|   | Mathbox for Norm Megill | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > Mathboxes > axc5c711to11 | Structured version Visualization version GIF version | ||
| Description: Rederivation of ax-11 2157 from axc5c711 38919. Note that ax-c7 38886 and ax-11 2157 are not used by the rederivation. The use of alimi 1811 (which uses ax-c5 38884) is allowed since we have already proved axc5c711toc5 38920. (Contributed by NM, 19-Nov-2006.) (Proof modification is discouraged.) (New usage is discouraged.) | 
| Ref | Expression | 
|---|---|
| axc5c711to11 | ⊢ (∀𝑥∀𝑦𝜑 → ∀𝑦∀𝑥𝜑) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | axc5c711toc7 38921 | . . 3 ⊢ (¬ ∀𝑦 ¬ ∀𝑦 ¬ ∀𝑥∀𝑦𝜑 → ¬ ∀𝑥∀𝑦𝜑) | |
| 2 | 1 | con4i 114 | . 2 ⊢ (∀𝑥∀𝑦𝜑 → ∀𝑦 ¬ ∀𝑦 ¬ ∀𝑥∀𝑦𝜑) | 
| 3 | pm2.21 123 | . . . . . 6 ⊢ (¬ ∀𝑥∀𝑦 ¬ ∀𝑥∀𝑦𝜑 → (∀𝑥∀𝑦 ¬ ∀𝑥∀𝑦𝜑 → ∀𝑥𝜑)) | |
| 4 | axc5c711 38919 | . . . . . 6 ⊢ ((∀𝑥∀𝑦 ¬ ∀𝑥∀𝑦𝜑 → ∀𝑥𝜑) → 𝜑) | |
| 5 | 3, 4 | syl 17 | . . . . 5 ⊢ (¬ ∀𝑥∀𝑦 ¬ ∀𝑥∀𝑦𝜑 → 𝜑) | 
| 6 | 5 | alimi 1811 | . . . 4 ⊢ (∀𝑥 ¬ ∀𝑥∀𝑦 ¬ ∀𝑥∀𝑦𝜑 → ∀𝑥𝜑) | 
| 7 | axc5c711toc7 38921 | . . . 4 ⊢ (¬ ∀𝑥 ¬ ∀𝑥∀𝑦 ¬ ∀𝑥∀𝑦𝜑 → ∀𝑦 ¬ ∀𝑥∀𝑦𝜑) | |
| 8 | 6, 7 | nsyl4 158 | . . 3 ⊢ (¬ ∀𝑦 ¬ ∀𝑥∀𝑦𝜑 → ∀𝑥𝜑) | 
| 9 | 8 | alimi 1811 | . 2 ⊢ (∀𝑦 ¬ ∀𝑦 ¬ ∀𝑥∀𝑦𝜑 → ∀𝑦∀𝑥𝜑) | 
| 10 | 2, 9 | syl 17 | 1 ⊢ (∀𝑥∀𝑦𝜑 → ∀𝑦∀𝑥𝜑) | 
| Colors of variables: wff setvar class | 
| Syntax hints: ¬ wn 3 → wi 4 ∀wal 1538 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-11 2157 ax-c5 38884 ax-c4 38885 ax-c7 38886 | 
| This theorem is referenced by: (None) | 
| Copyright terms: Public domain | W3C validator |