Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ifpbi1 Structured version   Visualization version   GIF version

Theorem ifpbi1 41084
Description: Equivalence theorem for conditional logical operators. (Contributed by RP, 14-Apr-2020.)
Assertion
Ref Expression
ifpbi1 ((𝜑𝜓) → (if-(𝜑, 𝜒, 𝜃) ↔ if-(𝜓, 𝜒, 𝜃)))

Proof of Theorem ifpbi1
StepHypRef Expression
1 imbi1 348 . . 3 ((𝜑𝜓) → ((𝜑𝜒) ↔ (𝜓𝜒)))
2 notbi 319 . . . . 5 ((𝜑𝜓) ↔ (¬ 𝜑 ↔ ¬ 𝜓))
32biimpi 215 . . . 4 ((𝜑𝜓) → (¬ 𝜑 ↔ ¬ 𝜓))
43imbi1d 342 . . 3 ((𝜑𝜓) → ((¬ 𝜑𝜃) ↔ (¬ 𝜓𝜃)))
51, 4anbi12d 631 . 2 ((𝜑𝜓) → (((𝜑𝜒) ∧ (¬ 𝜑𝜃)) ↔ ((𝜓𝜒) ∧ (¬ 𝜓𝜃))))
6 dfifp2 1062 . 2 (if-(𝜑, 𝜒, 𝜃) ↔ ((𝜑𝜒) ∧ (¬ 𝜑𝜃)))
7 dfifp2 1062 . 2 (if-(𝜓, 𝜒, 𝜃) ↔ ((𝜓𝜒) ∧ (¬ 𝜓𝜃)))
85, 6, 73bitr4g 314 1 ((𝜑𝜓) → (if-(𝜑, 𝜒, 𝜃) ↔ if-(𝜓, 𝜒, 𝜃)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 396  if-wif 1060
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-ifp 1061
This theorem is referenced by:  ifpimim  41116  axfrege52a  41464
  Copyright terms: Public domain W3C validator