Step | Hyp | Ref
| Expression |
1 | | elequ2 2126 |
. . . . . . 7
⊢ (ℎ = 𝑏 → (𝑖 ∈ ℎ ↔ 𝑖 ∈ 𝑏)) |
2 | | elequ2 2126 |
. . . . . . . 8
⊢ (𝑔 = 𝑐 → (𝑖 ∈ 𝑔 ↔ 𝑖 ∈ 𝑐)) |
3 | 2 | notbid 321 |
. . . . . . 7
⊢ (𝑔 = 𝑐 → (¬ 𝑖 ∈ 𝑔 ↔ ¬ 𝑖 ∈ 𝑐)) |
4 | 1, 3 | bi2anan9r 639 |
. . . . . 6
⊢ ((𝑔 = 𝑐 ∧ ℎ = 𝑏) → ((𝑖 ∈ ℎ ∧ ¬ 𝑖 ∈ 𝑔) ↔ (𝑖 ∈ 𝑏 ∧ ¬ 𝑖 ∈ 𝑐))) |
5 | | elequ2 2126 |
. . . . . . . . 9
⊢ (𝑔 = 𝑐 → (𝑗 ∈ 𝑔 ↔ 𝑗 ∈ 𝑐)) |
6 | | elequ2 2126 |
. . . . . . . . 9
⊢ (ℎ = 𝑏 → (𝑗 ∈ ℎ ↔ 𝑗 ∈ 𝑏)) |
7 | 5, 6 | bi2bian9 640 |
. . . . . . . 8
⊢ ((𝑔 = 𝑐 ∧ ℎ = 𝑏) → ((𝑗 ∈ 𝑔 ↔ 𝑗 ∈ ℎ) ↔ (𝑗 ∈ 𝑐 ↔ 𝑗 ∈ 𝑏))) |
8 | 7 | imbi2d 344 |
. . . . . . 7
⊢ ((𝑔 = 𝑐 ∧ ℎ = 𝑏) → ((𝑗(𝑒‘∪ dom 𝑒)𝑖 → (𝑗 ∈ 𝑔 ↔ 𝑗 ∈ ℎ)) ↔ (𝑗(𝑒‘∪ dom 𝑒)𝑖 → (𝑗 ∈ 𝑐 ↔ 𝑗 ∈ 𝑏)))) |
9 | 8 | ralbidv 3126 |
. . . . . 6
⊢ ((𝑔 = 𝑐 ∧ ℎ = 𝑏) → (∀𝑗 ∈ (𝑅1‘∪ dom 𝑒)(𝑗(𝑒‘∪ dom 𝑒)𝑖 → (𝑗 ∈ 𝑔 ↔ 𝑗 ∈ ℎ)) ↔ ∀𝑗 ∈ (𝑅1‘∪ dom 𝑒)(𝑗(𝑒‘∪ dom 𝑒)𝑖 → (𝑗 ∈ 𝑐 ↔ 𝑗 ∈ 𝑏)))) |
10 | 4, 9 | anbi12d 633 |
. . . . 5
⊢ ((𝑔 = 𝑐 ∧ ℎ = 𝑏) → (((𝑖 ∈ ℎ ∧ ¬ 𝑖 ∈ 𝑔) ∧ ∀𝑗 ∈ (𝑅1‘∪ dom 𝑒)(𝑗(𝑒‘∪ dom 𝑒)𝑖 → (𝑗 ∈ 𝑔 ↔ 𝑗 ∈ ℎ))) ↔ ((𝑖 ∈ 𝑏 ∧ ¬ 𝑖 ∈ 𝑐) ∧ ∀𝑗 ∈ (𝑅1‘∪ dom 𝑒)(𝑗(𝑒‘∪ dom 𝑒)𝑖 → (𝑗 ∈ 𝑐 ↔ 𝑗 ∈ 𝑏))))) |
11 | 10 | rexbidv 3221 |
. . . 4
⊢ ((𝑔 = 𝑐 ∧ ℎ = 𝑏) → (∃𝑖 ∈ (𝑅1‘∪ dom 𝑒)((𝑖 ∈ ℎ ∧ ¬ 𝑖 ∈ 𝑔) ∧ ∀𝑗 ∈ (𝑅1‘∪ dom 𝑒)(𝑗(𝑒‘∪ dom 𝑒)𝑖 → (𝑗 ∈ 𝑔 ↔ 𝑗 ∈ ℎ))) ↔ ∃𝑖 ∈ (𝑅1‘∪ dom 𝑒)((𝑖 ∈ 𝑏 ∧ ¬ 𝑖 ∈ 𝑐) ∧ ∀𝑗 ∈ (𝑅1‘∪ dom 𝑒)(𝑗(𝑒‘∪ dom 𝑒)𝑖 → (𝑗 ∈ 𝑐 ↔ 𝑗 ∈ 𝑏))))) |
12 | | elequ1 2118 |
. . . . . . 7
⊢ (𝑖 = 𝑑 → (𝑖 ∈ 𝑏 ↔ 𝑑 ∈ 𝑏)) |
13 | | elequ1 2118 |
. . . . . . . 8
⊢ (𝑖 = 𝑑 → (𝑖 ∈ 𝑐 ↔ 𝑑 ∈ 𝑐)) |
14 | 13 | notbid 321 |
. . . . . . 7
⊢ (𝑖 = 𝑑 → (¬ 𝑖 ∈ 𝑐 ↔ ¬ 𝑑 ∈ 𝑐)) |
15 | 12, 14 | anbi12d 633 |
. . . . . 6
⊢ (𝑖 = 𝑑 → ((𝑖 ∈ 𝑏 ∧ ¬ 𝑖 ∈ 𝑐) ↔ (𝑑 ∈ 𝑏 ∧ ¬ 𝑑 ∈ 𝑐))) |
16 | | breq2 5036 |
. . . . . . . . 9
⊢ (𝑖 = 𝑑 → (𝑗(𝑒‘∪ dom 𝑒)𝑖 ↔ 𝑗(𝑒‘∪ dom 𝑒)𝑑)) |
17 | 16 | imbi1d 345 |
. . . . . . . 8
⊢ (𝑖 = 𝑑 → ((𝑗(𝑒‘∪ dom 𝑒)𝑖 → (𝑗 ∈ 𝑐 ↔ 𝑗 ∈ 𝑏)) ↔ (𝑗(𝑒‘∪ dom 𝑒)𝑑 → (𝑗 ∈ 𝑐 ↔ 𝑗 ∈ 𝑏)))) |
18 | 17 | ralbidv 3126 |
. . . . . . 7
⊢ (𝑖 = 𝑑 → (∀𝑗 ∈ (𝑅1‘∪ dom 𝑒)(𝑗(𝑒‘∪ dom 𝑒)𝑖 → (𝑗 ∈ 𝑐 ↔ 𝑗 ∈ 𝑏)) ↔ ∀𝑗 ∈ (𝑅1‘∪ dom 𝑒)(𝑗(𝑒‘∪ dom 𝑒)𝑑 → (𝑗 ∈ 𝑐 ↔ 𝑗 ∈ 𝑏)))) |
19 | | breq1 5035 |
. . . . . . . . 9
⊢ (𝑗 = 𝑓 → (𝑗(𝑒‘∪ dom 𝑒)𝑑 ↔ 𝑓(𝑒‘∪ dom 𝑒)𝑑)) |
20 | | elequ1 2118 |
. . . . . . . . . 10
⊢ (𝑗 = 𝑓 → (𝑗 ∈ 𝑐 ↔ 𝑓 ∈ 𝑐)) |
21 | | elequ1 2118 |
. . . . . . . . . 10
⊢ (𝑗 = 𝑓 → (𝑗 ∈ 𝑏 ↔ 𝑓 ∈ 𝑏)) |
22 | 20, 21 | bibi12d 349 |
. . . . . . . . 9
⊢ (𝑗 = 𝑓 → ((𝑗 ∈ 𝑐 ↔ 𝑗 ∈ 𝑏) ↔ (𝑓 ∈ 𝑐 ↔ 𝑓 ∈ 𝑏))) |
23 | 19, 22 | imbi12d 348 |
. . . . . . . 8
⊢ (𝑗 = 𝑓 → ((𝑗(𝑒‘∪ dom 𝑒)𝑑 → (𝑗 ∈ 𝑐 ↔ 𝑗 ∈ 𝑏)) ↔ (𝑓(𝑒‘∪ dom 𝑒)𝑑 → (𝑓 ∈ 𝑐 ↔ 𝑓 ∈ 𝑏)))) |
24 | 23 | cbvralvw 3361 |
. . . . . . 7
⊢
(∀𝑗 ∈
(𝑅1‘∪ dom 𝑒)(𝑗(𝑒‘∪ dom 𝑒)𝑑 → (𝑗 ∈ 𝑐 ↔ 𝑗 ∈ 𝑏)) ↔ ∀𝑓 ∈ (𝑅1‘∪ dom 𝑒)(𝑓(𝑒‘∪ dom 𝑒)𝑑 → (𝑓 ∈ 𝑐 ↔ 𝑓 ∈ 𝑏))) |
25 | 18, 24 | bitrdi 290 |
. . . . . 6
⊢ (𝑖 = 𝑑 → (∀𝑗 ∈ (𝑅1‘∪ dom 𝑒)(𝑗(𝑒‘∪ dom 𝑒)𝑖 → (𝑗 ∈ 𝑐 ↔ 𝑗 ∈ 𝑏)) ↔ ∀𝑓 ∈ (𝑅1‘∪ dom 𝑒)(𝑓(𝑒‘∪ dom 𝑒)𝑑 → (𝑓 ∈ 𝑐 ↔ 𝑓 ∈ 𝑏)))) |
26 | 15, 25 | anbi12d 633 |
. . . . 5
⊢ (𝑖 = 𝑑 → (((𝑖 ∈ 𝑏 ∧ ¬ 𝑖 ∈ 𝑐) ∧ ∀𝑗 ∈ (𝑅1‘∪ dom 𝑒)(𝑗(𝑒‘∪ dom 𝑒)𝑖 → (𝑗 ∈ 𝑐 ↔ 𝑗 ∈ 𝑏))) ↔ ((𝑑 ∈ 𝑏 ∧ ¬ 𝑑 ∈ 𝑐) ∧ ∀𝑓 ∈ (𝑅1‘∪ dom 𝑒)(𝑓(𝑒‘∪ dom 𝑒)𝑑 → (𝑓 ∈ 𝑐 ↔ 𝑓 ∈ 𝑏))))) |
27 | 26 | cbvrexvw 3362 |
. . . 4
⊢
(∃𝑖 ∈
(𝑅1‘∪ dom 𝑒)((𝑖 ∈ 𝑏 ∧ ¬ 𝑖 ∈ 𝑐) ∧ ∀𝑗 ∈ (𝑅1‘∪ dom 𝑒)(𝑗(𝑒‘∪ dom 𝑒)𝑖 → (𝑗 ∈ 𝑐 ↔ 𝑗 ∈ 𝑏))) ↔ ∃𝑑 ∈ (𝑅1‘∪ dom 𝑒)((𝑑 ∈ 𝑏 ∧ ¬ 𝑑 ∈ 𝑐) ∧ ∀𝑓 ∈ (𝑅1‘∪ dom 𝑒)(𝑓(𝑒‘∪ dom 𝑒)𝑑 → (𝑓 ∈ 𝑐 ↔ 𝑓 ∈ 𝑏)))) |
28 | 11, 27 | bitrdi 290 |
. . 3
⊢ ((𝑔 = 𝑐 ∧ ℎ = 𝑏) → (∃𝑖 ∈ (𝑅1‘∪ dom 𝑒)((𝑖 ∈ ℎ ∧ ¬ 𝑖 ∈ 𝑔) ∧ ∀𝑗 ∈ (𝑅1‘∪ dom 𝑒)(𝑗(𝑒‘∪ dom 𝑒)𝑖 → (𝑗 ∈ 𝑔 ↔ 𝑗 ∈ ℎ))) ↔ ∃𝑑 ∈ (𝑅1‘∪ dom 𝑒)((𝑑 ∈ 𝑏 ∧ ¬ 𝑑 ∈ 𝑐) ∧ ∀𝑓 ∈ (𝑅1‘∪ dom 𝑒)(𝑓(𝑒‘∪ dom 𝑒)𝑑 → (𝑓 ∈ 𝑐 ↔ 𝑓 ∈ 𝑏))))) |
29 | 28 | cbvopabv 5104 |
. 2
⊢
{〈𝑔, ℎ〉 ∣ ∃𝑖 ∈
(𝑅1‘∪ dom 𝑒)((𝑖 ∈ ℎ ∧ ¬ 𝑖 ∈ 𝑔) ∧ ∀𝑗 ∈ (𝑅1‘∪ dom 𝑒)(𝑗(𝑒‘∪ dom 𝑒)𝑖 → (𝑗 ∈ 𝑔 ↔ 𝑗 ∈ ℎ)))} = {〈𝑐, 𝑏〉 ∣ ∃𝑑 ∈ (𝑅1‘∪ dom 𝑒)((𝑑 ∈ 𝑏 ∧ ¬ 𝑑 ∈ 𝑐) ∧ ∀𝑓 ∈ (𝑅1‘∪ dom 𝑒)(𝑓(𝑒‘∪ dom 𝑒)𝑑 → (𝑓 ∈ 𝑐 ↔ 𝑓 ∈ 𝑏)))} |
30 | | nfcv 2919 |
. . 3
⊢
Ⅎ𝑐sup((𝑦‘𝑔), (𝑅1‘dom 𝑒), {〈𝑔, ℎ〉 ∣ ∃𝑖 ∈ (𝑅1‘∪ dom 𝑒)((𝑖 ∈ ℎ ∧ ¬ 𝑖 ∈ 𝑔) ∧ ∀𝑗 ∈ (𝑅1‘∪ dom 𝑒)(𝑗(𝑒‘∪ dom 𝑒)𝑖 → (𝑗 ∈ 𝑔 ↔ 𝑗 ∈ ℎ)))}) |
31 | | nfcv 2919 |
. . . 4
⊢
Ⅎ𝑔(𝑦‘𝑐) |
32 | | nfcv 2919 |
. . . 4
⊢
Ⅎ𝑔(𝑅1‘dom 𝑒) |
33 | | nfopab1 5101 |
. . . 4
⊢
Ⅎ𝑔{〈𝑔, ℎ〉 ∣ ∃𝑖 ∈ (𝑅1‘∪ dom 𝑒)((𝑖 ∈ ℎ ∧ ¬ 𝑖 ∈ 𝑔) ∧ ∀𝑗 ∈ (𝑅1‘∪ dom 𝑒)(𝑗(𝑒‘∪ dom 𝑒)𝑖 → (𝑗 ∈ 𝑔 ↔ 𝑗 ∈ ℎ)))} |
34 | 31, 32, 33 | nfsup 8948 |
. . 3
⊢
Ⅎ𝑔sup((𝑦‘𝑐), (𝑅1‘dom 𝑒), {〈𝑔, ℎ〉 ∣ ∃𝑖 ∈ (𝑅1‘∪ dom 𝑒)((𝑖 ∈ ℎ ∧ ¬ 𝑖 ∈ 𝑔) ∧ ∀𝑗 ∈ (𝑅1‘∪ dom 𝑒)(𝑗(𝑒‘∪ dom 𝑒)𝑖 → (𝑗 ∈ 𝑔 ↔ 𝑗 ∈ ℎ)))}) |
35 | | fveq2 6658 |
. . . 4
⊢ (𝑔 = 𝑐 → (𝑦‘𝑔) = (𝑦‘𝑐)) |
36 | 35 | supeq1d 8943 |
. . 3
⊢ (𝑔 = 𝑐 → sup((𝑦‘𝑔), (𝑅1‘dom 𝑒), {〈𝑔, ℎ〉 ∣ ∃𝑖 ∈ (𝑅1‘∪ dom 𝑒)((𝑖 ∈ ℎ ∧ ¬ 𝑖 ∈ 𝑔) ∧ ∀𝑗 ∈ (𝑅1‘∪ dom 𝑒)(𝑗(𝑒‘∪ dom 𝑒)𝑖 → (𝑗 ∈ 𝑔 ↔ 𝑗 ∈ ℎ)))}) = sup((𝑦‘𝑐), (𝑅1‘dom 𝑒), {〈𝑔, ℎ〉 ∣ ∃𝑖 ∈ (𝑅1‘∪ dom 𝑒)((𝑖 ∈ ℎ ∧ ¬ 𝑖 ∈ 𝑔) ∧ ∀𝑗 ∈ (𝑅1‘∪ dom 𝑒)(𝑗(𝑒‘∪ dom 𝑒)𝑖 → (𝑗 ∈ 𝑔 ↔ 𝑗 ∈ ℎ)))})) |
37 | 30, 34, 36 | cbvmpt 5133 |
. 2
⊢ (𝑔 ∈ V ↦ sup((𝑦‘𝑔), (𝑅1‘dom 𝑒), {〈𝑔, ℎ〉 ∣ ∃𝑖 ∈ (𝑅1‘∪ dom 𝑒)((𝑖 ∈ ℎ ∧ ¬ 𝑖 ∈ 𝑔) ∧ ∀𝑗 ∈ (𝑅1‘∪ dom 𝑒)(𝑗(𝑒‘∪ dom 𝑒)𝑖 → (𝑗 ∈ 𝑔 ↔ 𝑗 ∈ ℎ)))})) = (𝑐 ∈ V ↦ sup((𝑦‘𝑐), (𝑅1‘dom 𝑒), {〈𝑔, ℎ〉 ∣ ∃𝑖 ∈ (𝑅1‘∪ dom 𝑒)((𝑖 ∈ ℎ ∧ ¬ 𝑖 ∈ 𝑔) ∧ ∀𝑗 ∈ (𝑅1‘∪ dom 𝑒)(𝑗(𝑒‘∪ dom 𝑒)𝑖 → (𝑗 ∈ 𝑔 ↔ 𝑗 ∈ ℎ)))})) |
38 | | nfcv 2919 |
. . . 4
⊢
Ⅎ𝑐((𝑔 ∈ V ↦ sup((𝑦‘𝑔), (𝑅1‘dom 𝑒), {〈𝑔, ℎ〉 ∣ ∃𝑖 ∈ (𝑅1‘∪ dom 𝑒)((𝑖 ∈ ℎ ∧ ¬ 𝑖 ∈ 𝑔) ∧ ∀𝑗 ∈ (𝑅1‘∪ dom 𝑒)(𝑗(𝑒‘∪ dom 𝑒)𝑖 → (𝑗 ∈ 𝑔 ↔ 𝑗 ∈ ℎ)))}))‘((𝑅1‘dom
𝑒) ∖ ran 𝑔)) |
39 | | nffvmpt1 6669 |
. . . 4
⊢
Ⅎ𝑔((𝑔 ∈ V ↦ sup((𝑦‘𝑔), (𝑅1‘dom 𝑒), {〈𝑔, ℎ〉 ∣ ∃𝑖 ∈ (𝑅1‘∪ dom 𝑒)((𝑖 ∈ ℎ ∧ ¬ 𝑖 ∈ 𝑔) ∧ ∀𝑗 ∈ (𝑅1‘∪ dom 𝑒)(𝑗(𝑒‘∪ dom 𝑒)𝑖 → (𝑗 ∈ 𝑔 ↔ 𝑗 ∈ ℎ)))}))‘((𝑅1‘dom
𝑒) ∖ ran 𝑐)) |
40 | | rneq 5777 |
. . . . . 6
⊢ (𝑔 = 𝑐 → ran 𝑔 = ran 𝑐) |
41 | 40 | difeq2d 4028 |
. . . . 5
⊢ (𝑔 = 𝑐 → ((𝑅1‘dom
𝑒) ∖ ran 𝑔) =
((𝑅1‘dom 𝑒) ∖ ran 𝑐)) |
42 | 41 | fveq2d 6662 |
. . . 4
⊢ (𝑔 = 𝑐 → ((𝑔 ∈ V ↦ sup((𝑦‘𝑔), (𝑅1‘dom 𝑒), {〈𝑔, ℎ〉 ∣ ∃𝑖 ∈ (𝑅1‘∪ dom 𝑒)((𝑖 ∈ ℎ ∧ ¬ 𝑖 ∈ 𝑔) ∧ ∀𝑗 ∈ (𝑅1‘∪ dom 𝑒)(𝑗(𝑒‘∪ dom 𝑒)𝑖 → (𝑗 ∈ 𝑔 ↔ 𝑗 ∈ ℎ)))}))‘((𝑅1‘dom
𝑒) ∖ ran 𝑔)) = ((𝑔 ∈ V ↦ sup((𝑦‘𝑔), (𝑅1‘dom 𝑒), {〈𝑔, ℎ〉 ∣ ∃𝑖 ∈ (𝑅1‘∪ dom 𝑒)((𝑖 ∈ ℎ ∧ ¬ 𝑖 ∈ 𝑔) ∧ ∀𝑗 ∈ (𝑅1‘∪ dom 𝑒)(𝑗(𝑒‘∪ dom 𝑒)𝑖 → (𝑗 ∈ 𝑔 ↔ 𝑗 ∈ ℎ)))}))‘((𝑅1‘dom
𝑒) ∖ ran 𝑐))) |
43 | 38, 39, 42 | cbvmpt 5133 |
. . 3
⊢ (𝑔 ∈ V ↦ ((𝑔 ∈ V ↦ sup((𝑦‘𝑔), (𝑅1‘dom 𝑒), {〈𝑔, ℎ〉 ∣ ∃𝑖 ∈ (𝑅1‘∪ dom 𝑒)((𝑖 ∈ ℎ ∧ ¬ 𝑖 ∈ 𝑔) ∧ ∀𝑗 ∈ (𝑅1‘∪ dom 𝑒)(𝑗(𝑒‘∪ dom 𝑒)𝑖 → (𝑗 ∈ 𝑔 ↔ 𝑗 ∈ ℎ)))}))‘((𝑅1‘dom
𝑒) ∖ ran 𝑔))) = (𝑐 ∈ V ↦ ((𝑔 ∈ V ↦ sup((𝑦‘𝑔), (𝑅1‘dom 𝑒), {〈𝑔, ℎ〉 ∣ ∃𝑖 ∈ (𝑅1‘∪ dom 𝑒)((𝑖 ∈ ℎ ∧ ¬ 𝑖 ∈ 𝑔) ∧ ∀𝑗 ∈ (𝑅1‘∪ dom 𝑒)(𝑗(𝑒‘∪ dom 𝑒)𝑖 → (𝑗 ∈ 𝑔 ↔ 𝑗 ∈ ℎ)))}))‘((𝑅1‘dom
𝑒) ∖ ran 𝑐))) |
44 | | recseq 8020 |
. . 3
⊢ ((𝑔 ∈ V ↦ ((𝑔 ∈ V ↦ sup((𝑦‘𝑔), (𝑅1‘dom 𝑒), {〈𝑔, ℎ〉 ∣ ∃𝑖 ∈ (𝑅1‘∪ dom 𝑒)((𝑖 ∈ ℎ ∧ ¬ 𝑖 ∈ 𝑔) ∧ ∀𝑗 ∈ (𝑅1‘∪ dom 𝑒)(𝑗(𝑒‘∪ dom 𝑒)𝑖 → (𝑗 ∈ 𝑔 ↔ 𝑗 ∈ ℎ)))}))‘((𝑅1‘dom
𝑒) ∖ ran 𝑔))) = (𝑐 ∈ V ↦ ((𝑔 ∈ V ↦ sup((𝑦‘𝑔), (𝑅1‘dom 𝑒), {〈𝑔, ℎ〉 ∣ ∃𝑖 ∈ (𝑅1‘∪ dom 𝑒)((𝑖 ∈ ℎ ∧ ¬ 𝑖 ∈ 𝑔) ∧ ∀𝑗 ∈ (𝑅1‘∪ dom 𝑒)(𝑗(𝑒‘∪ dom 𝑒)𝑖 → (𝑗 ∈ 𝑔 ↔ 𝑗 ∈ ℎ)))}))‘((𝑅1‘dom
𝑒) ∖ ran 𝑐))) → recs((𝑔 ∈ V ↦ ((𝑔 ∈ V ↦ sup((𝑦‘𝑔), (𝑅1‘dom 𝑒), {〈𝑔, ℎ〉 ∣ ∃𝑖 ∈ (𝑅1‘∪ dom 𝑒)((𝑖 ∈ ℎ ∧ ¬ 𝑖 ∈ 𝑔) ∧ ∀𝑗 ∈ (𝑅1‘∪ dom 𝑒)(𝑗(𝑒‘∪ dom 𝑒)𝑖 → (𝑗 ∈ 𝑔 ↔ 𝑗 ∈ ℎ)))}))‘((𝑅1‘dom
𝑒) ∖ ran 𝑔)))) = recs((𝑐 ∈ V ↦ ((𝑔 ∈ V ↦ sup((𝑦‘𝑔), (𝑅1‘dom 𝑒), {〈𝑔, ℎ〉 ∣ ∃𝑖 ∈ (𝑅1‘∪ dom 𝑒)((𝑖 ∈ ℎ ∧ ¬ 𝑖 ∈ 𝑔) ∧ ∀𝑗 ∈ (𝑅1‘∪ dom 𝑒)(𝑗(𝑒‘∪ dom 𝑒)𝑖 → (𝑗 ∈ 𝑔 ↔ 𝑗 ∈ ℎ)))}))‘((𝑅1‘dom
𝑒) ∖ ran 𝑐))))) |
45 | 43, 44 | ax-mp 5 |
. 2
⊢
recs((𝑔 ∈ V
↦ ((𝑔 ∈ V
↦ sup((𝑦‘𝑔),
(𝑅1‘dom 𝑒), {〈𝑔, ℎ〉 ∣ ∃𝑖 ∈ (𝑅1‘∪ dom 𝑒)((𝑖 ∈ ℎ ∧ ¬ 𝑖 ∈ 𝑔) ∧ ∀𝑗 ∈ (𝑅1‘∪ dom 𝑒)(𝑗(𝑒‘∪ dom 𝑒)𝑖 → (𝑗 ∈ 𝑔 ↔ 𝑗 ∈ ℎ)))}))‘((𝑅1‘dom
𝑒) ∖ ran 𝑔)))) = recs((𝑐 ∈ V ↦ ((𝑔 ∈ V ↦ sup((𝑦‘𝑔), (𝑅1‘dom 𝑒), {〈𝑔, ℎ〉 ∣ ∃𝑖 ∈ (𝑅1‘∪ dom 𝑒)((𝑖 ∈ ℎ ∧ ¬ 𝑖 ∈ 𝑔) ∧ ∀𝑗 ∈ (𝑅1‘∪ dom 𝑒)(𝑗(𝑒‘∪ dom 𝑒)𝑖 → (𝑗 ∈ 𝑔 ↔ 𝑗 ∈ ℎ)))}))‘((𝑅1‘dom
𝑒) ∖ ran 𝑐)))) |
46 | | nfv 1915 |
. . 3
⊢
Ⅎ𝑐∩ (◡recs((𝑔 ∈ V ↦ ((𝑔 ∈ V ↦ sup((𝑦‘𝑔), (𝑅1‘dom 𝑒), {〈𝑔, ℎ〉 ∣ ∃𝑖 ∈ (𝑅1‘∪ dom 𝑒)((𝑖 ∈ ℎ ∧ ¬ 𝑖 ∈ 𝑔) ∧ ∀𝑗 ∈ (𝑅1‘∪ dom 𝑒)(𝑗(𝑒‘∪ dom 𝑒)𝑖 → (𝑗 ∈ 𝑔 ↔ 𝑗 ∈ ℎ)))}))‘((𝑅1‘dom
