Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > axc7e | Structured version Visualization version GIF version |
Description: Abbreviated version of axc7 2315 using the existential quantifier. Corresponds to the dual of Axiom (B) of modal logic. (Contributed by NM, 5-Aug-1993.) (Proof shortened by Wolf Lammen, 8-Jul-2022.) |
Ref | Expression |
---|---|
axc7e | ⊢ (∃𝑥∀𝑥𝜑 → 𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | hbe1a 2142 | . 2 ⊢ (∃𝑥∀𝑥𝜑 → ∀𝑥𝜑) | |
2 | 1 | 19.21bi 2184 | 1 ⊢ (∃𝑥∀𝑥𝜑 → 𝜑) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∀wal 1537 ∃wex 1783 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-10 2139 ax-12 2173 |
This theorem depends on definitions: df-bi 206 df-ex 1784 |
This theorem is referenced by: bj-19.12 34870 bj-axc10 34892 |
Copyright terms: Public domain | W3C validator |