Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > zfun | Structured version Visualization version GIF version |
Description: Axiom of Union expressed with the fewest number of different variables. (Contributed by NM, 14-Aug-2003.) Use ax-un 7566 instead. (New usage is discouraged.) |
Ref | Expression |
---|---|
zfun | ⊢ ∃𝑥∀𝑦(∃𝑥(𝑦 ∈ 𝑥 ∧ 𝑥 ∈ 𝑧) → 𝑦 ∈ 𝑥) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ax-un 7566 | . 2 ⊢ ∃𝑥∀𝑦(∃𝑤(𝑦 ∈ 𝑤 ∧ 𝑤 ∈ 𝑧) → 𝑦 ∈ 𝑥) | |
2 | elequ2 2123 | . . . . . . 7 ⊢ (𝑤 = 𝑥 → (𝑦 ∈ 𝑤 ↔ 𝑦 ∈ 𝑥)) | |
3 | elequ1 2115 | . . . . . . 7 ⊢ (𝑤 = 𝑥 → (𝑤 ∈ 𝑧 ↔ 𝑥 ∈ 𝑧)) | |
4 | 2, 3 | anbi12d 630 | . . . . . 6 ⊢ (𝑤 = 𝑥 → ((𝑦 ∈ 𝑤 ∧ 𝑤 ∈ 𝑧) ↔ (𝑦 ∈ 𝑥 ∧ 𝑥 ∈ 𝑧))) |
5 | 4 | cbvexvw 2041 | . . . . 5 ⊢ (∃𝑤(𝑦 ∈ 𝑤 ∧ 𝑤 ∈ 𝑧) ↔ ∃𝑥(𝑦 ∈ 𝑥 ∧ 𝑥 ∈ 𝑧)) |
6 | 5 | imbi1i 349 | . . . 4 ⊢ ((∃𝑤(𝑦 ∈ 𝑤 ∧ 𝑤 ∈ 𝑧) → 𝑦 ∈ 𝑥) ↔ (∃𝑥(𝑦 ∈ 𝑥 ∧ 𝑥 ∈ 𝑧) → 𝑦 ∈ 𝑥)) |
7 | 6 | albii 1823 | . . 3 ⊢ (∀𝑦(∃𝑤(𝑦 ∈ 𝑤 ∧ 𝑤 ∈ 𝑧) → 𝑦 ∈ 𝑥) ↔ ∀𝑦(∃𝑥(𝑦 ∈ 𝑥 ∧ 𝑥 ∈ 𝑧) → 𝑦 ∈ 𝑥)) |
8 | 7 | exbii 1851 | . 2 ⊢ (∃𝑥∀𝑦(∃𝑤(𝑦 ∈ 𝑤 ∧ 𝑤 ∈ 𝑧) → 𝑦 ∈ 𝑥) ↔ ∃𝑥∀𝑦(∃𝑥(𝑦 ∈ 𝑥 ∧ 𝑥 ∈ 𝑧) → 𝑦 ∈ 𝑥)) |
9 | 1, 8 | mpbi 229 | 1 ⊢ ∃𝑥∀𝑦(∃𝑥(𝑦 ∈ 𝑥 ∧ 𝑥 ∈ 𝑧) → 𝑦 ∈ 𝑥) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∀wal 1537 ∃wex 1783 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-un 7566 |
This theorem depends on definitions: df-bi 206 df-an 396 df-ex 1784 |
This theorem is referenced by: axunndlem1 10282 |
Copyright terms: Public domain | W3C validator |