MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  bi2bian9 Structured version   Visualization version   GIF version

Theorem bi2bian9 641
Description: Deduction joining two biconditionals with different antecedents. (Contributed by NM, 12-May-2004.)
Hypotheses
Ref Expression
bi2an9.1 (𝜑 → (𝜓𝜒))
bi2an9.2 (𝜃 → (𝜏𝜂))
Assertion
Ref Expression
bi2bian9 ((𝜑𝜃) → ((𝜓𝜏) ↔ (𝜒𝜂)))

Proof of Theorem bi2bian9
StepHypRef Expression
1 bi2an9.1 . . 3 (𝜑 → (𝜓𝜒))
21adantr 484 . 2 ((𝜑𝜃) → (𝜓𝜒))
3 bi2an9.2 . . 3 (𝜃 → (𝜏𝜂))
43adantl 485 . 2 ((𝜑𝜃) → (𝜏𝜂))
52, 4bibi12d 349 1 ((𝜑𝜃) → ((𝜓𝜏) ↔ (𝜒𝜂)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 210  df-an 400
This theorem is referenced by:  releccnveq  36040  extssr  36270  wepwsolem  40459  aomclem8  40478
  Copyright terms: Public domain W3C validator