MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  hbe1a Structured version   Visualization version   GIF version

Theorem hbe1a 2140
Description: Dual statement of hbe1 2139. Modified version of axc7e 2312 with a universally quantified consequent. (Contributed by Wolf Lammen, 15-Sep-2021.)
Assertion
Ref Expression
hbe1a (∃𝑥𝑥𝜑 → ∀𝑥𝜑)

Proof of Theorem hbe1a
StepHypRef Expression
1 df-ex 1783 . 2 (∃𝑥𝑥𝜑 ↔ ¬ ∀𝑥 ¬ ∀𝑥𝜑)
2 hbn1 2138 . . 3 (¬ ∀𝑥𝜑 → ∀𝑥 ¬ ∀𝑥𝜑)
32con1i 147 . 2 (¬ ∀𝑥 ¬ ∀𝑥𝜑 → ∀𝑥𝜑)
41, 3sylbi 216 1 (∃𝑥𝑥𝜑 → ∀𝑥𝜑)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wal 1537  wex 1782
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-10 2137
This theorem depends on definitions:  df-bi 206  df-ex 1783
This theorem is referenced by:  nf5-1  2141  axc7e  2312  nfeqf2  2377  bj-19.41al  34840  bj-subst  34842  bj-modal4  34896  bj-wnf2  34900  bj-substax12  34903  bj-nnfa1  34941
  Copyright terms: Public domain W3C validator