Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > barbarilem | Structured version Visualization version GIF version |
Description: Lemma for barbari 2670 and the other Aristotelian syllogisms with existential assumption. (Contributed by BJ, 16-Sep-2022.) |
Ref | Expression |
---|---|
barbarilem.min | ⊢ ∃𝑥𝜑 |
barbarilem.maj | ⊢ ∀𝑥(𝜑 → 𝜓) |
Ref | Expression |
---|---|
barbarilem | ⊢ ∃𝑥(𝜑 ∧ 𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | barbarilem.maj | . 2 ⊢ ∀𝑥(𝜑 → 𝜓) | |
2 | barbarilem.min | . 2 ⊢ ∃𝑥𝜑 | |
3 | exintr 1896 | . 2 ⊢ (∀𝑥(𝜑 → 𝜓) → (∃𝑥𝜑 → ∃𝑥(𝜑 ∧ 𝜓))) | |
4 | 1, 2, 3 | mp2 9 | 1 ⊢ ∃𝑥(𝜑 ∧ 𝜓) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∀wal 1537 ∃wex 1783 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 |
This theorem depends on definitions: df-bi 206 df-an 396 df-ex 1784 |
This theorem is referenced by: barbari 2670 cesaro 2679 camestros 2680 calemos 2691 |
Copyright terms: Public domain | W3C validator |