![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > axi12 | Structured version Visualization version GIF version |
Description: Axiom of Quantifier Introduction (intuitionistic logic axiom ax-i12). In classical logic, this is mostly a restatement of axc9 2380 (with one additional quantifier). But in intuitionistic logic, changing the negations and implications to disjunctions makes it stronger. Usage of this theorem is discouraged because it depends on ax-13 2370. (Contributed by Jim Kingdon, 31-Dec-2017.) Avoid ax-11 2153. (Revised by Wolf Lammen, 24-Apr-2023.) (New usage is discouraged.) |
Ref | Expression |
---|---|
axi12 | ⊢ (∀𝑧 𝑧 = 𝑥 ∨ (∀𝑧 𝑧 = 𝑦 ∨ ∀𝑧(𝑥 = 𝑦 → ∀𝑧 𝑥 = 𝑦))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfa1 2147 | . . . . 5 ⊢ Ⅎ𝑧∀𝑧 𝑧 = 𝑥 | |
2 | nfa1 2147 | . . . . 5 ⊢ Ⅎ𝑧∀𝑧 𝑧 = 𝑦 | |
3 | 1, 2 | nfor 1906 | . . . 4 ⊢ Ⅎ𝑧(∀𝑧 𝑧 = 𝑥 ∨ ∀𝑧 𝑧 = 𝑦) |
4 | 3 | 19.32 2225 | . . 3 ⊢ (∀𝑧((∀𝑧 𝑧 = 𝑥 ∨ ∀𝑧 𝑧 = 𝑦) ∨ (𝑥 = 𝑦 → ∀𝑧 𝑥 = 𝑦)) ↔ ((∀𝑧 𝑧 = 𝑥 ∨ ∀𝑧 𝑧 = 𝑦) ∨ ∀𝑧(𝑥 = 𝑦 → ∀𝑧 𝑥 = 𝑦))) |
5 | axc9 2380 | . . . . . 6 ⊢ (¬ ∀𝑧 𝑧 = 𝑥 → (¬ ∀𝑧 𝑧 = 𝑦 → (𝑥 = 𝑦 → ∀𝑧 𝑥 = 𝑦))) | |
6 | 5 | orrd 860 | . . . . 5 ⊢ (¬ ∀𝑧 𝑧 = 𝑥 → (∀𝑧 𝑧 = 𝑦 ∨ (𝑥 = 𝑦 → ∀𝑧 𝑥 = 𝑦))) |
7 | 6 | orri 859 | . . . 4 ⊢ (∀𝑧 𝑧 = 𝑥 ∨ (∀𝑧 𝑧 = 𝑦 ∨ (𝑥 = 𝑦 → ∀𝑧 𝑥 = 𝑦))) |
8 | orass 919 | . . . 4 ⊢ (((∀𝑧 𝑧 = 𝑥 ∨ ∀𝑧 𝑧 = 𝑦) ∨ (𝑥 = 𝑦 → ∀𝑧 𝑥 = 𝑦)) ↔ (∀𝑧 𝑧 = 𝑥 ∨ (∀𝑧 𝑧 = 𝑦 ∨ (𝑥 = 𝑦 → ∀𝑧 𝑥 = 𝑦)))) | |
9 | 7, 8 | mpbir 230 | . . 3 ⊢ ((∀𝑧 𝑧 = 𝑥 ∨ ∀𝑧 𝑧 = 𝑦) ∨ (𝑥 = 𝑦 → ∀𝑧 𝑥 = 𝑦)) |
10 | 4, 9 | mpgbi 1799 | . 2 ⊢ ((∀𝑧 𝑧 = 𝑥 ∨ ∀𝑧 𝑧 = 𝑦) ∨ ∀𝑧(𝑥 = 𝑦 → ∀𝑧 𝑥 = 𝑦)) |
11 | orass 919 | . 2 ⊢ (((∀𝑧 𝑧 = 𝑥 ∨ ∀𝑧 𝑧 = 𝑦) ∨ ∀𝑧(𝑥 = 𝑦 → ∀𝑧 𝑥 = 𝑦)) ↔ (∀𝑧 𝑧 = 𝑥 ∨ (∀𝑧 𝑧 = 𝑦 ∨ ∀𝑧(𝑥 = 𝑦 → ∀𝑧 𝑥 = 𝑦)))) | |
12 | 10, 11 | mpbi 229 | 1 ⊢ (∀𝑧 𝑧 = 𝑥 ∨ (∀𝑧 𝑧 = 𝑦 ∨ ∀𝑧(𝑥 = 𝑦 → ∀𝑧 𝑥 = 𝑦))) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∨ wo 844 ∀wal 1538 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-10 2136 ax-12 2170 ax-13 2370 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-tru 1543 df-ex 1781 df-nf 1785 |
This theorem is referenced by: axbnd 2701 |
Copyright terms: Public domain | W3C validator |