Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sps-o Structured version   Visualization version   GIF version

Theorem sps-o 36922
Description: Generalization of antecedent. (Contributed by NM, 5-Jan-1993.) (Proof modification is discouraged.) (New usage is discouraged.)
Hypothesis
Ref Expression
sps-o.1 (𝜑𝜓)
Assertion
Ref Expression
sps-o (∀𝑥𝜑𝜓)

Proof of Theorem sps-o
StepHypRef Expression
1 ax-c5 36897 . 2 (∀𝑥𝜑𝜑)
2 sps-o.1 . 2 (𝜑𝜓)
31, 2syl 17 1 (∀𝑥𝜑𝜓)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wal 1537
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-c5 36897
This theorem is referenced by:  axc5c711toc7  36934  axc11n-16  36952  ax12eq  36955  ax12el  36956  ax12inda  36962  ax12v2-o  36963  axc11-o  36965
  Copyright terms: Public domain W3C validator