|   | Mathbox for Norm Megill | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > Mathboxes > axc5sp1 | Structured version Visualization version GIF version | ||
| Description: A special case of ax-c5 38885 without using ax-c5 38885 or ax-5 1909. (Contributed by NM, 13-Jan-2011.) (Proof modification is discouraged.) (New usage is discouraged.) | 
| Ref | Expression | 
|---|---|
| axc5sp1 | ⊢ (∀𝑦 ¬ 𝑥 = 𝑥 → ¬ 𝑥 = 𝑥) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | equidqe 38924 | . 2 ⊢ ¬ ∀𝑦 ¬ 𝑥 = 𝑥 | |
| 2 | 1 | pm2.21i 119 | 1 ⊢ (∀𝑦 ¬ 𝑥 = 𝑥 → ¬ 𝑥 = 𝑥) | 
| Colors of variables: wff setvar class | 
| Syntax hints: ¬ wn 3 → wi 4 ∀wal 1537 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-c7 38887 ax-c10 38888 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1779 | 
| This theorem is referenced by: (None) | 
| Copyright terms: Public domain | W3C validator |