MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  barbarilem Structured version   Visualization version   GIF version

Theorem barbarilem 2669
Description: Lemma for barbari 2670 and the other Aristotelian syllogisms with existential assumption. (Contributed by BJ, 16-Sep-2022.)
Hypotheses
Ref Expression
barbarilem.min 𝑥𝜑
barbarilem.maj 𝑥(𝜑𝜓)
Assertion
Ref Expression
barbarilem 𝑥(𝜑𝜓)

Proof of Theorem barbarilem
StepHypRef Expression
1 barbarilem.maj . 2 𝑥(𝜑𝜓)
2 barbarilem.min . 2 𝑥𝜑
3 exintr 1896 . 2 (∀𝑥(𝜑𝜓) → (∃𝑥𝜑 → ∃𝑥(𝜑𝜓)))
41, 2, 3mp2 9 1 𝑥(𝜑𝜓)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wal 1537  wex 1783
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813
This theorem depends on definitions:  df-bi 206  df-an 396  df-ex 1784
This theorem is referenced by:  barbari  2670  cesaro  2679  camestros  2680  calemos  2691
  Copyright terms: Public domain W3C validator