𝑒) ∖ ran 𝑔)))) “ {𝑔}) ∈ ∩ (◡recs((𝑔 ∈ V ↦ ((𝑔 ∈ V ↦ sup((𝑦‘𝑔), (𝑅1‘dom 𝑒), {〈𝑔, ℎ〉 ∣ ∃𝑖 ∈ (𝑅1‘∪ dom 𝑒)((𝑖 ∈ ℎ ∧ ¬ 𝑖 ∈ 𝑔) ∧ ∀𝑗 ∈ (𝑅1‘∪ dom 𝑒)(𝑗(𝑒‘∪ dom 𝑒)𝑖 → (𝑗 ∈ 𝑔 ↔ 𝑗 ∈ ℎ)))}))‘((𝑅1‘dom
𝑒) ∖ ran 𝑔)))) “ {ℎ}) |
47 | | nfv 1915 |
. . 3
⊢
Ⅎ𝑏∩ (◡recs((𝑔 ∈ V ↦ ((𝑔 ∈ V ↦ sup((𝑦‘𝑔), (𝑅1‘dom 𝑒), {〈𝑔, ℎ〉 ∣ ∃𝑖 ∈ (𝑅1‘∪ dom 𝑒)((𝑖 ∈ ℎ ∧ ¬ 𝑖 ∈ 𝑔) ∧ ∀𝑗 ∈ (𝑅1‘∪ dom 𝑒)(𝑗(𝑒‘∪ dom 𝑒)𝑖 → (𝑗 ∈ 𝑔 ↔ 𝑗 ∈ ℎ)))}))‘((𝑅1‘dom
𝑒) ∖ ran 𝑔)))) “ {𝑔}) ∈ ∩ (◡recs((𝑔 ∈ V ↦ ((𝑔 ∈ V ↦ sup((𝑦‘𝑔), (𝑅1‘dom 𝑒), {〈𝑔, ℎ〉 ∣ ∃𝑖 ∈ (𝑅1‘∪ dom 𝑒)((𝑖 ∈ ℎ ∧ ¬ 𝑖 ∈ 𝑔) ∧ ∀𝑗 ∈ (𝑅1‘∪ dom 𝑒)(𝑗(𝑒‘∪ dom 𝑒)𝑖 → (𝑗 ∈ 𝑔 ↔ 𝑗 ∈ ℎ)))}))‘((𝑅1‘dom
𝑒) ∖ ran 𝑔)))) “ {ℎ}) |
48 | | nfmpt1 5130 |
. . . . . . . 8
⊢
Ⅎ𝑔(𝑔 ∈ V ↦ ((𝑔 ∈ V ↦ sup((𝑦‘𝑔), (𝑅1‘dom 𝑒), {〈𝑔, ℎ〉 ∣ ∃𝑖 ∈ (𝑅1‘∪ dom 𝑒)((𝑖 ∈ ℎ ∧ ¬ 𝑖 ∈ 𝑔) ∧ ∀𝑗 ∈ (𝑅1‘∪ dom 𝑒)(𝑗(𝑒‘∪ dom 𝑒)𝑖 → (𝑗 ∈ 𝑔 ↔ 𝑗 ∈ ℎ)))}))‘((𝑅1‘dom
𝑒) ∖ ran 𝑔))) |
49 | 48 | nfrecs 8021 |
. . . . . . 7
⊢
Ⅎ𝑔recs((𝑔 ∈ V ↦ ((𝑔 ∈ V ↦ sup((𝑦‘𝑔), (𝑅1‘dom 𝑒), {〈𝑔, ℎ〉 ∣ ∃𝑖 ∈ (𝑅1‘∪ dom 𝑒)((𝑖 ∈ ℎ ∧ ¬ 𝑖 ∈ 𝑔) ∧ ∀𝑗 ∈ (𝑅1‘∪ dom 𝑒)(𝑗(𝑒‘∪ dom 𝑒)𝑖 → (𝑗 ∈ 𝑔 ↔ 𝑗 ∈ ℎ)))}))‘((𝑅1‘dom
𝑒) ∖ ran 𝑔)))) |
50 | 49 | nfcnv 5718 |
. . . . . 6
⊢
Ⅎ𝑔◡recs((𝑔 ∈ V ↦ ((𝑔 ∈ V ↦ sup((𝑦‘𝑔), (𝑅1‘dom 𝑒), {〈𝑔, ℎ〉 ∣ ∃𝑖 ∈ (𝑅1‘∪ dom 𝑒)((𝑖 ∈ ℎ ∧ ¬ 𝑖 ∈ 𝑔) ∧ ∀𝑗 ∈ (𝑅1‘∪ dom 𝑒)(𝑗(𝑒‘∪ dom 𝑒)𝑖 → (𝑗 ∈ 𝑔 ↔ 𝑗 ∈ ℎ)))}))‘((𝑅1‘dom
𝑒) ∖ ran 𝑔)))) |
51 | | nfcv 2919 |
. . . . . 6
⊢
Ⅎ𝑔{𝑐} |
52 | 50, 51 | nfima 5909 |
. . . . 5
⊢
Ⅎ𝑔(◡recs((𝑔 ∈ V ↦ ((𝑔 ∈ V ↦ sup((𝑦‘𝑔), (𝑅1‘dom 𝑒), {〈𝑔, ℎ〉 ∣ ∃𝑖 ∈ (𝑅1‘∪ dom 𝑒)((𝑖 ∈ ℎ ∧ ¬ 𝑖 ∈ 𝑔) ∧ ∀𝑗 ∈ (𝑅1‘∪ dom 𝑒)(𝑗(𝑒‘∪ dom 𝑒)𝑖 → (𝑗 ∈ 𝑔 ↔ 𝑗 ∈ ℎ)))}))‘((𝑅1‘dom
𝑒) ∖ ran 𝑔)))) “ {𝑐}) |
53 | 52 | nfint 4848 |
. . . 4
⊢
Ⅎ𝑔∩ (◡recs((𝑔 ∈ V ↦ ((𝑔 ∈ V ↦ sup((𝑦‘𝑔), (𝑅1‘dom 𝑒), {〈𝑔, ℎ〉 ∣ ∃𝑖 ∈ (𝑅1‘∪ dom 𝑒)((𝑖 ∈ ℎ ∧ ¬ 𝑖 ∈ 𝑔) ∧ ∀𝑗 ∈ (𝑅1‘∪ dom 𝑒)(𝑗(𝑒‘∪ dom 𝑒)𝑖 → (𝑗 ∈ 𝑔 ↔ 𝑗 ∈ ℎ)))}))‘((𝑅1‘dom
𝑒) ∖ ran 𝑔)))) “ {𝑐}) |
54 | | nfcv 2919 |
. . . . . 6
⊢
Ⅎ𝑔{𝑏} |
55 | 50, 54 | nfima 5909 |
. . . . 5
⊢
Ⅎ𝑔(◡recs((𝑔 ∈ V ↦ ((𝑔 ∈ V ↦ sup((𝑦‘𝑔), (𝑅1‘dom 𝑒), {〈𝑔, ℎ〉 ∣ ∃𝑖 ∈ (𝑅1‘∪ dom 𝑒)((𝑖 ∈ ℎ ∧ ¬ 𝑖 ∈ 𝑔) ∧ ∀𝑗 ∈ (𝑅1‘∪ dom 𝑒)(𝑗(𝑒‘∪ dom 𝑒)𝑖 → (𝑗 ∈ 𝑔 ↔ 𝑗 ∈ ℎ)))}))‘((𝑅1‘dom
𝑒) ∖ ran 𝑔)))) “ {𝑏}) |
56 | 55 | nfint 4848 |
. . . 4
⊢
Ⅎ𝑔∩ (◡recs((𝑔 ∈ V ↦ ((𝑔 ∈ V ↦ sup((𝑦‘𝑔), (𝑅1‘dom 𝑒), {〈𝑔, ℎ〉 ∣ ∃𝑖 ∈ (𝑅1‘∪ dom 𝑒)((𝑖 ∈ ℎ ∧ ¬ 𝑖 ∈ 𝑔) ∧ ∀𝑗 ∈ (𝑅1‘∪ dom 𝑒)(𝑗(𝑒‘∪ dom 𝑒)𝑖 → (𝑗 ∈ 𝑔 ↔ 𝑗 ∈ ℎ)))}))‘((𝑅1‘dom
𝑒) ∖ ran 𝑔)))) “ {𝑏}) |
57 | 53, 56 | nfel 2933 |
. . 3
⊢
Ⅎ𝑔∩ (◡recs((𝑔 ∈ V ↦ ((𝑔 ∈ V ↦ sup((𝑦‘𝑔), (𝑅1‘dom 𝑒), {〈𝑔, ℎ〉 ∣ ∃𝑖 ∈ (𝑅1‘∪ dom 𝑒)((𝑖 ∈ ℎ ∧ ¬ 𝑖 ∈ 𝑔) ∧ ∀𝑗 ∈ (𝑅1‘∪ dom 𝑒)(𝑗(𝑒‘∪ dom 𝑒)𝑖 → (𝑗 ∈ 𝑔 ↔ 𝑗 ∈ ℎ)))}))‘((𝑅1‘dom
𝑒) ∖ ran 𝑔)))) “ {𝑐}) ∈ ∩ (◡recs((𝑔 ∈ V ↦ ((𝑔 ∈ V ↦ sup((𝑦‘𝑔), (𝑅1‘dom 𝑒), {〈𝑔, ℎ〉 ∣ ∃𝑖 ∈ (𝑅1‘∪ dom 𝑒)((𝑖 ∈ ℎ ∧ ¬ 𝑖 ∈ 𝑔) ∧ ∀𝑗 ∈ (𝑅1‘∪ dom 𝑒)(𝑗(𝑒‘∪ dom 𝑒)𝑖 → (𝑗 ∈ 𝑔 ↔ 𝑗 ∈ ℎ)))}))‘((𝑅1‘dom
𝑒) ∖ ran 𝑔)))) “ {𝑏}) |
58 | | nfcv 2919 |
. . . . . . . . 9
⊢
ℲℎV |
59 | | nfcv 2919 |
. . . . . . . . . . . 12
⊢
Ⅎℎ(𝑦‘𝑔) |
60 | | nfcv 2919 |
. . . . . . . . . . . 12
⊢
Ⅎℎ(𝑅1‘dom 𝑒) |
61 | | nfopab2 5102 |
. . . . . . . . . . . 12
⊢
Ⅎℎ{〈𝑔, ℎ〉 ∣ ∃𝑖 ∈ (𝑅1‘∪ dom 𝑒)((𝑖 ∈ ℎ ∧ ¬ 𝑖 ∈ 𝑔) ∧ ∀𝑗 ∈ (𝑅1‘∪ dom 𝑒)(𝑗(𝑒‘∪ dom 𝑒)𝑖 → (𝑗 ∈ 𝑔 ↔ 𝑗 ∈ ℎ)))} |
62 | 59, 60, 61 | nfsup 8948 |
. . . . . . . . . . 11
⊢
Ⅎℎsup((𝑦‘𝑔), (𝑅1‘dom 𝑒), {〈𝑔, ℎ〉 ∣ ∃𝑖 ∈ (𝑅1‘∪ dom 𝑒)((𝑖 ∈ ℎ ∧ ¬ 𝑖 ∈ 𝑔) ∧ ∀𝑗 ∈ (𝑅1‘∪ dom 𝑒)(𝑗(𝑒‘∪ dom 𝑒)𝑖 → (𝑗 ∈ 𝑔 ↔ 𝑗 ∈ ℎ)))}) |
63 | 58, 62 | nfmpt 5129 |
. . . . . . . . . 10
⊢
Ⅎℎ(𝑔 ∈ V ↦ sup((𝑦‘𝑔), (𝑅1‘dom 𝑒), {〈𝑔, ℎ〉 ∣ ∃𝑖 ∈ (𝑅1‘∪ dom 𝑒)((𝑖 ∈ ℎ ∧ ¬ 𝑖 ∈ 𝑔) ∧ ∀𝑗 ∈ (𝑅1‘∪ dom 𝑒)(𝑗(𝑒‘∪ dom 𝑒)𝑖 → (𝑗 ∈ 𝑔 ↔ 𝑗 ∈ ℎ)))})) |
64 | | nfcv 2919 |
. . . . . . . . . 10
⊢
Ⅎℎ((𝑅1‘dom 𝑒) ∖ ran 𝑔) |
65 | 63, 64 | nffv 6668 |
. . . . . . . . 9
⊢
Ⅎℎ((𝑔 ∈ V ↦ sup((𝑦‘𝑔), (𝑅1‘dom 𝑒), {〈𝑔, ℎ〉 ∣ ∃𝑖 ∈ (𝑅1‘∪ dom 𝑒)((𝑖 ∈ ℎ ∧ ¬ 𝑖 ∈ 𝑔) ∧ ∀𝑗 ∈ (𝑅1‘∪ dom 𝑒)(𝑗(𝑒‘∪ dom 𝑒)𝑖 → (𝑗 ∈ 𝑔 ↔ 𝑗 ∈ ℎ)))}))‘((𝑅1‘dom
𝑒) ∖ ran 𝑔)) |
66 | 58, 65 | nfmpt 5129 |
. . . . . . . 8
⊢
