|   | Mathbox for Norm Megill | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > Mathboxes > equidqe | Structured version Visualization version GIF version | ||
| Description: equid 2011 with existential quantifier without using ax-c5 38884 or ax-5 1910. (Contributed by NM, 13-Jan-2011.) (Proof shortened by Wolf Lammen, 27-Feb-2014.) (Proof modification is discouraged.) (New usage is discouraged.) | 
| Ref | Expression | 
|---|---|
| equidqe | ⊢ ¬ ∀𝑦 ¬ 𝑥 = 𝑥 | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | ax6fromc10 38897 | . 2 ⊢ ¬ ∀𝑦 ¬ 𝑦 = 𝑥 | |
| 2 | ax7 2015 | . . . . 5 ⊢ (𝑦 = 𝑥 → (𝑦 = 𝑥 → 𝑥 = 𝑥)) | |
| 3 | 2 | pm2.43i 52 | . . . 4 ⊢ (𝑦 = 𝑥 → 𝑥 = 𝑥) | 
| 4 | 3 | con3i 154 | . . 3 ⊢ (¬ 𝑥 = 𝑥 → ¬ 𝑦 = 𝑥) | 
| 5 | 4 | alimi 1811 | . 2 ⊢ (∀𝑦 ¬ 𝑥 = 𝑥 → ∀𝑦 ¬ 𝑦 = 𝑥) | 
| 6 | 1, 5 | mto 197 | 1 ⊢ ¬ ∀𝑦 ¬ 𝑥 = 𝑥 | 
| Colors of variables: wff setvar class | 
| Syntax hints: ¬ wn 3 ∀wal 1538 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-c7 38886 ax-c10 38887 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 | 
| This theorem is referenced by: axc5sp1 38924 equidq 38925 | 
| Copyright terms: Public domain | W3C validator |