| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > uniex | Structured version Visualization version GIF version | ||
| Description: The Axiom of Union in class notation. This says that if 𝐴 is a set i.e. 𝐴 ∈ V (see isset 3450), then the union of 𝐴 is also a set. Same as Axiom 3 of [TakeutiZaring] p. 16. (Contributed by NM, 11-Aug-1993.) |
| Ref | Expression |
|---|---|
| uniex.1 | ⊢ 𝐴 ∈ V |
| Ref | Expression |
|---|---|
| uniex | ⊢ ∪ 𝐴 ∈ V |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | uniex.1 | . 2 ⊢ 𝐴 ∈ V | |
| 2 | uniexg 7673 | . 2 ⊢ (𝐴 ∈ V → ∪ 𝐴 ∈ V) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ ∪ 𝐴 ∈ V |
| Colors of variables: wff setvar class |
| Syntax hints: ∈ wcel 2111 Vcvv 3436 ∪ cuni 4856 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 ax-sep 5232 ax-un 7668 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1544 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-v 3438 df-ss 3914 df-uni 4857 |
| This theorem is referenced by: unexOLD 7678 iunpw 7704 elxp4 7852 elxp5 7853 1stval 7923 2ndval 7924 fo1st 7941 fo2nd 7942 cnvf1o 8041 brtpos2 8162 naddcllem 8591 ixpsnf1o 8862 dffi3 9315 cnfcom2 9592 cnfcom3lem 9593 cnfcom3 9594 ttrclse 9617 trcl 9618 rankc2 9764 rankxpl 9768 rankxpsuc 9775 acnlem 9939 dfac2a 10021 fin23lem14 10224 fin23lem16 10226 fin23lem17 10229 fin23lem38 10240 fin23lem39 10241 itunisuc 10310 axdc3lem2 10342 axcclem 10348 ac5b 10369 ttukey 10409 wunex2 10629 wuncval2 10638 intgru 10705 pnfex 11165 prdsvallem 17358 prdsval 17359 prdsds 17368 wunfunc 17808 wunnat 17866 arwval 17950 catcfuccl 18025 catcxpccl 18113 zrhval 21444 mreclatdemoBAD 23011 ptbasin2 23493 ptbasfi 23496 dfac14 23533 ptcmplem2 23968 ptcmplem3 23969 ptcmp 23973 cnextfvval 23980 cnextcn 23982 minveclem4a 25357 oldf 27798 madefi 27858 precsexlem10 28154 xrge0tsmsbi 33043 dimval 33613 dimvalfi 33614 locfinreflem 33853 pstmfval 33909 pstmxmet 33910 esumex 34042 msrval 35582 dfrdg2 35837 fvbigcup 35944 ctbssinf 37450 ptrest 37658 heiborlem1 37850 heiborlem3 37852 heibor 37860 dicval 41274 prjcrvfval 42723 aomclem1 43146 dfac21 43158 ntrrn 44214 ntrf 44215 dssmapntrcls 44220 permaxun 45103 fourierdlem70 46273 caragendifcl 46611 cnfsmf 46837 tposideq 48987 setrec1lem3 49789 setrec2fun 49792 |
| Copyright terms: Public domain | W3C validator |