![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > uniex | Structured version Visualization version GIF version |
Description: The Axiom of Union in class notation. This says that if 𝐴 is a set i.e. 𝐴 ∈ V (see isset 3488), then the union of 𝐴 is also a set. Same as Axiom 3 of [TakeutiZaring] p. 16. (Contributed by NM, 11-Aug-1993.) |
Ref | Expression |
---|---|
uniex.1 | ⊢ 𝐴 ∈ V |
Ref | Expression |
---|---|
uniex | ⊢ ∪ 𝐴 ∈ V |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | uniex.1 | . 2 ⊢ 𝐴 ∈ V | |
2 | uniexg 7730 | . 2 ⊢ (𝐴 ∈ V → ∪ 𝐴 ∈ V) | |
3 | 1, 2 | ax-mp 5 | 1 ⊢ ∪ 𝐴 ∈ V |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 2107 Vcvv 3475 ∪ cuni 4909 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-ext 2704 ax-sep 5300 ax-un 7725 |
This theorem depends on definitions: df-bi 206 df-an 398 df-tru 1545 df-ex 1783 df-sb 2069 df-clab 2711 df-cleq 2725 df-clel 2811 df-v 3477 df-in 3956 df-ss 3966 df-uni 4910 |
This theorem is referenced by: unex 7733 iunpw 7758 elxp4 7913 elxp5 7914 1stval 7977 2ndval 7978 fo1st 7995 fo2nd 7996 cnvf1o 8097 brtpos2 8217 naddcllem 8675 ixpsnf1o 8932 dffi3 9426 cnfcom2 9697 cnfcom3lem 9698 cnfcom3 9699 ttrclse 9722 trcl 9723 rankc2 9866 rankxpl 9870 rankxpsuc 9877 acnlem 10043 dfac2a 10124 fin23lem14 10328 fin23lem16 10330 fin23lem17 10333 fin23lem38 10344 fin23lem39 10345 itunisuc 10414 axdc3lem2 10446 axcclem 10452 ac5b 10473 ttukey 10513 wunex2 10733 wuncval2 10742 intgru 10809 pnfex 11267 prdsvallem 17400 prdsval 17401 prdsds 17410 wunfunc 17849 wunfuncOLD 17850 wunnat 17907 wunnatOLD 17908 arwval 17993 catcfuccl 18069 catcfucclOLD 18070 catcxpccl 18159 catcxpcclOLD 18160 zrhval 21057 mreclatdemoBAD 22600 ptbasin2 23082 ptbasfi 23085 dfac14 23122 ptcmplem2 23557 ptcmplem3 23558 ptcmp 23562 cnextfvval 23569 cnextcn 23571 minveclem4a 24947 oldf 27352 precsexlem10 27662 xrge0tsmsbi 32210 dimval 32686 dimvalfi 32687 locfinreflem 32820 pstmfval 32876 pstmxmet 32877 esumex 33027 msrval 34529 dfrdg2 34767 fvbigcup 34874 ctbssinf 36287 ptrest 36487 heiborlem1 36679 heiborlem3 36681 heibor 36689 dicval 40047 prjcrvfval 41373 aomclem1 41796 dfac21 41808 ntrrn 42873 ntrf 42874 dssmapntrcls 42879 fourierdlem70 44892 caragendifcl 45230 cnfsmf 45456 setrec1lem3 47734 setrec2fun 47737 |
Copyright terms: Public domain | W3C validator |