| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > uniex | Structured version Visualization version GIF version | ||
| Description: The Axiom of Union in class notation. This says that if 𝐴 is a set i.e. 𝐴 ∈ V (see isset 3458), then the union of 𝐴 is also a set. Same as Axiom 3 of [TakeutiZaring] p. 16. (Contributed by NM, 11-Aug-1993.) |
| Ref | Expression |
|---|---|
| uniex.1 | ⊢ 𝐴 ∈ V |
| Ref | Expression |
|---|---|
| uniex | ⊢ ∪ 𝐴 ∈ V |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | uniex.1 | . 2 ⊢ 𝐴 ∈ V | |
| 2 | uniexg 7696 | . 2 ⊢ (𝐴 ∈ V → ∪ 𝐴 ∈ V) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ ∪ 𝐴 ∈ V |
| Colors of variables: wff setvar class |
| Syntax hints: ∈ wcel 2109 Vcvv 3444 ∪ cuni 4867 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 ax-sep 5246 ax-un 7691 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-v 3446 df-ss 3928 df-uni 4868 |
| This theorem is referenced by: unexOLD 7701 iunpw 7727 elxp4 7878 elxp5 7879 1stval 7949 2ndval 7950 fo1st 7967 fo2nd 7968 cnvf1o 8067 brtpos2 8188 naddcllem 8617 ixpsnf1o 8888 dffi3 9358 cnfcom2 9631 cnfcom3lem 9632 cnfcom3 9633 ttrclse 9656 trcl 9657 rankc2 9800 rankxpl 9804 rankxpsuc 9811 acnlem 9977 dfac2a 10059 fin23lem14 10262 fin23lem16 10264 fin23lem17 10267 fin23lem38 10278 fin23lem39 10279 itunisuc 10348 axdc3lem2 10380 axcclem 10386 ac5b 10407 ttukey 10447 wunex2 10667 wuncval2 10676 intgru 10743 pnfex 11203 prdsvallem 17393 prdsval 17394 prdsds 17403 wunfunc 17843 wunnat 17901 arwval 17985 catcfuccl 18060 catcxpccl 18148 zrhval 21449 mreclatdemoBAD 23016 ptbasin2 23498 ptbasfi 23501 dfac14 23538 ptcmplem2 23973 ptcmplem3 23974 ptcmp 23978 cnextfvval 23985 cnextcn 23987 minveclem4a 25363 oldf 27802 madefi 27862 precsexlem10 28158 xrge0tsmsbi 33046 dimval 33589 dimvalfi 33590 locfinreflem 33823 pstmfval 33879 pstmxmet 33880 esumex 34012 msrval 35518 dfrdg2 35776 fvbigcup 35883 ctbssinf 37387 ptrest 37606 heiborlem1 37798 heiborlem3 37800 heibor 37808 dicval 41163 prjcrvfval 42612 aomclem1 43036 dfac21 43048 ntrrn 44104 ntrf 44105 dssmapntrcls 44110 permaxun 44994 fourierdlem70 46167 caragendifcl 46505 cnfsmf 46731 tposideq 48869 setrec1lem3 49671 setrec2fun 49674 |
| Copyright terms: Public domain | W3C validator |