Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > axc5sp1 | Structured version Visualization version GIF version |
Description: A special case of ax-c5 36824 without using ax-c5 36824 or ax-5 1914. (Contributed by NM, 13-Jan-2011.) (Proof modification is discouraged.) (New usage is discouraged.) |
Ref | Expression |
---|---|
axc5sp1 | ⊢ (∀𝑦 ¬ 𝑥 = 𝑥 → ¬ 𝑥 = 𝑥) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | equidqe 36863 | . 2 ⊢ ¬ ∀𝑦 ¬ 𝑥 = 𝑥 | |
2 | 1 | pm2.21i 119 | 1 ⊢ (∀𝑦 ¬ 𝑥 = 𝑥 → ¬ 𝑥 = 𝑥) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∀wal 1537 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-c7 36826 ax-c10 36827 |
This theorem depends on definitions: df-bi 206 df-an 396 df-ex 1784 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |