| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > uniex | Structured version Visualization version GIF version | ||
| Description: The Axiom of Union in class notation. This says that if 𝐴 is a set i.e. 𝐴 ∈ V (see isset 3477), then the union of 𝐴 is also a set. Same as Axiom 3 of [TakeutiZaring] p. 16. (Contributed by NM, 11-Aug-1993.) |
| Ref | Expression |
|---|---|
| uniex.1 | ⊢ 𝐴 ∈ V |
| Ref | Expression |
|---|---|
| uniex | ⊢ ∪ 𝐴 ∈ V |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | uniex.1 | . 2 ⊢ 𝐴 ∈ V | |
| 2 | uniexg 7742 | . 2 ⊢ (𝐴 ∈ V → ∪ 𝐴 ∈ V) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ ∪ 𝐴 ∈ V |
| Colors of variables: wff setvar class |
| Syntax hints: ∈ wcel 2107 Vcvv 3463 ∪ cuni 4887 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-ext 2706 ax-sep 5276 ax-un 7737 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1542 df-ex 1779 df-sb 2064 df-clab 2713 df-cleq 2726 df-clel 2808 df-v 3465 df-ss 3948 df-uni 4888 |
| This theorem is referenced by: unexOLD 7747 iunpw 7773 elxp4 7926 elxp5 7927 1stval 7998 2ndval 7999 fo1st 8016 fo2nd 8017 cnvf1o 8118 brtpos2 8239 naddcllem 8696 ixpsnf1o 8960 dffi3 9453 cnfcom2 9724 cnfcom3lem 9725 cnfcom3 9726 ttrclse 9749 trcl 9750 rankc2 9893 rankxpl 9897 rankxpsuc 9904 acnlem 10070 dfac2a 10152 fin23lem14 10355 fin23lem16 10357 fin23lem17 10360 fin23lem38 10371 fin23lem39 10372 itunisuc 10441 axdc3lem2 10473 axcclem 10479 ac5b 10500 ttukey 10540 wunex2 10760 wuncval2 10769 intgru 10836 pnfex 11296 prdsvallem 17471 prdsval 17472 prdsds 17481 wunfunc 17918 wunnat 17976 arwval 18060 catcfuccl 18135 catcxpccl 18223 zrhval 21481 mreclatdemoBAD 23051 ptbasin2 23533 ptbasfi 23536 dfac14 23573 ptcmplem2 24008 ptcmplem3 24009 ptcmp 24013 cnextfvval 24020 cnextcn 24022 minveclem4a 25401 oldf 27833 madefi 27887 precsexlem10 28177 xrge0tsmsbi 33010 dimval 33591 dimvalfi 33592 locfinreflem 33814 pstmfval 33870 pstmxmet 33871 esumex 34005 msrval 35518 dfrdg2 35771 fvbigcup 35878 ctbssinf 37382 ptrest 37601 heiborlem1 37793 heiborlem3 37795 heibor 37803 dicval 41153 prjcrvfval 42620 aomclem1 43044 dfac21 43056 ntrrn 44112 ntrf 44113 dssmapntrcls 44118 fourierdlem70 46163 caragendifcl 46501 cnfsmf 46727 tposideq 48771 setrec1lem3 49303 setrec2fun 49306 |
| Copyright terms: Public domain | W3C validator |