Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bj-axc10 Structured version   Visualization version   GIF version

Theorem bj-axc10 34181
Description: Alternate (shorter) proof of axc10 2404. One can prove a version with DV (𝑥, 𝑦) without ax-13 2391, by using ax6ev 1972 instead of ax6e 2402. (Contributed by BJ, 31-Mar-2021.) (Proof modification is discouraged.)
Assertion
Ref Expression
bj-axc10 (∀𝑥(𝑥 = 𝑦 → ∀𝑥𝜑) → 𝜑)

Proof of Theorem bj-axc10
StepHypRef Expression
1 ax6e 2402 . . 3 𝑥 𝑥 = 𝑦
2 exim 1835 . . 3 (∀𝑥(𝑥 = 𝑦 → ∀𝑥𝜑) → (∃𝑥 𝑥 = 𝑦 → ∃𝑥𝑥𝜑))
31, 2mpi 20 . 2 (∀𝑥(𝑥 = 𝑦 → ∀𝑥𝜑) → ∃𝑥𝑥𝜑)
4 axc7e 2338 . 2 (∃𝑥𝑥𝜑𝜑)
53, 4syl 17 1 (∀𝑥(𝑥 = 𝑦 → ∀𝑥𝜑) → 𝜑)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wal 1536  wex 1781
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-10 2145  ax-12 2178  ax-13 2391
This theorem depends on definitions:  df-bi 210  df-an 400  df-ex 1782
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator