![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > uniex | Structured version Visualization version GIF version |
Description: The Axiom of Union in class notation. This says that if 𝐴 is a set i.e. 𝐴 ∈ V (see isset 3502), then the union of 𝐴 is also a set. Same as Axiom 3 of [TakeutiZaring] p. 16. (Contributed by NM, 11-Aug-1993.) |
Ref | Expression |
---|---|
uniex.1 | ⊢ 𝐴 ∈ V |
Ref | Expression |
---|---|
uniex | ⊢ ∪ 𝐴 ∈ V |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | uniex.1 | . 2 ⊢ 𝐴 ∈ V | |
2 | uniexg 7775 | . 2 ⊢ (𝐴 ∈ V → ∪ 𝐴 ∈ V) | |
3 | 1, 2 | ax-mp 5 | 1 ⊢ ∪ 𝐴 ∈ V |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 2108 Vcvv 3488 ∪ cuni 4931 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 ax-sep 5317 ax-un 7770 |
This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1540 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-v 3490 df-ss 3993 df-uni 4932 |
This theorem is referenced by: unexOLD 7780 iunpw 7806 elxp4 7962 elxp5 7963 1stval 8032 2ndval 8033 fo1st 8050 fo2nd 8051 cnvf1o 8152 brtpos2 8273 naddcllem 8732 ixpsnf1o 8996 dffi3 9500 cnfcom2 9771 cnfcom3lem 9772 cnfcom3 9773 ttrclse 9796 trcl 9797 rankc2 9940 rankxpl 9944 rankxpsuc 9951 acnlem 10117 dfac2a 10199 fin23lem14 10402 fin23lem16 10404 fin23lem17 10407 fin23lem38 10418 fin23lem39 10419 itunisuc 10488 axdc3lem2 10520 axcclem 10526 ac5b 10547 ttukey 10587 wunex2 10807 wuncval2 10816 intgru 10883 pnfex 11343 prdsvallem 17514 prdsval 17515 prdsds 17524 wunfunc 17965 wunfuncOLD 17966 wunnat 18024 wunnatOLD 18025 arwval 18110 catcfuccl 18186 catcfucclOLD 18187 catcxpccl 18276 catcxpcclOLD 18277 zrhval 21541 mreclatdemoBAD 23125 ptbasin2 23607 ptbasfi 23610 dfac14 23647 ptcmplem2 24082 ptcmplem3 24083 ptcmp 24087 cnextfvval 24094 cnextcn 24096 minveclem4a 25483 oldf 27914 madefi 27968 precsexlem10 28258 xrge0tsmsbi 33042 dimval 33613 dimvalfi 33614 locfinreflem 33786 pstmfval 33842 pstmxmet 33843 esumex 33993 msrval 35506 dfrdg2 35759 fvbigcup 35866 ctbssinf 37372 ptrest 37579 heiborlem1 37771 heiborlem3 37773 heibor 37781 dicval 41133 prjcrvfval 42586 aomclem1 43011 dfac21 43023 ntrrn 44084 ntrf 44085 dssmapntrcls 44090 fourierdlem70 46097 caragendifcl 46435 cnfsmf 46661 setrec1lem3 48781 setrec2fun 48784 |
Copyright terms: Public domain | W3C validator |