| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > bi2bian9 | Structured version Visualization version GIF version | ||
| Description: Deduction joining two biconditionals with different antecedents. (Contributed by NM, 12-May-2004.) |
| Ref | Expression |
|---|---|
| bi2an9.1 | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
| bi2an9.2 | ⊢ (𝜃 → (𝜏 ↔ 𝜂)) |
| Ref | Expression |
|---|---|
| bi2bian9 | ⊢ ((𝜑 ∧ 𝜃) → ((𝜓 ↔ 𝜏) ↔ (𝜒 ↔ 𝜂))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | bi2an9.1 | . . 3 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | |
| 2 | 1 | adantr 480 | . 2 ⊢ ((𝜑 ∧ 𝜃) → (𝜓 ↔ 𝜒)) |
| 3 | bi2an9.2 | . . 3 ⊢ (𝜃 → (𝜏 ↔ 𝜂)) | |
| 4 | 3 | adantl 481 | . 2 ⊢ ((𝜑 ∧ 𝜃) → (𝜏 ↔ 𝜂)) |
| 5 | 2, 4 | bibi12d 345 | 1 ⊢ ((𝜑 ∧ 𝜃) → ((𝜓 ↔ 𝜏) ↔ (𝜒 ↔ 𝜂))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 |
| This theorem is referenced by: releccnveq 38281 extssr 38532 wepwsolem 43033 aomclem8 43052 |
| Copyright terms: Public domain | W3C validator |