| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ax12ev2 | Structured version Visualization version GIF version | ||
| Description: Version of ax12v2 2180 rewritten to use an existential quantifier. One direction of sbalex 2243 without the universal quantifier, avoiding ax-10 2142. (Contributed by SN, 14-Aug-2025.) |
| Ref | Expression |
|---|---|
| ax12ev2 | ⊢ (∃𝑥(𝑥 = 𝑦 ∧ 𝜑) → (𝑥 = 𝑦 → 𝜑)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | exnalimn 1844 | . . 3 ⊢ (∃𝑥(𝑥 = 𝑦 ∧ 𝜑) ↔ ¬ ∀𝑥(𝑥 = 𝑦 → ¬ 𝜑)) | |
| 2 | ax12v2 2180 | . . . 4 ⊢ (𝑥 = 𝑦 → (¬ 𝜑 → ∀𝑥(𝑥 = 𝑦 → ¬ 𝜑))) | |
| 3 | 2 | con1d 145 | . . 3 ⊢ (𝑥 = 𝑦 → (¬ ∀𝑥(𝑥 = 𝑦 → ¬ 𝜑) → 𝜑)) |
| 4 | 1, 3 | biimtrid 242 | . 2 ⊢ (𝑥 = 𝑦 → (∃𝑥(𝑥 = 𝑦 ∧ 𝜑) → 𝜑)) |
| 5 | 4 | com12 32 | 1 ⊢ (∃𝑥(𝑥 = 𝑦 ∧ 𝜑) → (𝑥 = 𝑦 → 𝜑)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 ∀wal 1538 ∃wex 1779 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-12 2178 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 |
| This theorem is referenced by: sbalex 2243 mopick 2619 sbalexi 42193 |
| Copyright terms: Public domain | W3C validator |