Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  bianass Structured version   Visualization version   GIF version

Theorem bianass 640
 Description: An inference to merge two lists of conjuncts. (Contributed by Giovanni Mascellani, 23-May-2019.)
Hypothesis
Ref Expression
bianass.1 (𝜑 ↔ (𝜓𝜒))
Assertion
Ref Expression
bianass ((𝜂𝜑) ↔ ((𝜂𝜓) ∧ 𝜒))

Proof of Theorem bianass
StepHypRef Expression
1 bianass.1 . . 3 (𝜑 ↔ (𝜓𝜒))
21anbi2i 624 . 2 ((𝜂𝜑) ↔ (𝜂 ∧ (𝜓𝜒)))
3 anass 471 . 2 (((𝜂𝜓) ∧ 𝜒) ↔ (𝜂 ∧ (𝜓𝜒)))
42, 3bitr4i 280 1 ((𝜂𝜑) ↔ ((𝜂𝜓) ∧ 𝜒))
 Colors of variables: wff setvar class Syntax hints:   ↔ wb 208   ∧ wa 398 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8 This theorem depends on definitions:  df-bi 209  df-an 399 This theorem is referenced by:  bianassc  641  an12  643  an4  654  cnvresima  6082  elcncf1di  23497  nb3grpr2  27159  wwlksnextwrd  27669  cusgr3cyclex  32378  satfvsuclem2  32602  etasslt  33269  bj-prmoore  34401  redundpim3  35859
 Copyright terms: Public domain W3C validator