Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > axi12 | Structured version Visualization version GIF version |
Description: Axiom of Quantifier Introduction (intuitionistic logic axiom ax-i12). In classical logic, this is mostly a restatement of axc9 2382 (with one additional quantifier). But in intuitionistic logic, changing the negations and implications to disjunctions makes it stronger. Usage of this theorem is discouraged because it depends on ax-13 2372. (Contributed by Jim Kingdon, 31-Dec-2017.) Avoid ax-11 2156. (Revised by Wolf Lammen, 24-Apr-2023.) (New usage is discouraged.) |
Ref | Expression |
---|---|
axi12 | ⊢ (∀𝑧 𝑧 = 𝑥 ∨ (∀𝑧 𝑧 = 𝑦 ∨ ∀𝑧(𝑥 = 𝑦 → ∀𝑧 𝑥 = 𝑦))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfa1 2150 | . . . . 5 ⊢ Ⅎ𝑧∀𝑧 𝑧 = 𝑥 | |
2 | nfa1 2150 | . . . . 5 ⊢ Ⅎ𝑧∀𝑧 𝑧 = 𝑦 | |
3 | 1, 2 | nfor 1908 | . . . 4 ⊢ Ⅎ𝑧(∀𝑧 𝑧 = 𝑥 ∨ ∀𝑧 𝑧 = 𝑦) |
4 | 3 | 19.32 2229 | . . 3 ⊢ (∀𝑧((∀𝑧 𝑧 = 𝑥 ∨ ∀𝑧 𝑧 = 𝑦) ∨ (𝑥 = 𝑦 → ∀𝑧 𝑥 = 𝑦)) ↔ ((∀𝑧 𝑧 = 𝑥 ∨ ∀𝑧 𝑧 = 𝑦) ∨ ∀𝑧(𝑥 = 𝑦 → ∀𝑧 𝑥 = 𝑦))) |
5 | axc9 2382 | . . . . . 6 ⊢ (¬ ∀𝑧 𝑧 = 𝑥 → (¬ ∀𝑧 𝑧 = 𝑦 → (𝑥 = 𝑦 → ∀𝑧 𝑥 = 𝑦))) | |
6 | 5 | orrd 859 | . . . . 5 ⊢ (¬ ∀𝑧 𝑧 = 𝑥 → (∀𝑧 𝑧 = 𝑦 ∨ (𝑥 = 𝑦 → ∀𝑧 𝑥 = 𝑦))) |
7 | 6 | orri 858 | . . . 4 ⊢ (∀𝑧 𝑧 = 𝑥 ∨ (∀𝑧 𝑧 = 𝑦 ∨ (𝑥 = 𝑦 → ∀𝑧 𝑥 = 𝑦))) |
8 | orass 918 | . . . 4 ⊢ (((∀𝑧 𝑧 = 𝑥 ∨ ∀𝑧 𝑧 = 𝑦) ∨ (𝑥 = 𝑦 → ∀𝑧 𝑥 = 𝑦)) ↔ (∀𝑧 𝑧 = 𝑥 ∨ (∀𝑧 𝑧 = 𝑦 ∨ (𝑥 = 𝑦 → ∀𝑧 𝑥 = 𝑦)))) | |
9 | 7, 8 | mpbir 230 | . . 3 ⊢ ((∀𝑧 𝑧 = 𝑥 ∨ ∀𝑧 𝑧 = 𝑦) ∨ (𝑥 = 𝑦 → ∀𝑧 𝑥 = 𝑦)) |
10 | 4, 9 | mpgbi 1802 | . 2 ⊢ ((∀𝑧 𝑧 = 𝑥 ∨ ∀𝑧 𝑧 = 𝑦) ∨ ∀𝑧(𝑥 = 𝑦 → ∀𝑧 𝑥 = 𝑦)) |
11 | orass 918 | . 2 ⊢ (((∀𝑧 𝑧 = 𝑥 ∨ ∀𝑧 𝑧 = 𝑦) ∨ ∀𝑧(𝑥 = 𝑦 → ∀𝑧 𝑥 = 𝑦)) ↔ (∀𝑧 𝑧 = 𝑥 ∨ (∀𝑧 𝑧 = 𝑦 ∨ ∀𝑧(𝑥 = 𝑦 → ∀𝑧 𝑥 = 𝑦)))) | |
12 | 10, 11 | mpbi 229 | 1 ⊢ (∀𝑧 𝑧 = 𝑥 ∨ (∀𝑧 𝑧 = 𝑦 ∨ ∀𝑧(𝑥 = 𝑦 → ∀𝑧 𝑥 = 𝑦))) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∨ wo 843 ∀wal 1537 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-10 2139 ax-12 2173 ax-13 2372 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-tru 1542 df-ex 1784 df-nf 1788 |
This theorem is referenced by: axbnd 2708 |
Copyright terms: Public domain | W3C validator |