Ⅎℎ(𝑔 ∈ V ↦ ((𝑔 ∈ V ↦ sup((𝑦‘𝑔), (𝑅1‘dom 𝑒), {〈𝑔, ℎ〉 ∣ ∃𝑖 ∈ (𝑅1‘∪ dom 𝑒)((𝑖 ∈ ℎ ∧ ¬ 𝑖 ∈ 𝑔) ∧ ∀𝑗 ∈ (𝑅1‘∪ dom 𝑒)(𝑗(𝑒‘∪ dom 𝑒)𝑖 → (𝑗 ∈ 𝑔 ↔ 𝑗 ∈ ℎ)))}))‘((𝑅1‘dom
𝑒) ∖ ran 𝑔))) |
67 | 66 | nfrecs 8021 |
. . . . . . 7
⊢
Ⅎℎrecs((𝑔 ∈ V ↦ ((𝑔 ∈ V ↦ sup((𝑦‘𝑔), (𝑅1‘dom 𝑒), {〈𝑔, ℎ〉 ∣ ∃𝑖 ∈ (𝑅1‘∪ dom 𝑒)((𝑖 ∈ ℎ ∧ ¬ 𝑖 ∈ 𝑔) ∧ ∀𝑗 ∈ (𝑅1‘∪ dom 𝑒)(𝑗(𝑒‘∪ dom 𝑒)𝑖 → (𝑗 ∈ 𝑔 ↔ 𝑗 ∈ ℎ)))}))‘((𝑅1‘dom
𝑒) ∖ ran 𝑔)))) |
68 | 67 | nfcnv 5718 |
. . . . . 6
⊢
Ⅎℎ◡recs((𝑔 ∈ V ↦ ((𝑔 ∈ V ↦ sup((𝑦‘𝑔), (𝑅1‘dom 𝑒), {〈𝑔, ℎ〉 ∣ ∃𝑖 ∈ (𝑅1‘∪ dom 𝑒)((𝑖 ∈ ℎ ∧ ¬ 𝑖 ∈ 𝑔) ∧ ∀𝑗 ∈ (𝑅1‘∪ dom 𝑒)(𝑗(𝑒‘∪ dom 𝑒)𝑖 → (𝑗 ∈ 𝑔 ↔ 𝑗 ∈ ℎ)))}))‘((𝑅1‘dom
𝑒) ∖ ran 𝑔)))) |
69 | | nfcv 2919 |
. . . . . 6
⊢
Ⅎℎ{𝑐} |
70 | 68, 69 | nfima 5909 |
. . . . 5
⊢
Ⅎℎ(◡recs((𝑔 ∈ V ↦ ((𝑔 ∈ V ↦ sup((𝑦‘𝑔), (𝑅1‘dom 𝑒), {〈𝑔, ℎ〉 ∣ ∃𝑖 ∈ (𝑅1‘∪ dom 𝑒)((𝑖 ∈ ℎ ∧ ¬ 𝑖 ∈ 𝑔) ∧ ∀𝑗 ∈ (𝑅1‘∪ dom 𝑒)(𝑗(𝑒‘∪ dom 𝑒)𝑖 → (𝑗 ∈ 𝑔 ↔ 𝑗 ∈ ℎ)))}))‘((𝑅1‘dom
𝑒) ∖ ran 𝑔)))) “ {𝑐}) |
71 | 70 | nfint 4848 |
. . . 4
⊢
Ⅎℎ∩ (◡recs((𝑔 ∈ V ↦ ((𝑔 ∈ V ↦ sup((𝑦‘𝑔), (𝑅1‘dom 𝑒), {〈𝑔, ℎ〉 ∣ ∃𝑖 ∈ (𝑅1‘∪ dom 𝑒)((𝑖 ∈ ℎ ∧ ¬ 𝑖 ∈ 𝑔) ∧ ∀𝑗 ∈ (𝑅1‘∪ dom 𝑒)(𝑗(𝑒‘∪ dom 𝑒)𝑖 → (𝑗 ∈ 𝑔 ↔ 𝑗 ∈ ℎ)))}))‘((𝑅1‘dom
𝑒) ∖ ran 𝑔)))) “ {𝑐}) |
72 | | nfcv 2919 |
. . . . . 6
⊢
Ⅎℎ{𝑏} |
73 | 68, 72 | nfima 5909 |
. . . . 5
⊢
Ⅎℎ(◡recs((𝑔 ∈ V ↦ ((𝑔 ∈ V ↦ sup((𝑦‘𝑔), (𝑅1‘dom 𝑒), {〈𝑔, ℎ〉 ∣ ∃𝑖 ∈ (𝑅1‘∪ dom 𝑒)((𝑖 ∈ ℎ ∧ ¬ 𝑖 ∈ 𝑔) ∧ ∀𝑗 ∈ (𝑅1‘∪ dom 𝑒)(𝑗(𝑒‘∪ dom 𝑒)𝑖 → (𝑗 ∈ 𝑔 ↔ 𝑗 ∈ ℎ)))}))‘((𝑅1‘dom
𝑒) ∖ ran 𝑔)))) “ {𝑏}) |
74 | 73 | nfint 4848 |
. . . 4
⊢
Ⅎℎ∩ (◡recs((𝑔 ∈ V ↦ ((𝑔 ∈ V ↦ sup((𝑦‘𝑔), (𝑅1‘dom 𝑒), {〈𝑔, ℎ〉 ∣ ∃𝑖 ∈ (𝑅1‘∪ dom 𝑒)((𝑖 ∈ ℎ ∧ ¬ 𝑖 ∈ 𝑔) ∧ ∀𝑗 ∈ (𝑅1‘∪ dom 𝑒)(𝑗(𝑒‘∪ dom 𝑒)𝑖 → (𝑗 ∈ 𝑔 ↔ 𝑗 ∈ ℎ)))}))‘((𝑅1‘dom
𝑒) ∖ ran 𝑔)))) “ {𝑏}) |
75 | 71, 74 | nfel 2933 |
. . 3
⊢
Ⅎℎ∩ (◡recs((𝑔 ∈ V ↦ ((𝑔 ∈ V ↦ sup((𝑦‘𝑔), (𝑅1‘dom 𝑒), {〈𝑔, ℎ〉 ∣ ∃𝑖 ∈ (𝑅1‘∪ dom 𝑒)((𝑖 ∈ ℎ ∧ ¬ 𝑖 ∈ 𝑔) ∧ ∀𝑗 ∈ (𝑅1‘∪ dom 𝑒)(𝑗(𝑒‘∪ dom 𝑒)𝑖 → (𝑗 ∈ 𝑔 ↔ 𝑗 ∈ ℎ)))}))‘((𝑅1‘dom
𝑒) ∖ ran 𝑔)))) “ {𝑐}) ∈ ∩ (◡recs((𝑔 ∈ V ↦ ((𝑔 ∈ V ↦ sup((𝑦‘𝑔), (𝑅1‘dom 𝑒), {〈𝑔, ℎ〉 ∣ ∃𝑖 ∈ (𝑅1‘∪ dom 𝑒)((𝑖 ∈ ℎ ∧ ¬ 𝑖 ∈ 𝑔) ∧ ∀𝑗 ∈ (𝑅1‘∪ dom 𝑒)(𝑗(𝑒‘∪ dom 𝑒)𝑖 → (𝑗 ∈ 𝑔 ↔ 𝑗 ∈ ℎ)))}))‘((𝑅1‘dom
𝑒) ∖ ran 𝑔)))) “ {𝑏}) |
76 | | sneq 4532 |
. . . . . 6
⊢ (𝑔 = 𝑐 → {𝑔} = {𝑐}) |
77 | 76 | imaeq2d 5901 |
. . . . 5
⊢ (𝑔 = 𝑐 → (◡recs((𝑔 ∈ V ↦ ((𝑔 ∈ V ↦ sup((𝑦‘𝑔), (𝑅1‘dom 𝑒), {〈𝑔, ℎ〉 ∣ ∃𝑖 ∈ (𝑅1‘∪ dom 𝑒)((𝑖 ∈ ℎ ∧ ¬ 𝑖 ∈ 𝑔) ∧ ∀𝑗 ∈ (𝑅1‘∪ dom 𝑒)(𝑗(𝑒‘∪ dom 𝑒)𝑖 → (𝑗 ∈ 𝑔 ↔ 𝑗 ∈ ℎ)))}))‘((𝑅1‘dom
𝑒) ∖ ran 𝑔)))) “ {𝑔}) = (◡recs((𝑔 ∈ V ↦ ((𝑔 ∈ V ↦ sup((𝑦‘𝑔), (𝑅1‘dom 𝑒), {〈𝑔, ℎ〉 ∣ ∃𝑖 ∈ (𝑅1‘∪ dom 𝑒)((𝑖 ∈ ℎ ∧ ¬ 𝑖 ∈ 𝑔) ∧ ∀𝑗 ∈ (𝑅1‘∪ dom 𝑒)(𝑗(𝑒‘∪ dom 𝑒)𝑖 → (𝑗 ∈ 𝑔 ↔ 𝑗 ∈ ℎ)))}))‘((𝑅1‘dom
𝑒) ∖ ran 𝑔)))) “ {𝑐})) |
78 | 77 | inteqd 4843 |
. . . 4
⊢ (𝑔 = 𝑐 → ∩ (◡recs((𝑔 ∈ V ↦ ((𝑔 ∈ V ↦ sup((𝑦‘𝑔), (𝑅1‘dom 𝑒), {〈𝑔, ℎ〉 ∣ ∃𝑖 ∈ (𝑅1‘∪ dom 𝑒)((𝑖 ∈ ℎ ∧ ¬ 𝑖 ∈ 𝑔) ∧ ∀𝑗 ∈ (𝑅1‘∪ dom 𝑒)(𝑗(𝑒‘∪ dom 𝑒)𝑖 → (𝑗 ∈ 𝑔 ↔ 𝑗 ∈ ℎ)))}))‘((𝑅1‘dom
𝑒) ∖ ran 𝑔)))) “ {𝑔}) = ∩ (◡recs((𝑔 ∈ V ↦ ((𝑔 ∈ V ↦ sup((𝑦‘𝑔), (𝑅1‘dom 𝑒), {〈𝑔, ℎ〉 ∣ ∃𝑖 ∈ (𝑅1‘∪ dom 𝑒)((𝑖 ∈ ℎ ∧ ¬ 𝑖 ∈ 𝑔) ∧ ∀𝑗 ∈ (𝑅1‘∪ dom 𝑒)(𝑗(𝑒‘∪ dom 𝑒)𝑖 → (𝑗 ∈ 𝑔 ↔ 𝑗 ∈ ℎ)))}))‘((𝑅1‘dom
𝑒) ∖ ran 𝑔)))) “ {𝑐})) |
79 | | sneq 4532 |
. . . . . 6
⊢ (ℎ = 𝑏 → {ℎ} = {𝑏}) |
80 | 79 | imaeq2d 5901 |
. . . . 5
⊢ (ℎ = 𝑏 → (◡recs((𝑔 ∈ V ↦ ((𝑔 ∈ V ↦ sup((𝑦‘𝑔), (𝑅1‘dom 𝑒), {〈𝑔, ℎ〉 ∣ ∃𝑖 ∈ (𝑅1‘∪ dom 𝑒)((𝑖 ∈ ℎ ∧ ¬ 𝑖 ∈ 𝑔) ∧ ∀𝑗 ∈ (𝑅1‘∪ dom 𝑒)(𝑗(𝑒‘∪ dom 𝑒)𝑖 → (𝑗 ∈ 𝑔 ↔ 𝑗 ∈ ℎ)))}))‘((𝑅1‘dom
𝑒) ∖ ran 𝑔)))) “ {ℎ}) = (◡recs((𝑔 ∈ V ↦ ((𝑔 ∈ V ↦ sup((𝑦‘𝑔), (𝑅1‘dom 𝑒), {〈𝑔, ℎ〉 ∣ ∃𝑖 ∈ (𝑅1‘∪ dom 𝑒)((𝑖 ∈ ℎ ∧ ¬ 𝑖 ∈ 𝑔) ∧ ∀𝑗 ∈ (𝑅1‘∪ dom 𝑒)(𝑗(𝑒‘∪ dom 𝑒)𝑖 → (𝑗 ∈ 𝑔 ↔ 𝑗 ∈ ℎ)))}))‘((𝑅1‘dom
𝑒) ∖ ran 𝑔)))) “ {𝑏})) |
81 | 80 | inteqd 4843 |
. . . 4
⊢ (ℎ = 𝑏 → ∩ (◡recs((𝑔 ∈ V ↦ ((𝑔 ∈ V ↦ sup((𝑦‘𝑔), (𝑅1‘dom 𝑒), {〈𝑔, ℎ〉 ∣ ∃𝑖 ∈ (𝑅1‘∪ dom 𝑒)((𝑖 ∈ ℎ ∧ ¬ 𝑖 ∈ 𝑔) ∧ ∀𝑗 ∈ (𝑅1‘∪ dom 𝑒)(𝑗(𝑒‘∪ dom 𝑒)𝑖 → (𝑗 ∈ 𝑔 ↔ 𝑗 ∈ ℎ)))}))‘((𝑅1‘dom
𝑒) ∖ ran 𝑔)))) “ {ℎ}) = ∩ (◡recs((𝑔 ∈ V ↦ ((𝑔 ∈ V ↦ sup((𝑦‘𝑔), (𝑅1‘dom 𝑒), {〈𝑔, ℎ〉 ∣ ∃𝑖 ∈ (𝑅1‘∪ dom 𝑒)((𝑖 ∈ ℎ ∧ ¬ 𝑖 ∈ 𝑔) ∧ ∀𝑗 ∈ (𝑅1‘∪ dom 𝑒)(𝑗(𝑒‘∪ dom 𝑒)𝑖 → (𝑗 ∈ 𝑔 ↔ 𝑗 ∈ ℎ)))}))‘((𝑅1‘dom
𝑒) ∖ ran 𝑔)))) “ {𝑏})) |
82 | | eleq12 2841 |
. . . 4
⊢ ((∩ (◡recs((𝑔 ∈ V ↦ ((𝑔 ∈ V ↦ sup((𝑦‘𝑔), (𝑅1‘dom 𝑒), {〈𝑔, ℎ〉 ∣ ∃𝑖 ∈ (𝑅1‘∪ dom 𝑒)((𝑖 ∈ ℎ ∧ ¬ 𝑖 ∈ 𝑔) ∧ ∀𝑗 ∈ (𝑅1‘∪ dom 𝑒)(𝑗(𝑒‘∪ dom 𝑒)𝑖 → (𝑗 ∈ 𝑔 ↔ 𝑗 ∈ ℎ)))}))‘((𝑅1‘dom
𝑒) ∖ ran 𝑔)))) “ {𝑔}) = ∩ (◡recs((𝑔 ∈ V ↦ ((𝑔 ∈ V ↦ sup((𝑦‘𝑔), (𝑅1‘dom 𝑒), {〈𝑔, ℎ〉 ∣ ∃𝑖 ∈ (𝑅1‘∪ dom 𝑒)((𝑖 ∈ ℎ ∧ ¬ 𝑖 ∈ 𝑔) ∧ ∀𝑗 ∈ (𝑅1‘∪ dom 𝑒)(𝑗(𝑒‘∪ dom 𝑒)𝑖 → (𝑗 ∈ 𝑔 ↔ 𝑗 ∈ ℎ)))}))‘((𝑅1‘dom
𝑒) ∖ ran 𝑔)))) “ {𝑐}) ∧ ∩ (◡recs((𝑔 ∈ V ↦ ((𝑔 ∈ V ↦ sup((𝑦‘𝑔), (𝑅1‘dom 𝑒), {〈𝑔, ℎ〉 ∣ ∃𝑖 ∈ (𝑅1‘∪ dom 𝑒)((𝑖 ∈ ℎ ∧ ¬ 𝑖 ∈ 𝑔) ∧ ∀𝑗 ∈ (𝑅1‘∪ dom 𝑒)(𝑗(𝑒‘∪ dom 𝑒)𝑖 → (𝑗 ∈ 𝑔 ↔ 𝑗 ∈ ℎ)))}))‘((𝑅1‘dom
𝑒) ∖ ran 𝑔)))) “ {ℎ}) = ∩ (◡recs((𝑔 ∈ V ↦ ((𝑔 ∈ V ↦ sup((𝑦‘𝑔), (𝑅1‘dom 𝑒), {〈𝑔, ℎ〉 ∣ ∃𝑖 ∈ (𝑅1‘∪ dom 𝑒)((𝑖 ∈ ℎ ∧ ¬ 𝑖 ∈ 𝑔) ∧ ∀𝑗 ∈ (𝑅1‘∪ dom 𝑒)(𝑗(𝑒‘∪ dom 𝑒)𝑖 → (𝑗 ∈ 𝑔 ↔ 𝑗 ∈ ℎ)))}))‘((𝑅1‘dom
𝑒) ∖ ran 𝑔)))) “ {𝑏})) → (∩
(◡recs((𝑔 ∈ V ↦ ((𝑔 ∈ V ↦ sup((𝑦‘𝑔), (𝑅1‘dom 𝑒), {〈𝑔, ℎ〉 ∣ ∃𝑖 ∈ (𝑅1‘∪ dom 𝑒)((𝑖 ∈ ℎ ∧ ¬ 𝑖 ∈ 𝑔) ∧ ∀𝑗 ∈ (𝑅1‘∪ dom 𝑒)(𝑗(𝑒‘∪ dom 𝑒)𝑖 → (𝑗 ∈ 𝑔 ↔ 𝑗 ∈ ℎ)))}))‘((𝑅1‘dom
𝑒) ∖ ran 𝑔)))) “ {𝑔}) ∈ ∩ (◡recs((𝑔 ∈ V ↦ ((𝑔 ∈ V ↦ sup((𝑦‘𝑔), (𝑅1‘dom 𝑒), {〈𝑔, ℎ〉 ∣ ∃𝑖 ∈ (𝑅1‘∪ dom 𝑒)((𝑖 ∈ ℎ ∧ ¬ 𝑖 ∈ 𝑔) ∧ ∀𝑗 ∈ (𝑅1‘∪ dom 𝑒)(𝑗(𝑒‘∪ dom 𝑒)𝑖 → (𝑗 ∈ 𝑔 ↔ 𝑗 ∈ ℎ)))}))‘((𝑅1‘dom
𝑒) ∖ ran 𝑔)))) “ {ℎ}) ↔ ∩ (◡recs((𝑔 ∈ V ↦ ((𝑔 ∈ V ↦ sup((𝑦‘𝑔), (𝑅1‘dom 𝑒), {〈𝑔, ℎ〉 ∣ ∃𝑖 ∈ (𝑅1‘∪ dom 𝑒)((𝑖 ∈ ℎ ∧ ¬ 𝑖 ∈ 𝑔) ∧ ∀𝑗 ∈ (𝑅1‘∪ dom 𝑒)(𝑗(𝑒‘∪ dom 𝑒)𝑖 → (𝑗 ∈ 𝑔 ↔ 𝑗 ∈ ℎ)))}))‘((𝑅1‘dom
𝑒) ∖ ran 𝑔)))) “ {𝑐}) ∈ ∩ (◡recs((𝑔 ∈ V ↦ ((𝑔 ∈ V ↦ sup((𝑦‘𝑔), (𝑅1‘dom 𝑒), {〈𝑔, ℎ〉 ∣ ∃𝑖 ∈ (𝑅1‘∪ dom 𝑒)((𝑖 ∈ ℎ ∧ ¬ 𝑖 ∈ 𝑔) ∧ ∀𝑗 ∈ (𝑅1‘∪ dom 𝑒)(𝑗(𝑒‘∪ dom 𝑒)𝑖 → (𝑗 ∈ 𝑔 ↔ 𝑗 ∈ ℎ)))}))‘((𝑅1‘dom
𝑒) ∖ ran 𝑔)))) “ {𝑏}))) |
83 | 78, 81, 82 | syl2an 598 |
. . 3
⊢ ((𝑔 = 𝑐 ∧ ℎ = 𝑏) → (∩ (◡recs((𝑔 ∈ V ↦ ((𝑔 ∈ V ↦ sup((𝑦‘𝑔), (𝑅1‘dom 𝑒), {〈𝑔, ℎ〉 ∣ ∃𝑖 ∈ (𝑅1‘∪ dom 𝑒)((𝑖 ∈ ℎ ∧ ¬ 𝑖 ∈ 𝑔) ∧ ∀𝑗 ∈ (𝑅1‘∪ dom 𝑒)(𝑗(𝑒‘∪ dom 𝑒)𝑖 → (𝑗 ∈ 𝑔 ↔ 𝑗 ∈ ℎ)))}))‘((𝑅1‘dom
𝑒) ∖ ran 𝑔)))) “ {𝑔}) ∈ ∩ (◡recs((𝑔 ∈ V ↦ ((𝑔 ∈ V ↦ sup((𝑦‘𝑔), (𝑅1‘dom 𝑒), {〈𝑔, ℎ〉 ∣ ∃𝑖 ∈ (𝑅1‘∪ dom 𝑒)((𝑖 ∈ ℎ ∧ ¬ 𝑖 ∈ 𝑔) ∧ ∀𝑗 ∈ (𝑅1‘∪ dom 𝑒)(𝑗(𝑒‘∪ dom 𝑒)𝑖 → (𝑗 ∈ 𝑔 ↔ 𝑗 ∈ ℎ)))}))‘((𝑅1‘dom
𝑒) ∖ ran 𝑔)))) “ {ℎ}) ↔ ∩ (◡recs((𝑔 ∈ V ↦ ((𝑔 ∈ V ↦ sup((𝑦‘𝑔), (𝑅1‘dom 𝑒), {〈𝑔, ℎ〉 ∣ ∃𝑖 ∈ (𝑅1‘∪ dom 𝑒)((𝑖 ∈ ℎ ∧ ¬ 𝑖 ∈ 𝑔) ∧ ∀𝑗 ∈ (𝑅1‘∪ dom 𝑒)(𝑗(𝑒‘∪ dom 𝑒)𝑖 → (𝑗 ∈ 𝑔 ↔ 𝑗 ∈ ℎ)))}))‘((𝑅1‘dom
𝑒) ∖ ran 𝑔)))) “ {𝑐}) ∈ ∩ (◡recs((𝑔 ∈ V ↦ ((𝑔 ∈ V ↦ sup((𝑦‘𝑔), (𝑅1‘dom 𝑒), {〈𝑔, ℎ〉 ∣ ∃𝑖 ∈ (𝑅1‘∪ dom 𝑒)((𝑖 ∈ ℎ ∧ ¬ 𝑖 ∈ 𝑔) ∧ ∀𝑗 ∈ (𝑅1‘∪ dom 𝑒)(𝑗(𝑒‘∪ dom 𝑒)𝑖 → (𝑗 ∈ 𝑔 ↔ 𝑗 ∈ ℎ)))}))‘((𝑅1‘dom
𝑒) ∖ ran 𝑔)))) “ {𝑏}))) |
84 | 46, 47, 57, 75, 83 | cbvopab 5103 |
. 2
⊢
{〈𝑔, ℎ〉 ∣ ∩ (◡recs((𝑔 ∈ V ↦ ((𝑔 ∈ V ↦ sup((𝑦‘𝑔), (𝑅1‘dom 𝑒), {〈𝑔, ℎ〉 ∣ ∃𝑖 ∈ (𝑅1‘∪ dom 𝑒)((𝑖 ∈ ℎ ∧ ¬ 𝑖 ∈ 𝑔) ∧ ∀𝑗 ∈ (𝑅1‘∪ dom 𝑒)(𝑗(𝑒‘∪ dom 𝑒)𝑖 → (𝑗 ∈ 𝑔 ↔ 𝑗 ∈ ℎ)))}))‘((𝑅1‘dom
𝑒) ∖ ran 𝑔)))) “ {𝑔}) ∈ ∩ (◡recs((𝑔 ∈ V ↦ ((𝑔 ∈ V ↦ sup((𝑦‘𝑔), (𝑅1‘dom 𝑒), {〈𝑔, ℎ〉 ∣ ∃𝑖 ∈ (𝑅1‘∪ dom 𝑒)((𝑖 ∈ ℎ ∧ ¬ 𝑖 ∈ 𝑔) ∧ ∀𝑗 ∈ (𝑅1‘∪ dom 𝑒)(𝑗(𝑒‘∪ dom 𝑒)𝑖 → (𝑗 ∈ 𝑔 ↔ 𝑗 ∈ ℎ)))}))‘((𝑅1‘dom
𝑒) ∖ ran 𝑔)))) “ {ℎ})} = {〈𝑐, 𝑏〉 ∣ ∩
(◡recs((𝑔 ∈ V ↦ ((𝑔 ∈ V ↦ sup((𝑦‘𝑔), (𝑅1‘dom 𝑒), {〈𝑔, ℎ〉 ∣ ∃𝑖 ∈ (𝑅1‘∪ dom 𝑒)((𝑖 ∈ ℎ ∧ ¬ 𝑖 ∈ 𝑔) ∧ ∀𝑗 ∈ (𝑅1‘∪ dom 𝑒)(𝑗(𝑒‘∪ dom 𝑒)𝑖 → (𝑗 ∈ 𝑔 ↔ 𝑗 ∈ ℎ)))}))‘((𝑅1‘dom
𝑒) ∖ ran 𝑔)))) “ {𝑐}) ∈ ∩ (◡recs((𝑔 ∈ V ↦ ((𝑔 ∈ V ↦ sup((𝑦‘𝑔), (𝑅1‘dom 𝑒), {〈𝑔, ℎ〉 ∣ ∃𝑖 ∈ (𝑅1‘∪ dom 𝑒)((𝑖 ∈ ℎ ∧ ¬ 𝑖 ∈ 𝑔) ∧ ∀𝑗 ∈ (𝑅1‘∪ dom 𝑒)(𝑗(𝑒‘∪ dom 𝑒)𝑖 → (𝑗 ∈ 𝑔 ↔ 𝑗 ∈ ℎ)))}))‘((𝑅1‘dom
𝑒) ∖ ran 𝑔)))) “ {𝑏})} |
85 | | fveq2 6658 |
. . . . 5
⊢ (𝑔 = 𝑐 → (rank‘𝑔) = (rank‘𝑐)) |
86 | | fveq2 6658 |
. . . . 5
⊢ (ℎ = 𝑏 → (rank‘ℎ) = (rank‘𝑏)) |
87 | 85, 86 | breqan12d 5048 |
. . . 4
⊢ ((𝑔 = 𝑐 ∧ ℎ = 𝑏) → ((rank‘𝑔) E (rank‘ℎ) ↔ (rank‘𝑐) E (rank‘𝑏))) |
88 | 85, 86 | eqeqan12d 2775 |
. . . . 5
⊢ ((𝑔 = 𝑐 ∧ ℎ = 𝑏) → ((rank‘𝑔) = (rank‘ℎ) ↔ (rank‘𝑐) = (rank‘𝑏))) |
89 | | simpl 486 |
. . . . . 6
⊢ ((𝑔 = 𝑐 ∧ ℎ = 𝑏) → 𝑔 = 𝑐) |
90 | | suceq 6234 |
. . . . . . . . 9
⊢
((rank‘𝑔) =
(rank‘𝑐) → suc
(rank‘𝑔) = suc
(rank‘𝑐)) |
91 | 85, 90 | syl 17 |
. . . . . . . 8
⊢ (𝑔 = 𝑐 → suc (rank‘𝑔) = suc (rank‘𝑐)) |
92 | 91 | adantr 484 |
. . . . . . 7
⊢ ((𝑔 = 𝑐 ∧ ℎ = 𝑏) → suc (rank‘𝑔) = suc (rank‘𝑐)) |
93 | 92 | fveq2d 6662 |
. . . . . 6
⊢ ((𝑔 = 𝑐 ∧ ℎ = 𝑏) → (𝑒‘suc (rank‘𝑔)) = (𝑒‘suc (rank‘𝑐))) |
94 | | simpr 488 |
. . . . . 6
⊢ ((𝑔 = 𝑐 ∧ ℎ = 𝑏) → ℎ = 𝑏) |
95 | 89, 93, 94 | breq123d 5046 |
. . . . 5
⊢ ((𝑔 = 𝑐 ∧ ℎ = 𝑏) → (𝑔(𝑒‘suc (rank‘𝑔))ℎ ↔ 𝑐(𝑒‘suc (rank‘𝑐))𝑏)) |
96 | 88, 95 | anbi12d 633 |
. . . 4
⊢ ((𝑔 = 𝑐 ∧ ℎ = 𝑏) → (((rank‘𝑔) = (rank‘ℎ) ∧ 𝑔(𝑒‘suc (rank‘𝑔))ℎ) ↔ ((rank‘𝑐) = (rank‘𝑏) ∧ 𝑐(𝑒‘suc (rank‘𝑐))𝑏))) |
97 | 87, 96 | orbi12d 916 |
. . 3
⊢ ((𝑔 = 𝑐 ∧ ℎ = 𝑏) → (((rank‘𝑔) E (rank‘ℎ) ∨ ((rank‘𝑔) = (rank‘ℎ) ∧ 𝑔(𝑒‘suc (rank‘𝑔))ℎ)) ↔ ((rank‘𝑐) E (rank‘𝑏) ∨ ((rank‘𝑐) = (rank‘𝑏) ∧ 𝑐(𝑒‘suc (rank‘𝑐))𝑏)))) |
98 | 97 | cbvopabv 5104 |
. 2
⊢
{〈𝑔, ℎ〉 ∣ ((rank‘𝑔) E (rank‘ℎ) ∨ ((rank‘𝑔) = (rank‘ℎ) ∧ 𝑔(𝑒‘suc (rank‘𝑔))ℎ))} = {〈𝑐, 𝑏〉 ∣ ((rank‘𝑐) E (rank‘𝑏) ∨ ((rank‘𝑐) = (rank‘𝑏) ∧ 𝑐(𝑒‘suc (rank‘𝑐))𝑏))} |
99 | | eqid 2758 |
. 2
⊢ (if(dom
𝑒 = ∪ dom 𝑒, {〈𝑔, ℎ〉 ∣ ((rank‘𝑔) E (rank‘ℎ) ∨ ((rank‘𝑔) = (rank‘ℎ) ∧ 𝑔(𝑒‘suc (rank‘𝑔))ℎ))}, {〈𝑔, ℎ〉 ∣ ∩
(◡recs((𝑔 ∈ V ↦ ((𝑔 ∈ V ↦ sup((𝑦‘𝑔), (𝑅1‘dom 𝑒), {〈𝑔, ℎ〉 ∣ ∃𝑖 ∈ (𝑅1‘∪ dom 𝑒)((𝑖 ∈ ℎ ∧ ¬ 𝑖 ∈ 𝑔) ∧ ∀𝑗 ∈ (𝑅1‘∪ dom 𝑒)(𝑗(𝑒‘∪ dom 𝑒)𝑖 → (𝑗 ∈ 𝑔 ↔ 𝑗 ∈ ℎ)))}))‘((𝑅1‘dom
𝑒) ∖ ran 𝑔)))) “ {𝑔}) ∈ ∩ (◡recs((𝑔 ∈ V ↦ ((𝑔 ∈ V ↦ sup((𝑦‘𝑔), (𝑅1‘dom 𝑒), {〈𝑔, ℎ〉 ∣ ∃𝑖 ∈ (𝑅1‘∪ dom 𝑒)((𝑖 ∈ ℎ ∧ ¬ 𝑖 ∈ 𝑔) ∧ ∀𝑗 ∈ (𝑅1‘∪ dom 𝑒)(𝑗(𝑒‘∪ dom 𝑒)𝑖 → (𝑗 ∈ 𝑔 ↔ 𝑗 ∈ ℎ)))}))‘((𝑅1‘dom
𝑒) ∖ ran 𝑔)))) “ {ℎ})}) ∩ ((𝑅1‘dom
𝑒) ×
(𝑅1‘dom 𝑒))) = (if(dom 𝑒 = ∪ dom 𝑒, {〈𝑔, ℎ〉 ∣ ((rank‘𝑔) E (rank‘ℎ) ∨ ((rank‘𝑔) = (rank‘ℎ) ∧ 𝑔(𝑒‘suc (rank‘𝑔))ℎ))}, {〈𝑔, ℎ〉 ∣ ∩
(◡recs((𝑔 ∈ V ↦ ((𝑔 ∈ V ↦ sup((𝑦‘𝑔), (𝑅1‘dom 𝑒), {〈𝑔, ℎ〉 ∣ ∃𝑖 ∈ (𝑅1‘∪ dom 𝑒)((𝑖 ∈ ℎ ∧ ¬ 𝑖 ∈ 𝑔) ∧ ∀𝑗 ∈ (𝑅1‘∪ dom 𝑒)(𝑗(𝑒‘∪ dom 𝑒)𝑖 → (𝑗 ∈ 𝑔 ↔ 𝑗 ∈ ℎ)))}))‘((𝑅1‘dom
𝑒) ∖ ran 𝑔)))) “ {𝑔}) ∈ ∩ (◡recs((𝑔 ∈ V ↦ ((𝑔 ∈ V ↦ sup((𝑦‘𝑔), (𝑅1‘dom 𝑒), {〈𝑔, ℎ〉 ∣ ∃𝑖 ∈ (𝑅1‘∪ dom 𝑒)((𝑖 ∈ ℎ ∧ ¬ 𝑖 ∈ 𝑔) ∧ ∀𝑗 ∈ (𝑅1‘∪ dom 𝑒)(𝑗(𝑒‘∪ dom 𝑒)𝑖 → (𝑗 ∈ 𝑔 ↔ 𝑗 ∈ ℎ)))}))‘((𝑅1‘dom
𝑒) ∖ ran 𝑔)))) “ {ℎ})}) ∩ ((𝑅1‘dom
𝑒) ×
(𝑅1‘dom 𝑒))) |
100 | | dmeq 5743 |
. . . . . . 7
⊢ (𝑙 = 𝑒 → dom 𝑙 = dom 𝑒) |
101 | 100 | unieqd 4812 |
. . . . . . 7
⊢ (𝑙 = 𝑒 → ∪ dom
𝑙 = ∪ dom 𝑒) |
102 | 100, 101 | eqeq12d 2774 |
. . . . . 6
⊢ (𝑙 = 𝑒 → (dom 𝑙 = ∪ dom 𝑙 ↔ dom 𝑒 = ∪ dom 𝑒)) |
103 | | fveq1 6657 |
. . . . . . . . . 10
⊢ (𝑙 = 𝑒 → (𝑙‘suc (rank‘𝑔)) = (𝑒‘suc (rank‘𝑔))) |
104 | 103 | breqd 5043 |
. . . . . . . . 9
⊢ (𝑙 = 𝑒 → (𝑔(𝑙‘suc (rank‘𝑔))ℎ ↔ 𝑔(𝑒‘suc (rank‘𝑔))ℎ)) |
105 | 104 | anbi2d 631 |
. . . . . . . 8
⊢ (𝑙 = 𝑒 → (((rank‘𝑔) = (rank‘ℎ) ∧ 𝑔(𝑙‘suc (rank‘𝑔))ℎ) ↔ ((rank‘𝑔) = (rank‘ℎ) ∧ 𝑔(𝑒‘suc (rank‘𝑔))ℎ))) |
106 | 105 | orbi2d 913 |
. . . . . . 7
⊢ (𝑙 = 𝑒 → (((rank‘𝑔) E (rank‘ℎ) ∨ ((rank‘𝑔) = (rank‘ℎ) ∧ 𝑔(𝑙‘suc (rank‘𝑔))ℎ)) ↔ ((rank‘𝑔) E (rank‘ℎ) ∨ ((rank‘𝑔) = (rank‘ℎ) ∧ 𝑔(𝑒‘suc (rank‘𝑔))ℎ)))) |
107 | 106 | opabbidv 5098 |
. . . . . 6
⊢ (𝑙 = 𝑒 → {〈𝑔, ℎ〉 ∣ ((rank‘𝑔) E (rank‘ℎ) ∨ ((rank‘𝑔) = (rank‘ℎ) ∧ 𝑔(𝑙‘suc (rank‘𝑔))ℎ))} = {〈𝑔, ℎ〉 ∣ ((rank‘𝑔) E (rank‘ℎ) ∨ ((rank‘𝑔) = (rank‘ℎ) ∧ 𝑔(𝑒‘suc (rank‘𝑔))ℎ))}) |
108 | | eqidd 2759 |
. . . . . . . . . . . . . . . 16
⊢ (𝑙 = 𝑒 → (𝑦‘𝑔) = (𝑦‘𝑔)) |
109 | 100 | fveq2d 6662 |
. . . . . . . . . . . . . . . 16
⊢ (𝑙 = 𝑒 → (𝑅1‘dom
𝑙) =
(𝑅1‘dom 𝑒)) |
110 | 101 | fveq2d 6662 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑙 = 𝑒 → (𝑅1‘∪ dom 𝑙) = (𝑅1‘∪ dom 𝑒)) |
111 | | id 22 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑙 = 𝑒 → 𝑙 = 𝑒) |
112 | 111, 101 | fveq12d 6665 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑙 = 𝑒 → (𝑙‘∪ dom 𝑙) = (𝑒‘∪ dom 𝑒)) |
113 | 112 | breqd 5043 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑙 = 𝑒 → (𝑗(𝑙‘∪ dom 𝑙)𝑖 ↔ 𝑗(𝑒‘∪ dom 𝑒)𝑖)) |
114 | 113 | imbi1d 345 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑙 = 𝑒 → ((𝑗(𝑙‘∪ dom 𝑙)𝑖 → (𝑗 ∈ 𝑔 ↔ 𝑗 ∈ ℎ)) ↔ (𝑗(𝑒‘∪ dom 𝑒)𝑖 → (𝑗 ∈ 𝑔 ↔ 𝑗 ∈ ℎ)))) |
