| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > cesaro | Structured version Visualization version GIF version | ||
| Description: "Cesaro", one of the syllogisms of Aristotelian logic. No 𝜑 is 𝜓, all 𝜒 is 𝜓, and 𝜒 exist, therefore some 𝜒 is not 𝜑. In Aristotelian notation, EAO-2: PeM and SaM therefore SoP. (Contributed by David A. Wheeler, 28-Aug-2016.) Reduce dependencies on axioms. (Revised by BJ, 16-Sep-2022.) |
| Ref | Expression |
|---|---|
| cesaro.maj | ⊢ ∀𝑥(𝜑 → ¬ 𝜓) |
| cesaro.min | ⊢ ∀𝑥(𝜒 → 𝜓) |
| cesaro.e | ⊢ ∃𝑥𝜒 |
| Ref | Expression |
|---|---|
| cesaro | ⊢ ∃𝑥(𝜒 ∧ ¬ 𝜑) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cesaro.e | . 2 ⊢ ∃𝑥𝜒 | |
| 2 | cesaro.maj | . . 3 ⊢ ∀𝑥(𝜑 → ¬ 𝜓) | |
| 3 | cesaro.min | . . 3 ⊢ ∀𝑥(𝜒 → 𝜓) | |
| 4 | 2, 3 | cesare 2671 | . 2 ⊢ ∀𝑥(𝜒 → ¬ 𝜑) |
| 5 | 1, 4 | barbarilem 2667 | 1 ⊢ ∃𝑥(𝜒 ∧ ¬ 𝜑) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 ∀wal 1537 ∃wex 1778 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1779 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |