Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > uniex | Structured version Visualization version GIF version |
Description: The Axiom of Union in class notation. This says that if 𝐴 is a set i.e. 𝐴 ∈ V (see isset 3445), then the union of 𝐴 is also a set. Same as Axiom 3 of [TakeutiZaring] p. 16. (Contributed by NM, 11-Aug-1993.) |
Ref | Expression |
---|---|
uniex.1 | ⊢ 𝐴 ∈ V |
Ref | Expression |
---|---|
uniex | ⊢ ∪ 𝐴 ∈ V |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | uniex.1 | . 2 ⊢ 𝐴 ∈ V | |
2 | uniexg 7593 | . 2 ⊢ (𝐴 ∈ V → ∪ 𝐴 ∈ V) | |
3 | 1, 2 | ax-mp 5 | 1 ⊢ ∪ 𝐴 ∈ V |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 2106 Vcvv 3432 ∪ cuni 4839 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2709 ax-sep 5223 ax-un 7588 |
This theorem depends on definitions: df-bi 206 df-an 397 df-tru 1542 df-ex 1783 df-sb 2068 df-clab 2716 df-cleq 2730 df-clel 2816 df-v 3434 df-in 3894 df-ss 3904 df-uni 4840 |
This theorem is referenced by: unex 7596 iunpw 7621 elxp4 7769 elxp5 7770 1stval 7833 2ndval 7834 fo1st 7851 fo2nd 7852 cnvf1o 7951 brtpos2 8048 ixpsnf1o 8726 dffi3 9190 cnfcom2 9460 cnfcom3lem 9461 cnfcom3 9462 ttrclse 9485 trcl 9486 rankc2 9629 rankxpl 9633 rankxpsuc 9640 acnlem 9804 dfac2a 9885 fin23lem14 10089 fin23lem16 10091 fin23lem17 10094 fin23lem38 10105 fin23lem39 10106 itunisuc 10175 axdc3lem2 10207 axcclem 10213 ac5b 10234 ttukey 10274 wunex2 10494 wuncval2 10503 intgru 10570 pnfex 11028 prdsvallem 17165 prdsval 17166 prdsds 17175 wunfunc 17614 wunfuncOLD 17615 wunnat 17672 wunnatOLD 17673 arwval 17758 catcfuccl 17834 catcfucclOLD 17835 catcxpccl 17924 catcxpcclOLD 17925 zrhval 20709 mreclatdemoBAD 22247 ptbasin2 22729 ptbasfi 22732 dfac14 22769 ptcmplem2 23204 ptcmplem3 23205 ptcmp 23209 cnextfvval 23216 cnextcn 23218 minveclem4a 24594 xrge0tsmsbi 31318 dimval 31686 dimvalfi 31687 locfinreflem 31790 pstmfval 31846 pstmxmet 31847 esumex 31997 msrval 33500 dfrdg2 33771 naddcllem 33831 oldf 34041 fvbigcup 34204 ctbssinf 35577 ptrest 35776 heiborlem1 35969 heiborlem3 35971 heibor 35979 dicval 39190 prjcrvfval 40468 aomclem1 40879 dfac21 40891 ntrrn 41732 ntrf 41733 dssmapntrcls 41738 fourierdlem70 43717 caragendifcl 44052 cnfsmf 44276 setrec1lem3 46395 setrec2fun 46398 |
Copyright terms: Public domain | W3C validator |