![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > uniex | Structured version Visualization version GIF version |
Description: The Axiom of Union in class notation. This says that if 𝐴 is a set i.e. 𝐴 ∈ V (see isset 3487), then the union of 𝐴 is also a set. Same as Axiom 3 of [TakeutiZaring] p. 16. (Contributed by NM, 11-Aug-1993.) |
Ref | Expression |
---|---|
uniex.1 | ⊢ 𝐴 ∈ V |
Ref | Expression |
---|---|
uniex | ⊢ ∪ 𝐴 ∈ V |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | uniex.1 | . 2 ⊢ 𝐴 ∈ V | |
2 | uniexg 7726 | . 2 ⊢ (𝐴 ∈ V → ∪ 𝐴 ∈ V) | |
3 | 1, 2 | ax-mp 5 | 1 ⊢ ∪ 𝐴 ∈ V |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 2106 Vcvv 3474 ∪ cuni 4907 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2703 ax-sep 5298 ax-un 7721 |
This theorem depends on definitions: df-bi 206 df-an 397 df-tru 1544 df-ex 1782 df-sb 2068 df-clab 2710 df-cleq 2724 df-clel 2810 df-v 3476 df-in 3954 df-ss 3964 df-uni 4908 |
This theorem is referenced by: unex 7729 iunpw 7754 elxp4 7909 elxp5 7910 1stval 7973 2ndval 7974 fo1st 7991 fo2nd 7992 cnvf1o 8093 brtpos2 8213 naddcllem 8671 ixpsnf1o 8928 dffi3 9422 cnfcom2 9693 cnfcom3lem 9694 cnfcom3 9695 ttrclse 9718 trcl 9719 rankc2 9862 rankxpl 9866 rankxpsuc 9873 acnlem 10039 dfac2a 10120 fin23lem14 10324 fin23lem16 10326 fin23lem17 10329 fin23lem38 10340 fin23lem39 10341 itunisuc 10410 axdc3lem2 10442 axcclem 10448 ac5b 10469 ttukey 10509 wunex2 10729 wuncval2 10738 intgru 10805 pnfex 11263 prdsvallem 17396 prdsval 17397 prdsds 17406 wunfunc 17845 wunfuncOLD 17846 wunnat 17903 wunnatOLD 17904 arwval 17989 catcfuccl 18065 catcfucclOLD 18066 catcxpccl 18155 catcxpcclOLD 18156 zrhval 21048 mreclatdemoBAD 22591 ptbasin2 23073 ptbasfi 23076 dfac14 23113 ptcmplem2 23548 ptcmplem3 23549 ptcmp 23553 cnextfvval 23560 cnextcn 23562 minveclem4a 24938 oldf 27341 precsexlem10 27651 xrge0tsmsbi 32197 dimval 32674 dimvalfi 32675 locfinreflem 32808 pstmfval 32864 pstmxmet 32865 esumex 33015 msrval 34517 dfrdg2 34755 fvbigcup 34862 ctbssinf 36275 ptrest 36475 heiborlem1 36667 heiborlem3 36669 heibor 36677 dicval 40035 prjcrvfval 41369 aomclem1 41781 dfac21 41793 ntrrn 42858 ntrf 42859 dssmapntrcls 42864 fourierdlem70 44878 caragendifcl 45216 cnfsmf 45442 setrec1lem3 47687 setrec2fun 47690 |
Copyright terms: Public domain | W3C validator |