MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  bianass Structured version   Visualization version   GIF version

Theorem bianass 640
Description: An inference to merge two lists of conjuncts. (Contributed by Giovanni Mascellani, 23-May-2019.)
Hypothesis
Ref Expression
bianass.1 (𝜑 ↔ (𝜓𝜒))
Assertion
Ref Expression
bianass ((𝜂𝜑) ↔ ((𝜂𝜓) ∧ 𝜒))

Proof of Theorem bianass
StepHypRef Expression
1 bianass.1 . . 3 (𝜑 ↔ (𝜓𝜒))
21anbi2i 623 . 2 ((𝜂𝜑) ↔ (𝜂 ∧ (𝜓𝜒)))
3 anass 469 . 2 (((𝜂𝜓) ∧ 𝜒) ↔ (𝜂 ∧ (𝜓𝜒)))
42, 3bitr4i 277 1 ((𝜂𝜑) ↔ ((𝜂𝜓) ∧ 𝜒))
Colors of variables: wff setvar class
Syntax hints:  wb 205  wa 396
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 206  df-an 397
This theorem is referenced by:  bianassc  641  an12  643  an4  654  cnvresima  6229  elcncf1di  24418  nb3grpr2  28678  wwlksnextwrd  29189  cusgr3cyclex  34196  satfvsuclem2  34420  bj-prmoore  36082  bj-imdirco  36157  redundpim3  37586  isthincd2  47736
  Copyright terms: Public domain W3C validator