| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > hbe1a | Structured version Visualization version GIF version | ||
| Description: Dual statement of hbe1 2144. Modified version of axc7e 2319 with a universally quantified consequent. (Contributed by Wolf Lammen, 15-Sep-2021.) |
| Ref | Expression |
|---|---|
| hbe1a | ⊢ (∃𝑥∀𝑥𝜑 → ∀𝑥𝜑) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-ex 1780 | . 2 ⊢ (∃𝑥∀𝑥𝜑 ↔ ¬ ∀𝑥 ¬ ∀𝑥𝜑) | |
| 2 | hbn1 2143 | . . 3 ⊢ (¬ ∀𝑥𝜑 → ∀𝑥 ¬ ∀𝑥𝜑) | |
| 3 | 2 | con1i 147 | . 2 ⊢ (¬ ∀𝑥 ¬ ∀𝑥𝜑 → ∀𝑥𝜑) |
| 4 | 1, 3 | sylbi 217 | 1 ⊢ (∃𝑥∀𝑥𝜑 → ∀𝑥𝜑) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∀wal 1538 ∃wex 1779 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-10 2142 |
| This theorem depends on definitions: df-bi 207 df-ex 1780 |
| This theorem is referenced by: nf5-1 2146 axc7e 2319 nfeqf2 2382 bj-19.41al 36682 bj-subst 36684 bj-modal4 36737 bj-wnf2 36741 bj-substax12 36744 bj-nnfa1 36782 |
| Copyright terms: Public domain | W3C validator |