MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  axi12 Structured version   Visualization version   GIF version

Theorem axi12 2801
Description: Axiom of Quantifier Introduction (intuitionistic logic axiom ax-i12). In classical logic, this is mostly a restatement of axc9 2401 (with one additional quantifier). But in intuitionistic logic, changing the negations and implications to disjunctions makes it stronger. (Contributed by Jim Kingdon, 31-Dec-2017.)
Assertion
Ref Expression
axi12 (∀𝑧 𝑧 = 𝑥 ∨ (∀𝑧 𝑧 = 𝑦 ∨ ∀𝑧(𝑥 = 𝑦 → ∀𝑧 𝑥 = 𝑦)))

Proof of Theorem axi12
StepHypRef Expression
1 nfae 2453 . . . . 5 𝑧𝑧 𝑧 = 𝑥
2 nfae 2453 . . . . 5 𝑧𝑧 𝑧 = 𝑦
31, 2nfor 2007 . . . 4 𝑧(∀𝑧 𝑧 = 𝑥 ∨ ∀𝑧 𝑧 = 𝑦)
4319.32 2276 . . 3 (∀𝑧((∀𝑧 𝑧 = 𝑥 ∨ ∀𝑧 𝑧 = 𝑦) ∨ (𝑥 = 𝑦 → ∀𝑧 𝑥 = 𝑦)) ↔ ((∀𝑧 𝑧 = 𝑥 ∨ ∀𝑧 𝑧 = 𝑦) ∨ ∀𝑧(𝑥 = 𝑦 → ∀𝑧 𝑥 = 𝑦)))
5 axc9 2401 . . . . . 6 (¬ ∀𝑧 𝑧 = 𝑥 → (¬ ∀𝑧 𝑧 = 𝑦 → (𝑥 = 𝑦 → ∀𝑧 𝑥 = 𝑦)))
65orrd 894 . . . . 5 (¬ ∀𝑧 𝑧 = 𝑥 → (∀𝑧 𝑧 = 𝑦 ∨ (𝑥 = 𝑦 → ∀𝑧 𝑥 = 𝑦)))
76orri 893 . . . 4 (∀𝑧 𝑧 = 𝑥 ∨ (∀𝑧 𝑧 = 𝑦 ∨ (𝑥 = 𝑦 → ∀𝑧 𝑥 = 𝑦)))
8 orass 950 . . . 4 (((∀𝑧 𝑧 = 𝑥 ∨ ∀𝑧 𝑧 = 𝑦) ∨ (𝑥 = 𝑦 → ∀𝑧 𝑥 = 𝑦)) ↔ (∀𝑧 𝑧 = 𝑥 ∨ (∀𝑧 𝑧 = 𝑦 ∨ (𝑥 = 𝑦 → ∀𝑧 𝑥 = 𝑦))))
97, 8mpbir 223 . . 3 ((∀𝑧 𝑧 = 𝑥 ∨ ∀𝑧 𝑧 = 𝑦) ∨ (𝑥 = 𝑦 → ∀𝑧 𝑥 = 𝑦))
104, 9mpgbi 1897 . 2 ((∀𝑧 𝑧 = 𝑥 ∨ ∀𝑧 𝑧 = 𝑦) ∨ ∀𝑧(𝑥 = 𝑦 → ∀𝑧 𝑥 = 𝑦))
11 orass 950 . 2 (((∀𝑧 𝑧 = 𝑥 ∨ ∀𝑧 𝑧 = 𝑦) ∨ ∀𝑧(𝑥 = 𝑦 → ∀𝑧 𝑥 = 𝑦)) ↔ (∀𝑧 𝑧 = 𝑥 ∨ (∀𝑧 𝑧 = 𝑦 ∨ ∀𝑧(𝑥 = 𝑦 → ∀𝑧 𝑥 = 𝑦))))
1210, 11mpbi 222 1 (∀𝑧 𝑧 = 𝑥 ∨ (∀𝑧 𝑧 = 𝑦 ∨ ∀𝑧(𝑥 = 𝑦 → ∀𝑧 𝑥 = 𝑦)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wo 878  wal 1654
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1894  ax-4 1908  ax-5 2009  ax-6 2075  ax-7 2112  ax-10 2192  ax-11 2207  ax-12 2220  ax-13 2389
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 879  df-tru 1660  df-ex 1879  df-nf 1883
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator