Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > cesaro | Structured version Visualization version GIF version |
Description: "Cesaro", one of the syllogisms of Aristotelian logic. No 𝜑 is 𝜓, all 𝜒 is 𝜓, and 𝜒 exist, therefore some 𝜒 is not 𝜑. In Aristotelian notation, EAO-2: PeM and SaM therefore SoP. (Contributed by David A. Wheeler, 28-Aug-2016.) Reduce dependencies on axioms. (Revised by BJ, 16-Sep-2022.) |
Ref | Expression |
---|---|
cesaro.maj | ⊢ ∀𝑥(𝜑 → ¬ 𝜓) |
cesaro.min | ⊢ ∀𝑥(𝜒 → 𝜓) |
cesaro.e | ⊢ ∃𝑥𝜒 |
Ref | Expression |
---|---|
cesaro | ⊢ ∃𝑥(𝜒 ∧ ¬ 𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cesaro.e | . 2 ⊢ ∃𝑥𝜒 | |
2 | cesaro.maj | . . 3 ⊢ ∀𝑥(𝜑 → ¬ 𝜓) | |
3 | cesaro.min | . . 3 ⊢ ∀𝑥(𝜒 → 𝜓) | |
4 | 2, 3 | cesare 2675 | . 2 ⊢ ∀𝑥(𝜒 → ¬ 𝜑) |
5 | 1, 4 | barbarilem 2671 | 1 ⊢ ∃𝑥(𝜒 ∧ ¬ 𝜑) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 396 ∀wal 1540 ∃wex 1786 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 |
This theorem depends on definitions: df-bi 206 df-an 397 df-ex 1787 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |