MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  axc7e Structured version   Visualization version   GIF version

Theorem axc7e 2316
Description: Abbreviated version of axc7 2315 using the existential quantifier. Corresponds to the dual of Axiom (B) of modal logic. (Contributed by NM, 5-Aug-1993.) (Proof shortened by Wolf Lammen, 8-Jul-2022.)
Assertion
Ref Expression
axc7e (∃𝑥𝑥𝜑𝜑)

Proof of Theorem axc7e
StepHypRef Expression
1 hbe1a 2142 . 2 (∃𝑥𝑥𝜑 → ∀𝑥𝜑)
2119.21bi 2184 1 (∃𝑥𝑥𝜑𝜑)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wal 1537  wex 1783
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-10 2139  ax-12 2173
This theorem depends on definitions:  df-bi 206  df-ex 1784
This theorem is referenced by:  bj-19.12  34870  bj-axc10  34892
  Copyright terms: Public domain W3C validator