| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > uniex | Structured version Visualization version GIF version | ||
| Description: The Axiom of Union in class notation. This says that if 𝐴 is a set i.e. 𝐴 ∈ V (see isset 3464), then the union of 𝐴 is also a set. Same as Axiom 3 of [TakeutiZaring] p. 16. (Contributed by NM, 11-Aug-1993.) |
| Ref | Expression |
|---|---|
| uniex.1 | ⊢ 𝐴 ∈ V |
| Ref | Expression |
|---|---|
| uniex | ⊢ ∪ 𝐴 ∈ V |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | uniex.1 | . 2 ⊢ 𝐴 ∈ V | |
| 2 | uniexg 7719 | . 2 ⊢ (𝐴 ∈ V → ∪ 𝐴 ∈ V) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ ∪ 𝐴 ∈ V |
| Colors of variables: wff setvar class |
| Syntax hints: ∈ wcel 2109 Vcvv 3450 ∪ cuni 4874 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2702 ax-sep 5254 ax-un 7714 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-v 3452 df-ss 3934 df-uni 4875 |
| This theorem is referenced by: unexOLD 7724 iunpw 7750 elxp4 7901 elxp5 7902 1stval 7973 2ndval 7974 fo1st 7991 fo2nd 7992 cnvf1o 8093 brtpos2 8214 naddcllem 8643 ixpsnf1o 8914 dffi3 9389 cnfcom2 9662 cnfcom3lem 9663 cnfcom3 9664 ttrclse 9687 trcl 9688 rankc2 9831 rankxpl 9835 rankxpsuc 9842 acnlem 10008 dfac2a 10090 fin23lem14 10293 fin23lem16 10295 fin23lem17 10298 fin23lem38 10309 fin23lem39 10310 itunisuc 10379 axdc3lem2 10411 axcclem 10417 ac5b 10438 ttukey 10478 wunex2 10698 wuncval2 10707 intgru 10774 pnfex 11234 prdsvallem 17424 prdsval 17425 prdsds 17434 wunfunc 17870 wunnat 17928 arwval 18012 catcfuccl 18087 catcxpccl 18175 zrhval 21424 mreclatdemoBAD 22990 ptbasin2 23472 ptbasfi 23475 dfac14 23512 ptcmplem2 23947 ptcmplem3 23948 ptcmp 23952 cnextfvval 23959 cnextcn 23961 minveclem4a 25337 oldf 27772 madefi 27831 precsexlem10 28125 xrge0tsmsbi 33010 dimval 33603 dimvalfi 33604 locfinreflem 33837 pstmfval 33893 pstmxmet 33894 esumex 34026 msrval 35532 dfrdg2 35790 fvbigcup 35897 ctbssinf 37401 ptrest 37620 heiborlem1 37812 heiborlem3 37814 heibor 37822 dicval 41177 prjcrvfval 42626 aomclem1 43050 dfac21 43062 ntrrn 44118 ntrf 44119 dssmapntrcls 44124 permaxun 45008 fourierdlem70 46181 caragendifcl 46519 cnfsmf 46745 tposideq 48880 setrec1lem3 49682 setrec2fun 49685 |
| Copyright terms: Public domain | W3C validator |