| Mathbox for BJ |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > bj-axc10 | Structured version Visualization version GIF version | ||
| Description: Alternate proof of axc10 2384. Shorter. One can prove a version with DV (𝑥, 𝑦) without ax-13 2371, by using ax6ev 1969 instead of ax6e 2382. (Contributed by BJ, 31-Mar-2021.) (Proof modification is discouraged.) |
| Ref | Expression |
|---|---|
| bj-axc10 | ⊢ (∀𝑥(𝑥 = 𝑦 → ∀𝑥𝜑) → 𝜑) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ax6e 2382 | . . 3 ⊢ ∃𝑥 𝑥 = 𝑦 | |
| 2 | exim 1834 | . . 3 ⊢ (∀𝑥(𝑥 = 𝑦 → ∀𝑥𝜑) → (∃𝑥 𝑥 = 𝑦 → ∃𝑥∀𝑥𝜑)) | |
| 3 | 1, 2 | mpi 20 | . 2 ⊢ (∀𝑥(𝑥 = 𝑦 → ∀𝑥𝜑) → ∃𝑥∀𝑥𝜑) |
| 4 | axc7e 2317 | . 2 ⊢ (∃𝑥∀𝑥𝜑 → 𝜑) | |
| 5 | 3, 4 | syl 17 | 1 ⊢ (∀𝑥(𝑥 = 𝑦 → ∀𝑥𝜑) → 𝜑) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∀wal 1538 ∃wex 1779 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-10 2142 ax-12 2178 ax-13 2371 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |