|   | Metamath Proof Explorer | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > bianass | Structured version Visualization version GIF version | ||
| Description: An inference to merge two lists of conjuncts. (Contributed by Giovanni Mascellani, 23-May-2019.) | 
| Ref | Expression | 
|---|---|
| bianass.1 | ⊢ (𝜑 ↔ (𝜓 ∧ 𝜒)) | 
| Ref | Expression | 
|---|---|
| bianass | ⊢ ((𝜂 ∧ 𝜑) ↔ ((𝜂 ∧ 𝜓) ∧ 𝜒)) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | bianass.1 | . . 3 ⊢ (𝜑 ↔ (𝜓 ∧ 𝜒)) | |
| 2 | 1 | anbi2i 623 | . 2 ⊢ ((𝜂 ∧ 𝜑) ↔ (𝜂 ∧ (𝜓 ∧ 𝜒))) | 
| 3 | anass 468 | . 2 ⊢ (((𝜂 ∧ 𝜓) ∧ 𝜒) ↔ (𝜂 ∧ (𝜓 ∧ 𝜒))) | |
| 4 | 2, 3 | bitr4i 278 | 1 ⊢ ((𝜂 ∧ 𝜑) ↔ ((𝜂 ∧ 𝜓) ∧ 𝜒)) | 
| Colors of variables: wff setvar class | 
| Syntax hints: ↔ wb 206 ∧ wa 395 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 | 
| This theorem depends on definitions: df-bi 207 df-an 396 | 
| This theorem is referenced by: bianassc 643 an12 645 an4 656 cnvresima 6250 elcncf1di 24921 nb3grpr2 29400 dfpth2 29749 wwlksnextwrd 29917 cusgr3cyclex 35141 satfvsuclem2 35365 bj-prmoore 37116 bj-imdirco 37191 redundpim3 38631 isthincd2 49086 | 
| Copyright terms: Public domain | W3C validator |