Mathbox for BJ |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > bj-axc10 | Structured version Visualization version GIF version |
Description: Alternate proof of axc10 2385. Shorter. One can prove a version with DV (𝑥, 𝑦) without ax-13 2372, by using ax6ev 1974 instead of ax6e 2383. (Contributed by BJ, 31-Mar-2021.) (Proof modification is discouraged.) |
Ref | Expression |
---|---|
bj-axc10 | ⊢ (∀𝑥(𝑥 = 𝑦 → ∀𝑥𝜑) → 𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ax6e 2383 | . . 3 ⊢ ∃𝑥 𝑥 = 𝑦 | |
2 | exim 1837 | . . 3 ⊢ (∀𝑥(𝑥 = 𝑦 → ∀𝑥𝜑) → (∃𝑥 𝑥 = 𝑦 → ∃𝑥∀𝑥𝜑)) | |
3 | 1, 2 | mpi 20 | . 2 ⊢ (∀𝑥(𝑥 = 𝑦 → ∀𝑥𝜑) → ∃𝑥∀𝑥𝜑) |
4 | axc7e 2316 | . 2 ⊢ (∃𝑥∀𝑥𝜑 → 𝜑) | |
5 | 3, 4 | syl 17 | 1 ⊢ (∀𝑥(𝑥 = 𝑦 → ∀𝑥𝜑) → 𝜑) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∀wal 1537 ∃wex 1783 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-10 2139 ax-12 2173 ax-13 2372 |
This theorem depends on definitions: df-bi 206 df-an 396 df-ex 1784 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |