| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > bianass | Structured version Visualization version GIF version | ||
| Description: An inference to merge two lists of conjuncts. (Contributed by Giovanni Mascellani, 23-May-2019.) |
| Ref | Expression |
|---|---|
| bianass.1 | ⊢ (𝜑 ↔ (𝜓 ∧ 𝜒)) |
| Ref | Expression |
|---|---|
| bianass | ⊢ ((𝜂 ∧ 𝜑) ↔ ((𝜂 ∧ 𝜓) ∧ 𝜒)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | bianass.1 | . . 3 ⊢ (𝜑 ↔ (𝜓 ∧ 𝜒)) | |
| 2 | 1 | anbi2i 623 | . 2 ⊢ ((𝜂 ∧ 𝜑) ↔ (𝜂 ∧ (𝜓 ∧ 𝜒))) |
| 3 | anass 468 | . 2 ⊢ (((𝜂 ∧ 𝜓) ∧ 𝜒) ↔ (𝜂 ∧ (𝜓 ∧ 𝜒))) | |
| 4 | 2, 3 | bitr4i 278 | 1 ⊢ ((𝜂 ∧ 𝜑) ↔ ((𝜂 ∧ 𝜓) ∧ 𝜒)) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 |
| This theorem is referenced by: bianassc 643 an12 645 an4 656 cnvresima 6219 elcncf1di 24839 nb3grpr2 29362 dfpth2 29711 wwlksnextwrd 29879 cusgr3cyclex 35158 satfvsuclem2 35382 bj-prmoore 37133 bj-imdirco 37208 redundpim3 38648 isthincd2 49323 |
| Copyright terms: Public domain | W3C validator |