| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > hba1-o | Structured version Visualization version GIF version | ||
| Description: The setvar 𝑥 is not free in ∀𝑥𝜑. Example in Appendix in [Megill] p. 450 (p. 19 of the preprint). Also Lemma 22 of [Monk2] p. 114. (Contributed by NM, 24-Jan-1993.) (Proof modification is discouraged.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| hba1-o | ⊢ (∀𝑥𝜑 → ∀𝑥∀𝑥𝜑) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ax-c5 38901 | . . 3 ⊢ (∀𝑥 ¬ ∀𝑥𝜑 → ¬ ∀𝑥𝜑) | |
| 2 | 1 | con2i 139 | . 2 ⊢ (∀𝑥𝜑 → ¬ ∀𝑥 ¬ ∀𝑥𝜑) |
| 3 | ax10fromc7 38913 | . 2 ⊢ (¬ ∀𝑥 ¬ ∀𝑥𝜑 → ∀𝑥 ¬ ∀𝑥 ¬ ∀𝑥𝜑) | |
| 4 | ax10fromc7 38913 | . . . 4 ⊢ (¬ ∀𝑥𝜑 → ∀𝑥 ¬ ∀𝑥𝜑) | |
| 5 | 4 | con1i 147 | . . 3 ⊢ (¬ ∀𝑥 ¬ ∀𝑥𝜑 → ∀𝑥𝜑) |
| 6 | 5 | alimi 1811 | . 2 ⊢ (∀𝑥 ¬ ∀𝑥 ¬ ∀𝑥𝜑 → ∀𝑥∀𝑥𝜑) |
| 7 | 2, 3, 6 | 3syl 18 | 1 ⊢ (∀𝑥𝜑 → ∀𝑥∀𝑥𝜑) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∀wal 1538 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-c5 38901 ax-c4 38902 ax-c7 38903 |
| This theorem is referenced by: axc4i-o 38916 nfa1-o 38933 axc711toc7 38934 axc5c711toc7 38938 dvelimf-o 38947 ax12indalem 38963 ax12inda2ALT 38964 ax12inda 38966 |
| Copyright terms: Public domain | W3C validator |