![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > axi12 | Structured version Visualization version GIF version |
Description: Axiom of Quantifier Introduction (intuitionistic logic axiom ax-i12). In classical logic, this is mostly a restatement of axc9 2390 (with one additional quantifier). But in intuitionistic logic, changing the negations and implications to disjunctions makes it stronger. Usage of this theorem is discouraged because it depends on ax-13 2380. (Contributed by Jim Kingdon, 31-Dec-2017.) Avoid ax-11 2158. (Revised by Wolf Lammen, 24-Apr-2023.) (New usage is discouraged.) |
Ref | Expression |
---|---|
axi12 | ⊢ (∀𝑧 𝑧 = 𝑥 ∨ (∀𝑧 𝑧 = 𝑦 ∨ ∀𝑧(𝑥 = 𝑦 → ∀𝑧 𝑥 = 𝑦))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfa1 2152 | . . . . 5 ⊢ Ⅎ𝑧∀𝑧 𝑧 = 𝑥 | |
2 | nfa1 2152 | . . . . 5 ⊢ Ⅎ𝑧∀𝑧 𝑧 = 𝑦 | |
3 | 1, 2 | nfor 1903 | . . . 4 ⊢ Ⅎ𝑧(∀𝑧 𝑧 = 𝑥 ∨ ∀𝑧 𝑧 = 𝑦) |
4 | 3 | 19.32 2234 | . . 3 ⊢ (∀𝑧((∀𝑧 𝑧 = 𝑥 ∨ ∀𝑧 𝑧 = 𝑦) ∨ (𝑥 = 𝑦 → ∀𝑧 𝑥 = 𝑦)) ↔ ((∀𝑧 𝑧 = 𝑥 ∨ ∀𝑧 𝑧 = 𝑦) ∨ ∀𝑧(𝑥 = 𝑦 → ∀𝑧 𝑥 = 𝑦))) |
5 | axc9 2390 | . . . . . 6 ⊢ (¬ ∀𝑧 𝑧 = 𝑥 → (¬ ∀𝑧 𝑧 = 𝑦 → (𝑥 = 𝑦 → ∀𝑧 𝑥 = 𝑦))) | |
6 | 5 | orrd 862 | . . . . 5 ⊢ (¬ ∀𝑧 𝑧 = 𝑥 → (∀𝑧 𝑧 = 𝑦 ∨ (𝑥 = 𝑦 → ∀𝑧 𝑥 = 𝑦))) |
7 | 6 | orri 861 | . . . 4 ⊢ (∀𝑧 𝑧 = 𝑥 ∨ (∀𝑧 𝑧 = 𝑦 ∨ (𝑥 = 𝑦 → ∀𝑧 𝑥 = 𝑦))) |
8 | orass 920 | . . . 4 ⊢ (((∀𝑧 𝑧 = 𝑥 ∨ ∀𝑧 𝑧 = 𝑦) ∨ (𝑥 = 𝑦 → ∀𝑧 𝑥 = 𝑦)) ↔ (∀𝑧 𝑧 = 𝑥 ∨ (∀𝑧 𝑧 = 𝑦 ∨ (𝑥 = 𝑦 → ∀𝑧 𝑥 = 𝑦)))) | |
9 | 7, 8 | mpbir 231 | . . 3 ⊢ ((∀𝑧 𝑧 = 𝑥 ∨ ∀𝑧 𝑧 = 𝑦) ∨ (𝑥 = 𝑦 → ∀𝑧 𝑥 = 𝑦)) |
10 | 4, 9 | mpgbi 1796 | . 2 ⊢ ((∀𝑧 𝑧 = 𝑥 ∨ ∀𝑧 𝑧 = 𝑦) ∨ ∀𝑧(𝑥 = 𝑦 → ∀𝑧 𝑥 = 𝑦)) |
11 | orass 920 | . 2 ⊢ (((∀𝑧 𝑧 = 𝑥 ∨ ∀𝑧 𝑧 = 𝑦) ∨ ∀𝑧(𝑥 = 𝑦 → ∀𝑧 𝑥 = 𝑦)) ↔ (∀𝑧 𝑧 = 𝑥 ∨ (∀𝑧 𝑧 = 𝑦 ∨ ∀𝑧(𝑥 = 𝑦 → ∀𝑧 𝑥 = 𝑦)))) | |
12 | 10, 11 | mpbi 230 | 1 ⊢ (∀𝑧 𝑧 = 𝑥 ∨ (∀𝑧 𝑧 = 𝑦 ∨ ∀𝑧(𝑥 = 𝑦 → ∀𝑧 𝑥 = 𝑦))) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∨ wo 846 ∀wal 1535 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-10 2141 ax-12 2178 ax-13 2380 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-tru 1540 df-ex 1778 df-nf 1782 |
This theorem is referenced by: axbnd 2710 |
Copyright terms: Public domain | W3C validator |