| Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > ifpbi1 | Structured version Visualization version GIF version | ||
| Description: Equivalence theorem for conditional logical operators. (Contributed by RP, 14-Apr-2020.) |
| Ref | Expression |
|---|---|
| ifpbi1 | ⊢ ((𝜑 ↔ 𝜓) → (if-(𝜑, 𝜒, 𝜃) ↔ if-(𝜓, 𝜒, 𝜃))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | imbi1 347 | . . 3 ⊢ ((𝜑 ↔ 𝜓) → ((𝜑 → 𝜒) ↔ (𝜓 → 𝜒))) | |
| 2 | notbi 319 | . . . . 5 ⊢ ((𝜑 ↔ 𝜓) ↔ (¬ 𝜑 ↔ ¬ 𝜓)) | |
| 3 | 2 | biimpi 216 | . . . 4 ⊢ ((𝜑 ↔ 𝜓) → (¬ 𝜑 ↔ ¬ 𝜓)) |
| 4 | 3 | imbi1d 341 | . . 3 ⊢ ((𝜑 ↔ 𝜓) → ((¬ 𝜑 → 𝜃) ↔ (¬ 𝜓 → 𝜃))) |
| 5 | 1, 4 | anbi12d 632 | . 2 ⊢ ((𝜑 ↔ 𝜓) → (((𝜑 → 𝜒) ∧ (¬ 𝜑 → 𝜃)) ↔ ((𝜓 → 𝜒) ∧ (¬ 𝜓 → 𝜃)))) |
| 6 | dfifp2 1064 | . 2 ⊢ (if-(𝜑, 𝜒, 𝜃) ↔ ((𝜑 → 𝜒) ∧ (¬ 𝜑 → 𝜃))) | |
| 7 | dfifp2 1064 | . 2 ⊢ (if-(𝜓, 𝜒, 𝜃) ↔ ((𝜓 → 𝜒) ∧ (¬ 𝜓 → 𝜃))) | |
| 8 | 5, 6, 7 | 3bitr4g 314 | 1 ⊢ ((𝜑 ↔ 𝜓) → (if-(𝜑, 𝜒, 𝜃) ↔ if-(𝜓, 𝜒, 𝜃))) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 if-wif 1062 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-ifp 1063 |
| This theorem is referenced by: ifpimim 43467 axfrege52a 43814 |
| Copyright terms: Public domain | W3C validator |