Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > uniex | Structured version Visualization version GIF version |
Description: The Axiom of Union in class notation. This says that if 𝐴 is a set i.e. 𝐴 ∈ V (see isset 3444), then the union of 𝐴 is also a set. Same as Axiom 3 of [TakeutiZaring] p. 16. (Contributed by NM, 11-Aug-1993.) |
Ref | Expression |
---|---|
uniex.1 | ⊢ 𝐴 ∈ V |
Ref | Expression |
---|---|
uniex | ⊢ ∪ 𝐴 ∈ V |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | uniex.1 | . 2 ⊢ 𝐴 ∈ V | |
2 | uniexg 7587 | . 2 ⊢ (𝐴 ∈ V → ∪ 𝐴 ∈ V) | |
3 | 1, 2 | ax-mp 5 | 1 ⊢ ∪ 𝐴 ∈ V |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 2110 Vcvv 3431 ∪ cuni 4845 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1917 ax-6 1975 ax-7 2015 ax-8 2112 ax-9 2120 ax-ext 2711 ax-sep 5227 ax-un 7582 |
This theorem depends on definitions: df-bi 206 df-an 397 df-tru 1545 df-ex 1787 df-sb 2072 df-clab 2718 df-cleq 2732 df-clel 2818 df-v 3433 df-in 3899 df-ss 3909 df-uni 4846 |
This theorem is referenced by: unex 7590 iunpw 7615 elxp4 7763 elxp5 7764 1stval 7826 2ndval 7827 fo1st 7844 fo2nd 7845 cnvf1o 7942 brtpos2 8039 ixpsnf1o 8709 dffi3 9168 cnfcom2 9438 cnfcom3lem 9439 cnfcom3 9440 ttrclse 9463 trpredex 9485 trcl 9486 rankc2 9630 rankxpl 9634 rankxpsuc 9641 acnlem 9805 dfac2a 9886 fin23lem14 10090 fin23lem16 10092 fin23lem17 10095 fin23lem38 10106 fin23lem39 10107 itunisuc 10176 axdc3lem2 10208 axcclem 10214 ac5b 10235 ttukey 10275 wunex2 10495 wuncval2 10504 intgru 10571 pnfex 11029 prdsvallem 17163 prdsval 17164 prdsds 17173 wunfunc 17612 wunfuncOLD 17613 wunnat 17670 wunnatOLD 17671 arwval 17756 catcfuccl 17832 catcfucclOLD 17833 catcxpccl 17922 catcxpcclOLD 17923 zrhval 20707 mreclatdemoBAD 22245 ptbasin2 22727 ptbasfi 22730 dfac14 22767 ptcmplem2 23202 ptcmplem3 23203 ptcmp 23207 cnextfvval 23214 cnextcn 23216 minveclem4a 24592 xrge0tsmsbi 31314 dimval 31682 dimvalfi 31683 locfinreflem 31786 pstmfval 31842 pstmxmet 31843 esumex 31993 msrval 33496 dfrdg2 33767 naddcllem 33827 oldf 34037 fvbigcup 34200 ctbssinf 35573 ptrest 35772 heiborlem1 35965 heiborlem3 35967 heibor 35975 dicval 39186 prjcrvfval 40465 aomclem1 40876 dfac21 40888 ntrrn 41702 ntrf 41703 dssmapntrcls 41708 fourierdlem70 43688 caragendifcl 44023 cnfsmf 44244 setrec1lem3 46364 setrec2fun 46367 |
Copyright terms: Public domain | W3C validator |