Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > mopick | Structured version Visualization version GIF version |
Description: "At most one" picks a variable value, eliminating an existential quantifier. (Contributed by NM, 27-Jan-1997.) (Proof shortened by Wolf Lammen, 17-Sep-2019.) |
Ref | Expression |
---|---|
mopick | ⊢ ((∃*𝑥𝜑 ∧ ∃𝑥(𝜑 ∧ 𝜓)) → (𝜑 → 𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-mo 2540 | . . 3 ⊢ (∃*𝑥𝜑 ↔ ∃𝑦∀𝑥(𝜑 → 𝑥 = 𝑦)) | |
2 | sp 2178 | . . . . 5 ⊢ (∀𝑥(𝜑 → 𝑥 = 𝑦) → (𝜑 → 𝑥 = 𝑦)) | |
3 | pm3.45 621 | . . . . . . 7 ⊢ ((𝜑 → 𝑥 = 𝑦) → ((𝜑 ∧ 𝜓) → (𝑥 = 𝑦 ∧ 𝜓))) | |
4 | 3 | aleximi 1835 | . . . . . 6 ⊢ (∀𝑥(𝜑 → 𝑥 = 𝑦) → (∃𝑥(𝜑 ∧ 𝜓) → ∃𝑥(𝑥 = 𝑦 ∧ 𝜓))) |
5 | sbalex 2238 | . . . . . . 7 ⊢ (∃𝑥(𝑥 = 𝑦 ∧ 𝜓) ↔ ∀𝑥(𝑥 = 𝑦 → 𝜓)) | |
6 | sp 2178 | . . . . . . 7 ⊢ (∀𝑥(𝑥 = 𝑦 → 𝜓) → (𝑥 = 𝑦 → 𝜓)) | |
7 | 5, 6 | sylbi 216 | . . . . . 6 ⊢ (∃𝑥(𝑥 = 𝑦 ∧ 𝜓) → (𝑥 = 𝑦 → 𝜓)) |
8 | 4, 7 | syl6 35 | . . . . 5 ⊢ (∀𝑥(𝜑 → 𝑥 = 𝑦) → (∃𝑥(𝜑 ∧ 𝜓) → (𝑥 = 𝑦 → 𝜓))) |
9 | 2, 8 | syl5d 73 | . . . 4 ⊢ (∀𝑥(𝜑 → 𝑥 = 𝑦) → (∃𝑥(𝜑 ∧ 𝜓) → (𝜑 → 𝜓))) |
10 | 9 | exlimiv 1934 | . . 3 ⊢ (∃𝑦∀𝑥(𝜑 → 𝑥 = 𝑦) → (∃𝑥(𝜑 ∧ 𝜓) → (𝜑 → 𝜓))) |
11 | 1, 10 | sylbi 216 | . 2 ⊢ (∃*𝑥𝜑 → (∃𝑥(𝜑 ∧ 𝜓) → (𝜑 → 𝜓))) |
12 | 11 | imp 406 | 1 ⊢ ((∃*𝑥𝜑 ∧ ∃𝑥(𝜑 ∧ 𝜓)) → (𝜑 → 𝜓)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∀wal 1537 ∃wex 1783 ∃*wmo 2538 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-10 2139 ax-12 2173 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-ex 1784 df-nf 1788 df-mo 2540 |
This theorem is referenced by: moexexlem 2628 eupick 2635 mopick2 2639 morex 3649 imadif 6502 metsscmetcld 24384 |
Copyright terms: Public domain | W3C validator |