Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > ifpbi1 | Structured version Visualization version GIF version |
Description: Equivalence theorem for conditional logical operators. (Contributed by RP, 14-Apr-2020.) |
Ref | Expression |
---|---|
ifpbi1 | ⊢ ((𝜑 ↔ 𝜓) → (if-(𝜑, 𝜒, 𝜃) ↔ if-(𝜓, 𝜒, 𝜃))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | imbi1 348 | . . 3 ⊢ ((𝜑 ↔ 𝜓) → ((𝜑 → 𝜒) ↔ (𝜓 → 𝜒))) | |
2 | notbi 319 | . . . . 5 ⊢ ((𝜑 ↔ 𝜓) ↔ (¬ 𝜑 ↔ ¬ 𝜓)) | |
3 | 2 | biimpi 215 | . . . 4 ⊢ ((𝜑 ↔ 𝜓) → (¬ 𝜑 ↔ ¬ 𝜓)) |
4 | 3 | imbi1d 342 | . . 3 ⊢ ((𝜑 ↔ 𝜓) → ((¬ 𝜑 → 𝜃) ↔ (¬ 𝜓 → 𝜃))) |
5 | 1, 4 | anbi12d 631 | . 2 ⊢ ((𝜑 ↔ 𝜓) → (((𝜑 → 𝜒) ∧ (¬ 𝜑 → 𝜃)) ↔ ((𝜓 → 𝜒) ∧ (¬ 𝜓 → 𝜃)))) |
6 | dfifp2 1062 | . 2 ⊢ (if-(𝜑, 𝜒, 𝜃) ↔ ((𝜑 → 𝜒) ∧ (¬ 𝜑 → 𝜃))) | |
7 | dfifp2 1062 | . 2 ⊢ (if-(𝜓, 𝜒, 𝜃) ↔ ((𝜓 → 𝜒) ∧ (¬ 𝜓 → 𝜃))) | |
8 | 5, 6, 7 | 3bitr4g 314 | 1 ⊢ ((𝜑 ↔ 𝜓) → (if-(𝜑, 𝜒, 𝜃) ↔ if-(𝜓, 𝜒, 𝜃))) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 205 ∧ wa 396 if-wif 1060 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-ifp 1061 |
This theorem is referenced by: ifpimim 41116 axfrege52a 41464 |
Copyright terms: Public domain | W3C validator |