| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > uniex | Structured version Visualization version GIF version | ||
| Description: The Axiom of Union in class notation. This says that if 𝐴 is a set i.e. 𝐴 ∈ V (see isset 3450), then the union of 𝐴 is also a set. Same as Axiom 3 of [TakeutiZaring] p. 16. (Contributed by NM, 11-Aug-1993.) |
| Ref | Expression |
|---|---|
| uniex.1 | ⊢ 𝐴 ∈ V |
| Ref | Expression |
|---|---|
| uniex | ⊢ ∪ 𝐴 ∈ V |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | uniex.1 | . 2 ⊢ 𝐴 ∈ V | |
| 2 | uniexg 7676 | . 2 ⊢ (𝐴 ∈ V → ∪ 𝐴 ∈ V) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ ∪ 𝐴 ∈ V |
| Colors of variables: wff setvar class |
| Syntax hints: ∈ wcel 2109 Vcvv 3436 ∪ cuni 4858 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 ax-sep 5235 ax-un 7671 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-v 3438 df-ss 3920 df-uni 4859 |
| This theorem is referenced by: unexOLD 7681 iunpw 7707 elxp4 7855 elxp5 7856 1stval 7926 2ndval 7927 fo1st 7944 fo2nd 7945 cnvf1o 8044 brtpos2 8165 naddcllem 8594 ixpsnf1o 8865 dffi3 9321 cnfcom2 9598 cnfcom3lem 9599 cnfcom3 9600 ttrclse 9623 trcl 9624 rankc2 9767 rankxpl 9771 rankxpsuc 9778 acnlem 9942 dfac2a 10024 fin23lem14 10227 fin23lem16 10229 fin23lem17 10232 fin23lem38 10243 fin23lem39 10244 itunisuc 10313 axdc3lem2 10345 axcclem 10351 ac5b 10372 ttukey 10412 wunex2 10632 wuncval2 10641 intgru 10708 pnfex 11168 prdsvallem 17358 prdsval 17359 prdsds 17368 wunfunc 17808 wunnat 17866 arwval 17950 catcfuccl 18025 catcxpccl 18113 zrhval 21414 mreclatdemoBAD 22981 ptbasin2 23463 ptbasfi 23466 dfac14 23503 ptcmplem2 23938 ptcmplem3 23939 ptcmp 23943 cnextfvval 23950 cnextcn 23952 minveclem4a 25328 oldf 27769 madefi 27829 precsexlem10 28125 xrge0tsmsbi 33025 dimval 33583 dimvalfi 33584 locfinreflem 33823 pstmfval 33879 pstmxmet 33880 esumex 34012 msrval 35531 dfrdg2 35789 fvbigcup 35896 ctbssinf 37400 ptrest 37619 heiborlem1 37811 heiborlem3 37813 heibor 37821 dicval 41175 prjcrvfval 42624 aomclem1 43047 dfac21 43059 ntrrn 44115 ntrf 44116 dssmapntrcls 44121 permaxun 45005 fourierdlem70 46177 caragendifcl 46515 cnfsmf 46741 tposideq 48892 setrec1lem3 49694 setrec2fun 49697 |
| Copyright terms: Public domain | W3C validator |