Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > hbe1a | Structured version Visualization version GIF version |
Description: Dual statement of hbe1 2139. Modified version of axc7e 2312 with a universally quantified consequent. (Contributed by Wolf Lammen, 15-Sep-2021.) |
Ref | Expression |
---|---|
hbe1a | ⊢ (∃𝑥∀𝑥𝜑 → ∀𝑥𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-ex 1783 | . 2 ⊢ (∃𝑥∀𝑥𝜑 ↔ ¬ ∀𝑥 ¬ ∀𝑥𝜑) | |
2 | hbn1 2138 | . . 3 ⊢ (¬ ∀𝑥𝜑 → ∀𝑥 ¬ ∀𝑥𝜑) | |
3 | 2 | con1i 147 | . 2 ⊢ (¬ ∀𝑥 ¬ ∀𝑥𝜑 → ∀𝑥𝜑) |
4 | 1, 3 | sylbi 216 | 1 ⊢ (∃𝑥∀𝑥𝜑 → ∀𝑥𝜑) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∀wal 1537 ∃wex 1782 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-10 2137 |
This theorem depends on definitions: df-bi 206 df-ex 1783 |
This theorem is referenced by: nf5-1 2141 axc7e 2312 nfeqf2 2377 bj-19.41al 34840 bj-subst 34842 bj-modal4 34896 bj-wnf2 34900 bj-substax12 34903 bj-nnfa1 34941 |
Copyright terms: Public domain | W3C validator |