115 | 110, 114 | raleqbidv 3319 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑙 = 𝑒 → (∀𝑗 ∈ (𝑅1‘∪ dom 𝑙)(𝑗(𝑙‘∪ dom 𝑙)𝑖 → (𝑗 ∈ 𝑔 ↔ 𝑗 ∈ ℎ)) ↔ ∀𝑗 ∈ (𝑅1‘∪ dom 𝑒)(𝑗(𝑒‘∪ dom 𝑒)𝑖 → (𝑗 ∈ 𝑔 ↔ 𝑗 ∈ ℎ)))) |
116 | 115 | anbi2d 631 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑙 = 𝑒 → (((𝑖 ∈ ℎ ∧ ¬ 𝑖 ∈ 𝑔) ∧ ∀𝑗 ∈ (𝑅1‘∪ dom 𝑙)(𝑗(𝑙‘∪ dom 𝑙)𝑖 → (𝑗 ∈ 𝑔 ↔ 𝑗 ∈ ℎ))) ↔ ((𝑖 ∈ ℎ ∧ ¬ 𝑖 ∈ 𝑔) ∧ ∀𝑗 ∈ (𝑅1‘∪ dom 𝑒)(𝑗(𝑒‘∪ dom 𝑒)𝑖 → (𝑗 ∈ 𝑔 ↔ 𝑗 ∈ ℎ))))) |
117 | 110, 116 | rexeqbidv 3320 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑙 = 𝑒 → (∃𝑖 ∈ (𝑅1‘∪ dom 𝑙)((𝑖 ∈ ℎ ∧ ¬ 𝑖 ∈ 𝑔) ∧ ∀𝑗 ∈ (𝑅1‘∪ dom 𝑙)(𝑗(𝑙‘∪ dom 𝑙)𝑖 → (𝑗 ∈ 𝑔 ↔ 𝑗 ∈ ℎ))) ↔ ∃𝑖 ∈ (𝑅1‘∪ dom 𝑒)((𝑖 ∈ ℎ ∧ ¬ 𝑖 ∈ 𝑔) ∧ ∀𝑗 ∈ (𝑅1‘∪ dom 𝑒)(𝑗(𝑒‘∪ dom 𝑒)𝑖 → (𝑗 ∈ 𝑔 ↔ 𝑗 ∈ ℎ))))) |
118 | 117 | opabbidv 5098 |
. . . . . . . . . . . . . . . 16
⊢ (𝑙 = 𝑒 → {〈𝑔, ℎ〉 ∣ ∃𝑖 ∈ (𝑅1‘∪ dom 𝑙)((𝑖 ∈ ℎ ∧ ¬ 𝑖 ∈ 𝑔) ∧ ∀𝑗 ∈ (𝑅1‘∪ dom 𝑙)(𝑗(𝑙‘∪ dom 𝑙)𝑖 → (𝑗 ∈ 𝑔 ↔ 𝑗 ∈ ℎ)))} = {〈𝑔, ℎ〉 ∣ ∃𝑖 ∈ (𝑅1‘∪ dom 𝑒)((𝑖 ∈ ℎ ∧ ¬ 𝑖 ∈ 𝑔) ∧ ∀𝑗 ∈ (𝑅1‘∪ dom 𝑒)(𝑗(𝑒‘∪ dom 𝑒)𝑖 → (𝑗 ∈ 𝑔 ↔ 𝑗 ∈ ℎ)))}) |
119 | 108, 109,
118 | supeq123d 8947 |
. . . . . . . . . . . . . . 15
⊢ (𝑙 = 𝑒 → sup((𝑦‘𝑔), (𝑅1‘dom 𝑙), {〈𝑔, ℎ〉 ∣ ∃𝑖 ∈ (𝑅1‘∪ dom 𝑙)((𝑖 ∈ ℎ ∧ ¬ 𝑖 ∈ 𝑔) ∧ ∀𝑗 ∈ (𝑅1‘∪ dom 𝑙)(𝑗(𝑙‘∪ dom 𝑙)𝑖 → (𝑗 ∈ 𝑔 ↔ 𝑗 ∈ ℎ)))}) = sup((𝑦‘𝑔), (𝑅1‘dom 𝑒), {〈𝑔, ℎ〉 ∣ ∃𝑖 ∈ (𝑅1‘∪ dom 𝑒)((𝑖 ∈ ℎ ∧ ¬ 𝑖 ∈ 𝑔) ∧ ∀𝑗 ∈ (𝑅1‘∪ dom 𝑒)(𝑗(𝑒‘∪ dom 𝑒)𝑖 → (𝑗 ∈ 𝑔 ↔ 𝑗 ∈ ℎ)))})) |
120 | 119 | mpteq2dv 5128 |
. . . . . . . . . . . . . 14
⊢ (𝑙 = 𝑒 → (𝑔 ∈ V ↦ sup((𝑦‘𝑔), (𝑅1‘dom 𝑙), {〈𝑔, ℎ〉 ∣ ∃𝑖 ∈ (𝑅1‘∪ dom 𝑙)((𝑖 ∈ ℎ ∧ ¬ 𝑖 ∈ 𝑔) ∧ ∀𝑗 ∈ (𝑅1‘∪ dom 𝑙)(𝑗(𝑙‘∪ dom 𝑙)𝑖 → (𝑗 ∈ 𝑔 ↔ 𝑗 ∈ ℎ)))})) = (𝑔 ∈ V ↦ sup((𝑦‘𝑔), (𝑅1‘dom 𝑒), {〈𝑔, ℎ〉 ∣ ∃𝑖 ∈ (𝑅1‘∪ dom 𝑒)((𝑖 ∈ ℎ ∧ ¬ 𝑖 ∈ 𝑔) ∧ ∀𝑗 ∈ (𝑅1‘∪ dom 𝑒)(𝑗(𝑒‘∪ dom 𝑒)𝑖 → (𝑗 ∈ 𝑔 ↔ 𝑗 ∈ ℎ)))}))) |
121 | 109 | difeq1d 4027 |
. . . . . . . . . . . . . 14
⊢ (𝑙 = 𝑒 → ((𝑅1‘dom
𝑙) ∖ ran 𝑔) =
((𝑅1‘dom 𝑒) ∖ ran 𝑔)) |
122 | 120, 121 | fveq12d 6665 |
. . . . . . . . . . . . 13
⊢ (𝑙 = 𝑒 → ((𝑔 ∈ V ↦ sup((𝑦‘𝑔), (𝑅1‘dom 𝑙), {〈𝑔, ℎ〉 ∣ ∃𝑖 ∈ (𝑅1‘∪ dom 𝑙)((𝑖 ∈ ℎ ∧ ¬ 𝑖 ∈ 𝑔) ∧ ∀𝑗 ∈ (𝑅1‘∪ dom 𝑙)(𝑗(𝑙‘∪ dom 𝑙)𝑖 → (𝑗 ∈ 𝑔 ↔ 𝑗 ∈ ℎ)))}))‘((𝑅1‘dom
𝑙) ∖ ran 𝑔)) = ((𝑔 ∈ V ↦ sup((𝑦‘𝑔), (𝑅1‘dom 𝑒), {〈𝑔, ℎ〉 ∣ ∃𝑖 ∈ (𝑅1‘∪ dom 𝑒)((𝑖 ∈ ℎ ∧ ¬ 𝑖 ∈ 𝑔) ∧ ∀𝑗 ∈ (𝑅1‘∪ dom 𝑒)(𝑗(𝑒‘∪ dom 𝑒)𝑖 → (𝑗 ∈ 𝑔 ↔ 𝑗 ∈ ℎ)))}))‘((𝑅1‘dom
𝑒) ∖ ran 𝑔))) |
123 | 122 | mpteq2dv 5128 |
. . . . . . . . . . . 12
⊢ (𝑙 = 𝑒 → (𝑔 ∈ V ↦ ((𝑔 ∈ V ↦ sup((𝑦‘𝑔), (𝑅1‘dom 𝑙), {〈𝑔, ℎ〉 ∣ ∃𝑖 ∈ (𝑅1‘∪ dom 𝑙)((𝑖 ∈ ℎ ∧ ¬ 𝑖 ∈ 𝑔) ∧ ∀𝑗 ∈ (𝑅1‘∪ dom 𝑙)(𝑗(𝑙‘∪ dom 𝑙)𝑖 → (𝑗 ∈ 𝑔 ↔ 𝑗 ∈ ℎ)))}))‘((𝑅1‘dom
𝑙) ∖ ran 𝑔))) = (𝑔 ∈ V ↦ ((𝑔 ∈ V ↦ sup((𝑦‘𝑔), (𝑅1‘dom 𝑒), {〈𝑔, ℎ〉 ∣ ∃𝑖 ∈ (𝑅1‘∪ dom 𝑒)((𝑖 ∈ ℎ ∧ ¬ 𝑖 ∈ 𝑔) ∧ ∀𝑗 ∈ (𝑅1‘∪ dom 𝑒)(𝑗(𝑒‘∪ dom 𝑒)𝑖 → (𝑗 ∈ 𝑔 ↔ 𝑗 ∈ ℎ)))}))‘((𝑅1‘dom
𝑒) ∖ ran 𝑔)))) |
124 | | recseq 8020 |
. . . . . . . . . . . 12
⊢ ((𝑔 ∈ V ↦ ((𝑔 ∈ V ↦ sup((𝑦‘𝑔), (𝑅1‘dom 𝑙), {〈𝑔, ℎ〉 ∣ ∃𝑖 ∈ (𝑅1‘∪ dom 𝑙)((𝑖 ∈ ℎ ∧ ¬ 𝑖 ∈ 𝑔) ∧ ∀𝑗 ∈ (𝑅1‘∪ dom 𝑙)(𝑗(𝑙‘∪ dom 𝑙)𝑖 → (𝑗 ∈ 𝑔 ↔ 𝑗 ∈ ℎ)))}))‘((𝑅1‘dom
𝑙) ∖ ran 𝑔))) = (𝑔 ∈ V ↦ ((𝑔 ∈ V ↦ sup((𝑦‘𝑔), (𝑅1‘dom 𝑒), {〈𝑔, ℎ〉 ∣ ∃𝑖 ∈ (𝑅1‘∪ dom 𝑒)((𝑖 ∈ ℎ ∧ ¬ 𝑖 ∈ 𝑔) ∧ ∀𝑗 ∈ (𝑅1‘∪ dom 𝑒)(𝑗(𝑒‘∪ dom 𝑒)𝑖 → (𝑗 ∈ 𝑔 ↔ 𝑗 ∈ ℎ)))}))‘((𝑅1‘dom
𝑒) ∖ ran 𝑔))) → recs((𝑔 ∈ V ↦ ((𝑔 ∈ V ↦ sup((𝑦‘𝑔), (𝑅1‘dom 𝑙), {〈𝑔, ℎ〉 ∣ ∃𝑖 ∈ (𝑅1‘∪ dom 𝑙)((𝑖 ∈ ℎ ∧ ¬ 𝑖 ∈ 𝑔) ∧ ∀𝑗 ∈ (𝑅1‘∪ dom 𝑙)(𝑗(𝑙‘∪ dom 𝑙)𝑖 → (𝑗 ∈ 𝑔 ↔ 𝑗 ∈ ℎ)))}))‘((𝑅1‘dom
𝑙) ∖ ran 𝑔)))) = recs((𝑔 ∈ V ↦ ((𝑔 ∈ V ↦ sup((𝑦‘𝑔), (𝑅1‘dom 𝑒), {〈𝑔, ℎ〉 ∣ ∃𝑖 ∈ (𝑅1‘∪ dom 𝑒)((𝑖 ∈ ℎ ∧ ¬ 𝑖 ∈ 𝑔) ∧ ∀𝑗 ∈ (𝑅1‘∪ dom 𝑒)(𝑗(𝑒‘∪ dom 𝑒)𝑖 → (𝑗 ∈ 𝑔 ↔ 𝑗 ∈ ℎ)))}))‘((𝑅1‘dom
𝑒) ∖ ran 𝑔))))) |
125 | 123, 124 | syl 17 |
. . . . . . . . . . 11
⊢ (𝑙 = 𝑒 → recs((𝑔 ∈ V ↦ ((𝑔 ∈ V ↦ sup((𝑦‘𝑔), (𝑅1‘dom 𝑙), {〈𝑔, ℎ〉 ∣ ∃𝑖 ∈ (𝑅1‘∪ dom 𝑙)((𝑖 ∈ ℎ ∧ ¬ 𝑖 ∈ 𝑔) ∧ ∀𝑗 ∈ (𝑅1‘∪ dom 𝑙)(𝑗(𝑙‘∪ dom 𝑙)𝑖 → (𝑗 ∈ 𝑔 ↔ 𝑗 ∈ ℎ)))}))‘((𝑅1‘dom
𝑙) ∖ ran 𝑔)))) = recs((𝑔 ∈ V ↦ ((𝑔 ∈ V ↦ sup((𝑦‘𝑔), (𝑅1‘dom 𝑒), {〈𝑔, ℎ〉 ∣ ∃𝑖 ∈ (𝑅1‘∪ dom 𝑒)((𝑖 ∈ ℎ ∧ ¬ 𝑖 ∈ 𝑔) ∧ ∀𝑗 ∈ (𝑅1‘∪ dom 𝑒)(𝑗(𝑒‘∪ dom 𝑒)𝑖 → (𝑗 ∈ 𝑔 ↔ 𝑗 ∈ ℎ)))}))‘((𝑅1‘dom
