Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  axc5sp1 Structured version   Visualization version   GIF version

Theorem axc5sp1 38925
Description: A special case of ax-c5 38885 without using ax-c5 38885 or ax-5 1909. (Contributed by NM, 13-Jan-2011.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
axc5sp1 (∀𝑦 ¬ 𝑥 = 𝑥 → ¬ 𝑥 = 𝑥)

Proof of Theorem axc5sp1
StepHypRef Expression
1 equidqe 38924 . 2 ¬ ∀𝑦 ¬ 𝑥 = 𝑥
21pm2.21i 119 1 (∀𝑦 ¬ 𝑥 = 𝑥 → ¬ 𝑥 = 𝑥)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wal 1537
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-c7 38887  ax-c10 38888
This theorem depends on definitions:  df-bi 207  df-an 396  df-ex 1779
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator