Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > sps-o | Structured version Visualization version GIF version |
Description: Generalization of antecedent. (Contributed by NM, 5-Jan-1993.) (Proof modification is discouraged.) (New usage is discouraged.) |
Ref | Expression |
---|---|
sps-o.1 | ⊢ (𝜑 → 𝜓) |
Ref | Expression |
---|---|
sps-o | ⊢ (∀𝑥𝜑 → 𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ax-c5 36824 | . 2 ⊢ (∀𝑥𝜑 → 𝜑) | |
2 | sps-o.1 | . 2 ⊢ (𝜑 → 𝜓) | |
3 | 1, 2 | syl 17 | 1 ⊢ (∀𝑥𝜑 → 𝜓) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∀wal 1537 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-c5 36824 |
This theorem is referenced by: axc5c711toc7 36861 axc11n-16 36879 ax12eq 36882 ax12el 36883 ax12inda 36889 ax12v2-o 36890 axc11-o 36892 |
Copyright terms: Public domain | W3C validator |