| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > uniex | Structured version Visualization version GIF version | ||
| Description: The Axiom of Union in class notation. This says that if 𝐴 is a set i.e. 𝐴 ∈ V (see isset 3473), then the union of 𝐴 is also a set. Same as Axiom 3 of [TakeutiZaring] p. 16. (Contributed by NM, 11-Aug-1993.) |
| Ref | Expression |
|---|---|
| uniex.1 | ⊢ 𝐴 ∈ V |
| Ref | Expression |
|---|---|
| uniex | ⊢ ∪ 𝐴 ∈ V |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | uniex.1 | . 2 ⊢ 𝐴 ∈ V | |
| 2 | uniexg 7734 | . 2 ⊢ (𝐴 ∈ V → ∪ 𝐴 ∈ V) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ ∪ 𝐴 ∈ V |
| Colors of variables: wff setvar class |
| Syntax hints: ∈ wcel 2108 Vcvv 3459 ∪ cuni 4883 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2707 ax-sep 5266 ax-un 7729 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2065 df-clab 2714 df-cleq 2727 df-clel 2809 df-v 3461 df-ss 3943 df-uni 4884 |
| This theorem is referenced by: unexOLD 7739 iunpw 7765 elxp4 7918 elxp5 7919 1stval 7990 2ndval 7991 fo1st 8008 fo2nd 8009 cnvf1o 8110 brtpos2 8231 naddcllem 8688 ixpsnf1o 8952 dffi3 9443 cnfcom2 9716 cnfcom3lem 9717 cnfcom3 9718 ttrclse 9741 trcl 9742 rankc2 9885 rankxpl 9889 rankxpsuc 9896 acnlem 10062 dfac2a 10144 fin23lem14 10347 fin23lem16 10349 fin23lem17 10352 fin23lem38 10363 fin23lem39 10364 itunisuc 10433 axdc3lem2 10465 axcclem 10471 ac5b 10492 ttukey 10532 wunex2 10752 wuncval2 10761 intgru 10828 pnfex 11288 prdsvallem 17468 prdsval 17469 prdsds 17478 wunfunc 17914 wunnat 17972 arwval 18056 catcfuccl 18131 catcxpccl 18219 zrhval 21468 mreclatdemoBAD 23034 ptbasin2 23516 ptbasfi 23519 dfac14 23556 ptcmplem2 23991 ptcmplem3 23992 ptcmp 23996 cnextfvval 24003 cnextcn 24005 minveclem4a 25382 oldf 27817 madefi 27876 precsexlem10 28170 xrge0tsmsbi 33057 dimval 33640 dimvalfi 33641 locfinreflem 33871 pstmfval 33927 pstmxmet 33928 esumex 34060 msrval 35560 dfrdg2 35813 fvbigcup 35920 ctbssinf 37424 ptrest 37643 heiborlem1 37835 heiborlem3 37837 heibor 37845 dicval 41195 prjcrvfval 42654 aomclem1 43078 dfac21 43090 ntrrn 44146 ntrf 44147 dssmapntrcls 44152 permaxun 45036 fourierdlem70 46205 caragendifcl 46543 cnfsmf 46769 tposideq 48863 setrec1lem3 49553 setrec2fun 49556 |
| Copyright terms: Public domain | W3C validator |