Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > bianass | Structured version Visualization version GIF version |
Description: An inference to merge two lists of conjuncts. (Contributed by Giovanni Mascellani, 23-May-2019.) |
Ref | Expression |
---|---|
bianass.1 | ⊢ (𝜑 ↔ (𝜓 ∧ 𝜒)) |
Ref | Expression |
---|---|
bianass | ⊢ ((𝜂 ∧ 𝜑) ↔ ((𝜂 ∧ 𝜓) ∧ 𝜒)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bianass.1 | . . 3 ⊢ (𝜑 ↔ (𝜓 ∧ 𝜒)) | |
2 | 1 | anbi2i 623 | . 2 ⊢ ((𝜂 ∧ 𝜑) ↔ (𝜂 ∧ (𝜓 ∧ 𝜒))) |
3 | anass 469 | . 2 ⊢ (((𝜂 ∧ 𝜓) ∧ 𝜒) ↔ (𝜂 ∧ (𝜓 ∧ 𝜒))) | |
4 | 2, 3 | bitr4i 277 | 1 ⊢ ((𝜂 ∧ 𝜑) ↔ ((𝜂 ∧ 𝜓) ∧ 𝜒)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∧ wa 396 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 397 |
This theorem is referenced by: bianassc 640 an12 642 an4 653 cnvresima 6133 elcncf1di 24058 nb3grpr2 27750 wwlksnextwrd 28262 cusgr3cyclex 33098 satfvsuclem2 33322 bj-prmoore 35286 bj-imdirco 35361 redundpim3 36743 isthincd2 46319 |
Copyright terms: Public domain | W3C validator |