MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  zfun Structured version   Visualization version   GIF version

Theorem zfun 7567
Description: Axiom of Union expressed with the fewest number of different variables. (Contributed by NM, 14-Aug-2003.) Use ax-un 7566 instead. (New usage is discouraged.)
Assertion
Ref Expression
zfun 𝑥𝑦(∃𝑥(𝑦𝑥𝑥𝑧) → 𝑦𝑥)
Distinct variable group:   𝑥,𝑦,𝑧

Proof of Theorem zfun
Dummy variable 𝑤 is distinct from all other variables.
StepHypRef Expression
1 ax-un 7566 . 2 𝑥𝑦(∃𝑤(𝑦𝑤𝑤𝑧) → 𝑦𝑥)
2 elequ2 2123 . . . . . . 7 (𝑤 = 𝑥 → (𝑦𝑤𝑦𝑥))
3 elequ1 2115 . . . . . . 7 (𝑤 = 𝑥 → (𝑤𝑧𝑥𝑧))
42, 3anbi12d 630 . . . . . 6 (𝑤 = 𝑥 → ((𝑦𝑤𝑤𝑧) ↔ (𝑦𝑥𝑥𝑧)))
54cbvexvw 2041 . . . . 5 (∃𝑤(𝑦𝑤𝑤𝑧) ↔ ∃𝑥(𝑦𝑥𝑥𝑧))
65imbi1i 349 . . . 4 ((∃𝑤(𝑦𝑤𝑤𝑧) → 𝑦𝑥) ↔ (∃𝑥(𝑦𝑥𝑥𝑧) → 𝑦𝑥))
76albii 1823 . . 3 (∀𝑦(∃𝑤(𝑦𝑤𝑤𝑧) → 𝑦𝑥) ↔ ∀𝑦(∃𝑥(𝑦𝑥𝑥𝑧) → 𝑦𝑥))
87exbii 1851 . 2 (∃𝑥𝑦(∃𝑤(𝑦𝑤𝑤𝑧) → 𝑦𝑥) ↔ ∃𝑥𝑦(∃𝑥(𝑦𝑥𝑥𝑧) → 𝑦𝑥))
91, 8mpbi 229 1 𝑥𝑦(∃𝑥(𝑦𝑥𝑥𝑧) → 𝑦𝑥)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wal 1537  wex 1783
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-un 7566
This theorem depends on definitions:  df-bi 206  df-an 396  df-ex 1784
This theorem is referenced by:  axunndlem1  10282
  Copyright terms: Public domain W3C validator