 prdsval 17083 prdsds 17092 wunfunc 17530 wunfuncOLD 17531 wunnat 17588 wunnatOLD 17589 arwval 17674 catcfuccl 17750 catcfucclOLD 17751 catcxpccl 17840 catcxpcclOLD 17841 zrhval 20621 mreclatdemoBAD 22155 ptbasin2 22637 ptbasfi 22640 dfac14 22677 ptcmplem2 23112 ptcmplem3 23113 ptcmp 23117 cnextfvval 23124 cnextcn 23126 minveclem4a 24499 xrge0tsmsbi 31220 dimval 31588 dimvalfi 31589 locfinreflem 31692 pstmfval 31748 pstmxmet 31749 esumex 31897 msrval 33400 dfrdg2 33677 ttrclse 33713 naddcllem 33758 oldf 33968 fvbigcup 34131 ctbssinf 35504 ptrest 35703 heiborlem1 35896 heiborlem3 35898 heibor 35906 dicval 39117 aomclem1 40795 dfac21 40807 ntrrn 41621 ntrf 41622 dssmapntrcls 41627 fourierdlem70 43607 caragendifcl 43942 cnfsmf 44163 setrec1lem3 46281 setrec2fun 46284 |
Copyright terms: Public domain | W3C validator |