|   | Metamath Proof Explorer | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > hbe1a | Structured version Visualization version GIF version | ||
| Description: Dual statement of hbe1 2142. Modified version of axc7e 2317 with a universally quantified consequent. (Contributed by Wolf Lammen, 15-Sep-2021.) | 
| Ref | Expression | 
|---|---|
| hbe1a | ⊢ (∃𝑥∀𝑥𝜑 → ∀𝑥𝜑) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | df-ex 1779 | . 2 ⊢ (∃𝑥∀𝑥𝜑 ↔ ¬ ∀𝑥 ¬ ∀𝑥𝜑) | |
| 2 | hbn1 2141 | . . 3 ⊢ (¬ ∀𝑥𝜑 → ∀𝑥 ¬ ∀𝑥𝜑) | |
| 3 | 2 | con1i 147 | . 2 ⊢ (¬ ∀𝑥 ¬ ∀𝑥𝜑 → ∀𝑥𝜑) | 
| 4 | 1, 3 | sylbi 217 | 1 ⊢ (∃𝑥∀𝑥𝜑 → ∀𝑥𝜑) | 
| Colors of variables: wff setvar class | 
| Syntax hints: ¬ wn 3 → wi 4 ∀wal 1537 ∃wex 1778 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-10 2140 | 
| This theorem depends on definitions: df-bi 207 df-ex 1779 | 
| This theorem is referenced by: nf5-1 2144 axc7e 2317 nfeqf2 2381 bj-19.41al 36661 bj-subst 36663 bj-modal4 36716 bj-wnf2 36720 bj-substax12 36723 bj-nnfa1 36761 | 
| Copyright terms: Public domain | W3C validator |