Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > zfun | Structured version Visualization version GIF version |
Description: Axiom of Union expressed with the fewest number of different variables. (Contributed by NM, 14-Aug-2003.) Use ax-un 7654 instead. (New usage is discouraged.) |
Ref | Expression |
---|---|
zfun | ⊢ ∃𝑥∀𝑦(∃𝑥(𝑦 ∈ 𝑥 ∧ 𝑥 ∈ 𝑧) → 𝑦 ∈ 𝑥) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ax-un 7654 | . 2 ⊢ ∃𝑥∀𝑦(∃𝑤(𝑦 ∈ 𝑤 ∧ 𝑤 ∈ 𝑧) → 𝑦 ∈ 𝑥) | |
2 | elequ2 2121 | . . . . . . 7 ⊢ (𝑤 = 𝑥 → (𝑦 ∈ 𝑤 ↔ 𝑦 ∈ 𝑥)) | |
3 | elequ1 2113 | . . . . . . 7 ⊢ (𝑤 = 𝑥 → (𝑤 ∈ 𝑧 ↔ 𝑥 ∈ 𝑧)) | |
4 | 2, 3 | anbi12d 632 | . . . . . 6 ⊢ (𝑤 = 𝑥 → ((𝑦 ∈ 𝑤 ∧ 𝑤 ∈ 𝑧) ↔ (𝑦 ∈ 𝑥 ∧ 𝑥 ∈ 𝑧))) |
5 | 4 | cbvexvw 2040 | . . . . 5 ⊢ (∃𝑤(𝑦 ∈ 𝑤 ∧ 𝑤 ∈ 𝑧) ↔ ∃𝑥(𝑦 ∈ 𝑥 ∧ 𝑥 ∈ 𝑧)) |
6 | 5 | imbi1i 350 | . . . 4 ⊢ ((∃𝑤(𝑦 ∈ 𝑤 ∧ 𝑤 ∈ 𝑧) → 𝑦 ∈ 𝑥) ↔ (∃𝑥(𝑦 ∈ 𝑥 ∧ 𝑥 ∈ 𝑧) → 𝑦 ∈ 𝑥)) |
7 | 6 | albii 1821 | . . 3 ⊢ (∀𝑦(∃𝑤(𝑦 ∈ 𝑤 ∧ 𝑤 ∈ 𝑧) → 𝑦 ∈ 𝑥) ↔ ∀𝑦(∃𝑥(𝑦 ∈ 𝑥 ∧ 𝑥 ∈ 𝑧) → 𝑦 ∈ 𝑥)) |
8 | 7 | exbii 1850 | . 2 ⊢ (∃𝑥∀𝑦(∃𝑤(𝑦 ∈ 𝑤 ∧ 𝑤 ∈ 𝑧) → 𝑦 ∈ 𝑥) ↔ ∃𝑥∀𝑦(∃𝑥(𝑦 ∈ 𝑥 ∧ 𝑥 ∈ 𝑧) → 𝑦 ∈ 𝑥)) |
9 | 1, 8 | mpbi 229 | 1 ⊢ ∃𝑥∀𝑦(∃𝑥(𝑦 ∈ 𝑥 ∧ 𝑥 ∈ 𝑧) → 𝑦 ∈ 𝑥) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 397 ∀wal 1539 ∃wex 1781 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-un 7654 |
This theorem depends on definitions: df-bi 206 df-an 398 df-ex 1782 |
This theorem is referenced by: axunndlem1 10456 |
Copyright terms: Public domain | W3C validator |