Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > hba1-o | Structured version Visualization version GIF version |
Description: The setvar 𝑥 is not free in ∀𝑥𝜑. Example in Appendix in [Megill] p. 450 (p. 19 of the preprint). Also Lemma 22 of [Monk2] p. 114. (Contributed by NM, 24-Jan-1993.) (Proof modification is discouraged.) (New usage is discouraged.) |
Ref | Expression |
---|---|
hba1-o | ⊢ (∀𝑥𝜑 → ∀𝑥∀𝑥𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ax-c5 36897 | . . 3 ⊢ (∀𝑥 ¬ ∀𝑥𝜑 → ¬ ∀𝑥𝜑) | |
2 | 1 | con2i 139 | . 2 ⊢ (∀𝑥𝜑 → ¬ ∀𝑥 ¬ ∀𝑥𝜑) |
3 | ax10fromc7 36909 | . 2 ⊢ (¬ ∀𝑥 ¬ ∀𝑥𝜑 → ∀𝑥 ¬ ∀𝑥 ¬ ∀𝑥𝜑) | |
4 | ax10fromc7 36909 | . . . 4 ⊢ (¬ ∀𝑥𝜑 → ∀𝑥 ¬ ∀𝑥𝜑) | |
5 | 4 | con1i 147 | . . 3 ⊢ (¬ ∀𝑥 ¬ ∀𝑥𝜑 → ∀𝑥𝜑) |
6 | 5 | alimi 1814 | . 2 ⊢ (∀𝑥 ¬ ∀𝑥 ¬ ∀𝑥𝜑 → ∀𝑥∀𝑥𝜑) |
7 | 2, 3, 6 | 3syl 18 | 1 ⊢ (∀𝑥𝜑 → ∀𝑥∀𝑥𝜑) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∀wal 1537 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-c5 36897 ax-c4 36898 ax-c7 36899 |
This theorem is referenced by: axc4i-o 36912 nfa1-o 36929 axc711toc7 36930 axc5c711toc7 36934 dvelimf-o 36943 ax12indalem 36959 ax12inda2ALT 36960 ax12inda 36962 |
Copyright terms: Public domain | W3C validator |