Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bj-axc10 Structured version   Visualization version   GIF version

Theorem bj-axc10 36778
Description: Alternate proof of axc10 2390. Shorter. One can prove a version with DV (𝑥, 𝑦) without ax-13 2377, by using ax6ev 1969 instead of ax6e 2388. (Contributed by BJ, 31-Mar-2021.) (Proof modification is discouraged.)
Assertion
Ref Expression
bj-axc10 (∀𝑥(𝑥 = 𝑦 → ∀𝑥𝜑) → 𝜑)

Proof of Theorem bj-axc10
StepHypRef Expression
1 ax6e 2388 . . 3 𝑥 𝑥 = 𝑦
2 exim 1833 . . 3 (∀𝑥(𝑥 = 𝑦 → ∀𝑥𝜑) → (∃𝑥 𝑥 = 𝑦 → ∃𝑥𝑥𝜑))
31, 2mpi 20 . 2 (∀𝑥(𝑥 = 𝑦 → ∀𝑥𝜑) → ∃𝑥𝑥𝜑)
4 axc7e 2319 . 2 (∃𝑥𝑥𝜑𝜑)
53, 4syl 17 1 (∀𝑥(𝑥 = 𝑦 → ∀𝑥𝜑) → 𝜑)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wal 1537  wex 1778
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1910  ax-6 1967  ax-7 2007  ax-10 2141  ax-12 2177  ax-13 2377
This theorem depends on definitions:  df-bi 207  df-an 396  df-ex 1779
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator