MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mopick Structured version   Visualization version   GIF version

Theorem mopick 2629
Description: "At most one" picks a variable value, eliminating an existential quantifier. (Contributed by NM, 27-Jan-1997.) (Proof shortened by Wolf Lammen, 17-Sep-2019.)
Assertion
Ref Expression
mopick ((∃*𝑥𝜑 ∧ ∃𝑥(𝜑𝜓)) → (𝜑𝜓))

Proof of Theorem mopick
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 df-mo 2541 . . 3 (∃*𝑥𝜑 ↔ ∃𝑦𝑥(𝜑𝑥 = 𝑦))
2 sp 2184 . . . . 5 (∀𝑥(𝜑𝑥 = 𝑦) → (𝜑𝑥 = 𝑦))
3 pm3.45 625 . . . . . . 7 ((𝜑𝑥 = 𝑦) → ((𝜑𝜓) → (𝑥 = 𝑦𝜓)))
43aleximi 1838 . . . . . 6 (∀𝑥(𝜑𝑥 = 𝑦) → (∃𝑥(𝜑𝜓) → ∃𝑥(𝑥 = 𝑦𝜓)))
5 sbalex 2244 . . . . . . 7 (∃𝑥(𝑥 = 𝑦𝜓) ↔ ∀𝑥(𝑥 = 𝑦𝜓))
6 sp 2184 . . . . . . 7 (∀𝑥(𝑥 = 𝑦𝜓) → (𝑥 = 𝑦𝜓))
75, 6sylbi 220 . . . . . 6 (∃𝑥(𝑥 = 𝑦𝜓) → (𝑥 = 𝑦𝜓))
84, 7syl6 35 . . . . 5 (∀𝑥(𝜑𝑥 = 𝑦) → (∃𝑥(𝜑𝜓) → (𝑥 = 𝑦𝜓)))
92, 8syl5d 73 . . . 4 (∀𝑥(𝜑𝑥 = 𝑦) → (∃𝑥(𝜑𝜓) → (𝜑𝜓)))
109exlimiv 1937 . . 3 (∃𝑦𝑥(𝜑𝑥 = 𝑦) → (∃𝑥(𝜑𝜓) → (𝜑𝜓)))
111, 10sylbi 220 . 2 (∃*𝑥𝜑 → (∃𝑥(𝜑𝜓) → (𝜑𝜓)))
1211imp 410 1 ((∃*𝑥𝜑 ∧ ∃𝑥(𝜑𝜓)) → (𝜑𝜓))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399  wal 1540  wex 1786  ∃*wmo 2539
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1917  ax-6 1975  ax-7 2020  ax-10 2145  ax-12 2179
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 847  df-ex 1787  df-nf 1791  df-mo 2541
This theorem is referenced by:  moexexlem  2630  eupick  2637  mopick2  2641  morex  3623  imadif  6433  metsscmetcld  24079
  Copyright terms: Public domain W3C validator