MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  bi2bian9 Structured version   Visualization version   GIF version

Theorem bi2bian9 637
Description: Deduction joining two biconditionals with different antecedents. (Contributed by NM, 12-May-2004.)
Hypotheses
Ref Expression
bi2an9.1 (𝜑 → (𝜓𝜒))
bi2an9.2 (𝜃 → (𝜏𝜂))
Assertion
Ref Expression
bi2bian9 ((𝜑𝜃) → ((𝜓𝜏) ↔ (𝜒𝜂)))

Proof of Theorem bi2bian9
StepHypRef Expression
1 bi2an9.1 . . 3 (𝜑 → (𝜓𝜒))
21adantr 480 . 2 ((𝜑𝜃) → (𝜓𝜒))
3 bi2an9.2 . . 3 (𝜃 → (𝜏𝜂))
43adantl 481 . 2 ((𝜑𝜃) → (𝜏𝜂))
52, 4bibi12d 345 1 ((𝜑𝜃) → ((𝜓𝜏) ↔ (𝜒𝜂)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 206  df-an 396
This theorem is referenced by:  releccnveq  36324  extssr  36554  wepwsolem  40783  aomclem8  40802
  Copyright terms: Public domain W3C validator