|   | Metamath Proof Explorer | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > barbarilem | Structured version Visualization version GIF version | ||
| Description: Lemma for barbari 2669 and the other Aristotelian syllogisms with existential assumption. (Contributed by BJ, 16-Sep-2022.) | 
| Ref | Expression | 
|---|---|
| barbarilem.min | ⊢ ∃𝑥𝜑 | 
| barbarilem.maj | ⊢ ∀𝑥(𝜑 → 𝜓) | 
| Ref | Expression | 
|---|---|
| barbarilem | ⊢ ∃𝑥(𝜑 ∧ 𝜓) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | barbarilem.maj | . 2 ⊢ ∀𝑥(𝜑 → 𝜓) | |
| 2 | barbarilem.min | . 2 ⊢ ∃𝑥𝜑 | |
| 3 | exintr 1892 | . 2 ⊢ (∀𝑥(𝜑 → 𝜓) → (∃𝑥𝜑 → ∃𝑥(𝜑 ∧ 𝜓))) | |
| 4 | 1, 2, 3 | mp2 9 | 1 ⊢ ∃𝑥(𝜑 ∧ 𝜓) | 
| Colors of variables: wff setvar class | 
| Syntax hints: → wi 4 ∧ wa 395 ∀wal 1538 ∃wex 1779 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 | 
| This theorem is referenced by: barbari 2669 cesaro 2678 camestros 2679 calemos 2690 | 
| Copyright terms: Public domain | W3C validator |