| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > uniex | Structured version Visualization version GIF version | ||
| Description: The Axiom of Union in class notation. This says that if 𝐴 is a set i.e. 𝐴 ∈ V (see isset 3458), then the union of 𝐴 is also a set. Same as Axiom 3 of [TakeutiZaring] p. 16. (Contributed by NM, 11-Aug-1993.) |
| Ref | Expression |
|---|---|
| uniex.1 | ⊢ 𝐴 ∈ V |
| Ref | Expression |
|---|---|
| uniex | ⊢ ∪ 𝐴 ∈ V |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | uniex.1 | . 2 ⊢ 𝐴 ∈ V | |
| 2 | uniexg 7696 | . 2 ⊢ (𝐴 ∈ V → ∪ 𝐴 ∈ V) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ ∪ 𝐴 ∈ V |
| Colors of variables: wff setvar class |
| Syntax hints: ∈ wcel 2109 Vcvv 3444 ∪ cuni 4867 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 ax-sep 5246 ax-un 7691 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-v 3446 df-ss 3928 df-uni 4868 |
| This theorem is referenced by: unexOLD 7701 iunpw 7727 elxp4 7878 elxp5 7879 1stval 7949 2ndval 7950 fo1st 7967 fo2nd 7968 cnvf1o 8067 brtpos2 8188 naddcllem 8617 ixpsnf1o 8888 dffi3 9358 cnfcom2 9633 cnfcom3lem 9634 cnfcom3 9635 ttrclse 9658 trcl 9659 rankc2 9802 rankxpl 9806 rankxpsuc 9813 acnlem 9979 dfac2a 10061 fin23lem14 10264 fin23lem16 10266 fin23lem17 10269 fin23lem38 10280 fin23lem39 10281 itunisuc 10350 axdc3lem2 10382 axcclem 10388 ac5b 10409 ttukey 10449 wunex2 10669 wuncval2 10678 intgru 10745 pnfex 11205 prdsvallem 17394 prdsval 17395 prdsds 17404 wunfunc 17844 wunnat 17902 arwval 17986 catcfuccl 18061 catcxpccl 18149 zrhval 21450 mreclatdemoBAD 23017 ptbasin2 23499 ptbasfi 23502 dfac14 23539 ptcmplem2 23974 ptcmplem3 23975 ptcmp 23979 cnextfvval 23986 cnextcn 23988 minveclem4a 25364 oldf 27803 madefi 27863 precsexlem10 28159 xrge0tsmsbi 33047 dimval 33590 dimvalfi 33591 locfinreflem 33824 pstmfval 33880 pstmxmet 33881 esumex 34013 msrval 35519 dfrdg2 35777 fvbigcup 35884 ctbssinf 37388 ptrest 37607 heiborlem1 37799 heiborlem3 37801 heibor 37809 dicval 41164 prjcrvfval 42613 aomclem1 43037 dfac21 43049 ntrrn 44105 ntrf 44106 dssmapntrcls 44111 permaxun 44995 fourierdlem70 46168 caragendifcl 46506 cnfsmf 46732 tposideq 48870 setrec1lem3 49672 setrec2fun 49675 |
| Copyright terms: Public domain | W3C validator |