| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > sps-o | Structured version Visualization version GIF version | ||
| Description: Generalization of antecedent. (Contributed by NM, 5-Jan-1993.) (Proof modification is discouraged.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| sps-o.1 | ⊢ (𝜑 → 𝜓) |
| Ref | Expression |
|---|---|
| sps-o | ⊢ (∀𝑥𝜑 → 𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ax-c5 38884 | . 2 ⊢ (∀𝑥𝜑 → 𝜑) | |
| 2 | sps-o.1 | . 2 ⊢ (𝜑 → 𝜓) | |
| 3 | 1, 2 | syl 17 | 1 ⊢ (∀𝑥𝜑 → 𝜓) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∀wal 1538 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-c5 38884 |
| This theorem is referenced by: axc5c711toc7 38921 axc11n-16 38939 ax12eq 38942 ax12el 38943 ax12inda 38949 ax12v2-o 38950 axc11-o 38952 |
| Copyright terms: Public domain | W3C validator |