Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > equidqe | Structured version Visualization version GIF version |
Description: equid 2020 with existential quantifier without using ax-c5 36634 or ax-5 1918. (Contributed by NM, 13-Jan-2011.) (Proof shortened by Wolf Lammen, 27-Feb-2014.) (Proof modification is discouraged.) (New usage is discouraged.) |
Ref | Expression |
---|---|
equidqe | ⊢ ¬ ∀𝑦 ¬ 𝑥 = 𝑥 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ax6fromc10 36647 | . 2 ⊢ ¬ ∀𝑦 ¬ 𝑦 = 𝑥 | |
2 | ax7 2024 | . . . . 5 ⊢ (𝑦 = 𝑥 → (𝑦 = 𝑥 → 𝑥 = 𝑥)) | |
3 | 2 | pm2.43i 52 | . . . 4 ⊢ (𝑦 = 𝑥 → 𝑥 = 𝑥) |
4 | 3 | con3i 157 | . . 3 ⊢ (¬ 𝑥 = 𝑥 → ¬ 𝑦 = 𝑥) |
5 | 4 | alimi 1819 | . 2 ⊢ (∀𝑦 ¬ 𝑥 = 𝑥 → ∀𝑦 ¬ 𝑦 = 𝑥) |
6 | 1, 5 | mto 200 | 1 ⊢ ¬ ∀𝑦 ¬ 𝑥 = 𝑥 |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ∀wal 1541 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1803 ax-4 1817 ax-5 1918 ax-6 1976 ax-7 2016 ax-c7 36636 ax-c10 36637 |
This theorem depends on definitions: df-bi 210 df-an 400 df-ex 1788 |
This theorem is referenced by: axc5sp1 36674 equidq 36675 |
Copyright terms: Public domain | W3C validator |