Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > hbe1a | Structured version Visualization version GIF version |
Description: Dual statement of hbe1 2138. Modified version of axc7e 2311 with a universally quantified consequent. (Contributed by Wolf Lammen, 15-Sep-2021.) |
Ref | Expression |
---|---|
hbe1a | ⊢ (∃𝑥∀𝑥𝜑 → ∀𝑥𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-ex 1781 | . 2 ⊢ (∃𝑥∀𝑥𝜑 ↔ ¬ ∀𝑥 ¬ ∀𝑥𝜑) | |
2 | hbn1 2137 | . . 3 ⊢ (¬ ∀𝑥𝜑 → ∀𝑥 ¬ ∀𝑥𝜑) | |
3 | 2 | con1i 147 | . 2 ⊢ (¬ ∀𝑥 ¬ ∀𝑥𝜑 → ∀𝑥𝜑) |
4 | 1, 3 | sylbi 216 | 1 ⊢ (∃𝑥∀𝑥𝜑 → ∀𝑥𝜑) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∀wal 1538 ∃wex 1780 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-10 2136 |
This theorem depends on definitions: df-bi 206 df-ex 1781 |
This theorem is referenced by: nf5-1 2140 axc7e 2311 nfeqf2 2375 bj-19.41al 34931 bj-subst 34933 bj-modal4 34987 bj-wnf2 34991 bj-substax12 34994 bj-nnfa1 35032 |
Copyright terms: Public domain | W3C validator |