MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  axi12 Structured version   Visualization version   GIF version

Theorem axi12 2702
Description: Axiom of Quantifier Introduction (intuitionistic logic axiom ax-i12). In classical logic, this is mostly a restatement of axc9 2381 (with one additional quantifier). But in intuitionistic logic, changing the negations and implications to disjunctions makes it stronger. Usage of this theorem is discouraged because it depends on ax-13 2371. (Contributed by Jim Kingdon, 31-Dec-2017.) Avoid ax-11 2155. (Revised by Wolf Lammen, 24-Apr-2023.) (New usage is discouraged.)
Assertion
Ref Expression
axi12 (∀𝑧 𝑧 = 𝑥 ∨ (∀𝑧 𝑧 = 𝑦 ∨ ∀𝑧(𝑥 = 𝑦 → ∀𝑧 𝑥 = 𝑦)))

Proof of Theorem axi12
StepHypRef Expression
1 nfa1 2149 . . . . 5 𝑧𝑧 𝑧 = 𝑥
2 nfa1 2149 . . . . 5 𝑧𝑧 𝑧 = 𝑦
31, 2nfor 1908 . . . 4 𝑧(∀𝑧 𝑧 = 𝑥 ∨ ∀𝑧 𝑧 = 𝑦)
4319.32 2227 . . 3 (∀𝑧((∀𝑧 𝑧 = 𝑥 ∨ ∀𝑧 𝑧 = 𝑦) ∨ (𝑥 = 𝑦 → ∀𝑧 𝑥 = 𝑦)) ↔ ((∀𝑧 𝑧 = 𝑥 ∨ ∀𝑧 𝑧 = 𝑦) ∨ ∀𝑧(𝑥 = 𝑦 → ∀𝑧 𝑥 = 𝑦)))
5 axc9 2381 . . . . . 6 (¬ ∀𝑧 𝑧 = 𝑥 → (¬ ∀𝑧 𝑧 = 𝑦 → (𝑥 = 𝑦 → ∀𝑧 𝑥 = 𝑦)))
65orrd 862 . . . . 5 (¬ ∀𝑧 𝑧 = 𝑥 → (∀𝑧 𝑧 = 𝑦 ∨ (𝑥 = 𝑦 → ∀𝑧 𝑥 = 𝑦)))
76orri 861 . . . 4 (∀𝑧 𝑧 = 𝑥 ∨ (∀𝑧 𝑧 = 𝑦 ∨ (𝑥 = 𝑦 → ∀𝑧 𝑥 = 𝑦)))
8 orass 921 . . . 4 (((∀𝑧 𝑧 = 𝑥 ∨ ∀𝑧 𝑧 = 𝑦) ∨ (𝑥 = 𝑦 → ∀𝑧 𝑥 = 𝑦)) ↔ (∀𝑧 𝑧 = 𝑥 ∨ (∀𝑧 𝑧 = 𝑦 ∨ (𝑥 = 𝑦 → ∀𝑧 𝑥 = 𝑦))))
97, 8mpbir 230 . . 3 ((∀𝑧 𝑧 = 𝑥 ∨ ∀𝑧 𝑧 = 𝑦) ∨ (𝑥 = 𝑦 → ∀𝑧 𝑥 = 𝑦))
104, 9mpgbi 1801 . 2 ((∀𝑧 𝑧 = 𝑥 ∨ ∀𝑧 𝑧 = 𝑦) ∨ ∀𝑧(𝑥 = 𝑦 → ∀𝑧 𝑥 = 𝑦))
11 orass 921 . 2 (((∀𝑧 𝑧 = 𝑥 ∨ ∀𝑧 𝑧 = 𝑦) ∨ ∀𝑧(𝑥 = 𝑦 → ∀𝑧 𝑥 = 𝑦)) ↔ (∀𝑧 𝑧 = 𝑥 ∨ (∀𝑧 𝑧 = 𝑦 ∨ ∀𝑧(𝑥 = 𝑦 → ∀𝑧 𝑥 = 𝑦))))
1210, 11mpbi 229 1 (∀𝑧 𝑧 = 𝑥 ∨ (∀𝑧 𝑧 = 𝑦 ∨ ∀𝑧(𝑥 = 𝑦 → ∀𝑧 𝑥 = 𝑦)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wo 846  wal 1540
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-10 2138  ax-12 2172  ax-13 2371
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-tru 1545  df-ex 1783  df-nf 1787
This theorem is referenced by:  axbnd  2703
  Copyright terms: Public domain W3C validator