𝑒) ∖ ran 𝑔))))) |
126 | 125 | cnveqd 5715 |
. . . . . . . . . 10
⊢ (𝑙 = 𝑒 → ◡recs((𝑔 ∈ V ↦ ((𝑔 ∈ V ↦ sup((𝑦‘𝑔), (𝑅1‘dom 𝑙), {〈𝑔, ℎ〉 ∣ ∃𝑖 ∈ (𝑅1‘∪ dom 𝑙)((𝑖 ∈ ℎ ∧ ¬ 𝑖 ∈ 𝑔) ∧ ∀𝑗 ∈ (𝑅1‘∪ dom 𝑙)(𝑗(𝑙‘∪ dom 𝑙)𝑖 → (𝑗 ∈ 𝑔 ↔ 𝑗 ∈ ℎ)))}))‘((𝑅1‘dom
𝑙) ∖ ran 𝑔)))) = ◡recs((𝑔 ∈ V ↦ ((𝑔 ∈ V ↦ sup((𝑦‘𝑔), (𝑅1‘dom 𝑒), {〈𝑔, ℎ〉 ∣ ∃𝑖 ∈ (𝑅1‘∪ dom 𝑒)((𝑖 ∈ ℎ ∧ ¬ 𝑖 ∈ 𝑔) ∧ ∀𝑗 ∈ (𝑅1‘∪ dom 𝑒)(𝑗(𝑒‘∪ dom 𝑒)𝑖 → (𝑗 ∈ 𝑔 ↔ 𝑗 ∈ ℎ)))}))‘((𝑅1‘dom
𝑒) ∖ ran 𝑔))))) |
127 | 126 | imaeq1d 5900 |
. . . . . . . . 9
⊢ (𝑙 = 𝑒 → (◡recs((𝑔 ∈ V ↦ ((𝑔 ∈ V ↦ sup((𝑦‘𝑔), (𝑅1‘dom 𝑙), {〈𝑔, ℎ〉 ∣ ∃𝑖 ∈ (𝑅1‘∪ dom 𝑙)((𝑖 ∈ ℎ ∧ ¬ 𝑖 ∈ 𝑔) ∧ ∀𝑗 ∈ (𝑅1‘∪ dom 𝑙)(𝑗(𝑙‘∪ dom 𝑙)𝑖 → (𝑗 ∈ 𝑔 ↔ 𝑗 ∈ ℎ)))}))‘((𝑅1‘dom
𝑙) ∖ ran 𝑔)))) “ {𝑔}) = (◡recs((𝑔 ∈ V ↦ ((𝑔 ∈ V ↦ sup((𝑦‘𝑔), (𝑅1‘dom 𝑒), {〈𝑔, ℎ〉 ∣ ∃𝑖 ∈ (𝑅1‘∪ dom 𝑒)((𝑖 ∈ ℎ ∧ ¬ 𝑖 ∈ 𝑔) ∧ ∀𝑗 ∈ (𝑅1‘∪ dom 𝑒)(𝑗(𝑒‘∪ dom 𝑒)𝑖 → (𝑗 ∈ 𝑔 ↔ 𝑗 ∈ ℎ)))}))‘((𝑅1‘dom
𝑒) ∖ ran 𝑔)))) “ {𝑔})) |
128 | 127 | inteqd 4843 |
. . . . . . . 8
⊢ (𝑙 = 𝑒 → ∩ (◡recs((𝑔 ∈ V ↦ ((𝑔 ∈ V ↦ sup((𝑦‘𝑔), (𝑅1‘dom 𝑙), {〈𝑔, ℎ〉 ∣ ∃𝑖 ∈ (𝑅1‘∪ dom 𝑙)((𝑖 ∈ ℎ ∧ ¬ 𝑖 ∈ 𝑔) ∧ ∀𝑗 ∈ (𝑅1‘∪ dom 𝑙)(𝑗(𝑙‘∪ dom 𝑙)𝑖 → (𝑗 ∈ 𝑔 ↔ 𝑗 ∈ ℎ)))}))‘((𝑅1‘dom
𝑙) ∖ ran 𝑔)))) “ {𝑔}) = ∩ (◡recs((𝑔 ∈ V ↦ ((𝑔 ∈ V ↦ sup((𝑦‘𝑔), (𝑅1‘dom 𝑒), {〈𝑔, ℎ〉 ∣ ∃𝑖 ∈ (𝑅1‘∪ dom 𝑒)((𝑖 ∈ ℎ ∧ ¬ 𝑖 ∈ 𝑔) ∧ ∀𝑗 ∈ (𝑅1‘∪ dom 𝑒)(𝑗(𝑒‘∪ dom 𝑒)𝑖 → (𝑗 ∈ 𝑔 ↔ 𝑗 ∈ ℎ)))}))‘((𝑅1‘dom
𝑒) ∖ ran 𝑔)))) “ {𝑔})) |
129 | 126 | imaeq1d 5900 |
. . . . . . . . 9
⊢ (𝑙 = 𝑒 → (◡recs((𝑔 ∈ V ↦ ((𝑔 ∈ V ↦ sup((𝑦‘𝑔), (𝑅1‘dom 𝑙), {〈𝑔, ℎ〉 ∣ ∃𝑖 ∈ (𝑅1‘∪ dom 𝑙)((𝑖 ∈ ℎ ∧ ¬ 𝑖 ∈ 𝑔) ∧ ∀𝑗 ∈ (𝑅1‘∪ dom 𝑙)(𝑗(𝑙‘∪ dom 𝑙)𝑖 → (𝑗 ∈ 𝑔 ↔ 𝑗 ∈ ℎ)))}))‘((𝑅1‘dom
𝑙) ∖ ran 𝑔)))) “ {ℎ}) = (◡recs((𝑔 ∈ V ↦ ((𝑔 ∈ V ↦ sup((𝑦‘𝑔), (𝑅1‘dom 𝑒), {〈𝑔, ℎ〉 ∣ ∃𝑖 ∈ (𝑅1‘∪ dom 𝑒)((𝑖 ∈ ℎ ∧ ¬ 𝑖 ∈ 𝑔) ∧ ∀𝑗 ∈ (𝑅1‘∪ dom 𝑒)(𝑗(𝑒‘∪ dom 𝑒)𝑖 → (𝑗 ∈ 𝑔 ↔ 𝑗 ∈ ℎ)))}))‘((𝑅1‘dom
𝑒) ∖ ran 𝑔)))) “ {ℎ})) |
130 | 129 | inteqd 4843 |
. . . . . . . 8
⊢ (𝑙 = 𝑒 → ∩ (◡recs((𝑔 ∈ V ↦ ((𝑔 ∈ V ↦ sup((𝑦‘𝑔), (𝑅1‘dom 𝑙), {〈𝑔, ℎ〉 ∣ ∃𝑖 ∈ (𝑅1‘∪ dom 𝑙)((𝑖 ∈ ℎ ∧ ¬ 𝑖 ∈ 𝑔) ∧ ∀𝑗 ∈ (𝑅1‘∪ dom 𝑙)(𝑗(𝑙‘∪ dom 𝑙)𝑖 → (𝑗 ∈ 𝑔 ↔ 𝑗 ∈ ℎ)))}))‘((𝑅1‘dom
𝑙) ∖ ran 𝑔)))) “ {ℎ}) = ∩ (◡recs((𝑔 ∈ V ↦ ((𝑔 ∈ V ↦ sup((𝑦‘𝑔), (𝑅1‘dom 𝑒), {〈𝑔, ℎ〉 ∣ ∃𝑖 ∈ (𝑅1‘∪ dom 𝑒)((𝑖 ∈ ℎ ∧ ¬ 𝑖 ∈ 𝑔) ∧ ∀𝑗 ∈ (𝑅1‘∪ dom 𝑒)(𝑗(𝑒‘∪ dom 𝑒)𝑖 → (𝑗 ∈ 𝑔 ↔ 𝑗 ∈ ℎ)))}))‘((𝑅1‘dom
𝑒) ∖ ran 𝑔)))) “ {ℎ})) |
131 | 128, 130 | eleq12d 2846 |
. . . . . . 7
⊢ (𝑙 = 𝑒 → (∩ (◡recs((𝑔 ∈ V ↦ ((𝑔 ∈ V ↦ sup((𝑦‘𝑔), (𝑅1‘dom 𝑙), {〈𝑔, ℎ〉 ∣ ∃𝑖 ∈ (𝑅1‘∪ dom 𝑙)((𝑖 ∈ ℎ ∧ ¬ 𝑖 ∈ 𝑔) ∧ ∀𝑗 ∈ (𝑅1‘∪ dom 𝑙)(𝑗(𝑙‘∪ dom 𝑙)𝑖 → (𝑗 ∈ 𝑔 ↔ 𝑗 ∈ ℎ)))}))‘((𝑅1‘dom
𝑙) ∖ ran 𝑔)))) “ {𝑔}) ∈ ∩ (◡recs((𝑔 ∈ V ↦ ((𝑔 ∈ V ↦ sup((𝑦‘𝑔), (𝑅1‘dom 𝑙), {〈𝑔, ℎ〉 ∣ ∃𝑖 ∈ (𝑅1‘∪ dom 𝑙)((𝑖 ∈ ℎ ∧ ¬ 𝑖 ∈ 𝑔) ∧ ∀𝑗 ∈ (𝑅1‘∪ dom 𝑙)(𝑗(𝑙‘∪ dom 𝑙)𝑖 → (𝑗 ∈ 𝑔 ↔ 𝑗 ∈ ℎ)))}))‘((𝑅1‘dom
𝑙) ∖ ran 𝑔)))) “ {ℎ}) ↔ ∩ (◡recs((𝑔 ∈ V ↦ ((𝑔 ∈ V ↦ sup((𝑦‘𝑔), (𝑅1‘dom 𝑒), {〈𝑔, ℎ〉 ∣ ∃𝑖 ∈ (𝑅1‘∪ dom 𝑒)((𝑖 ∈ ℎ ∧ ¬ 𝑖 ∈ 𝑔) ∧ ∀𝑗 ∈ (𝑅1‘∪ dom 𝑒)(𝑗(𝑒‘∪ dom 𝑒)𝑖 → (𝑗 ∈ 𝑔 ↔ 𝑗 ∈ ℎ)))}))‘((𝑅1‘dom
𝑒) ∖ ran 𝑔)))) “ {𝑔}) ∈ ∩ (◡recs((𝑔 ∈ V ↦ ((𝑔 ∈ V ↦ sup((𝑦‘𝑔), (𝑅1‘dom 𝑒), {〈𝑔, ℎ〉 ∣ ∃𝑖 ∈ (𝑅1‘∪ dom 𝑒)((𝑖 ∈ ℎ ∧ ¬ 𝑖 ∈ 𝑔) ∧ ∀𝑗 ∈ (𝑅1‘∪ dom 𝑒)(𝑗(𝑒‘∪ dom 𝑒)𝑖 → (𝑗 ∈ 𝑔 ↔ 𝑗 ∈ ℎ)))}))‘((𝑅1‘dom
𝑒) ∖ ran 𝑔)))) “ {ℎ}))) |
132 | 131 | opabbidv 5098 |
. . . . . 6
⊢ (𝑙 = 𝑒 → {〈𝑔, ℎ〉 ∣ ∩
(◡recs((𝑔 ∈ V ↦ ((𝑔 ∈ V ↦ sup((𝑦‘𝑔), (𝑅1‘dom 𝑙), {〈𝑔, ℎ〉 ∣ ∃𝑖 ∈ (𝑅1‘∪ dom 𝑙)((𝑖 ∈ ℎ ∧ ¬ 𝑖 ∈ 𝑔) ∧ ∀𝑗 ∈ (𝑅1‘∪ dom 𝑙)(𝑗(𝑙‘∪ dom 𝑙)𝑖 → (𝑗 ∈ 𝑔 ↔ 𝑗 ∈ ℎ)))}))‘((𝑅1‘dom
𝑙) ∖ ran 𝑔)))) “ {𝑔}) ∈ ∩ (◡recs((𝑔 ∈ V ↦ ((𝑔 ∈ V ↦ sup((𝑦‘𝑔), (𝑅1‘dom 𝑙), {〈𝑔, ℎ〉 ∣ ∃𝑖 ∈ (𝑅1‘∪ dom 𝑙)((𝑖 ∈ ℎ ∧ ¬ 𝑖 ∈ 𝑔) ∧ ∀𝑗 ∈ (𝑅1‘∪ dom 𝑙)(𝑗(𝑙‘∪ dom 𝑙)𝑖 → (𝑗 ∈ 𝑔 ↔ 𝑗 ∈ ℎ)))}))‘((𝑅1‘dom
𝑙) ∖ ran 𝑔)))) “ {ℎ})} = {〈𝑔, ℎ〉 ∣ ∩
(◡recs((𝑔 ∈ V ↦ ((𝑔 ∈ V ↦ sup((𝑦‘𝑔), (𝑅1‘dom 𝑒), {〈𝑔, ℎ〉 ∣ ∃𝑖 ∈ (𝑅1‘∪ dom 𝑒)((𝑖 ∈ ℎ ∧ ¬ 𝑖 ∈ 𝑔) ∧ ∀𝑗 ∈ (𝑅1‘∪ dom 𝑒)(𝑗(𝑒‘∪ dom 𝑒)𝑖 → (𝑗 ∈ 𝑔 ↔ 𝑗 ∈ ℎ)))}))‘((𝑅1‘dom
𝑒) ∖ ran 𝑔)))) “ {𝑔}) ∈ ∩ (◡recs((𝑔 ∈ V ↦ ((𝑔 ∈ V ↦ sup((𝑦‘𝑔), (𝑅1‘dom 𝑒), {〈𝑔, ℎ〉 ∣ ∃𝑖 ∈ (𝑅1‘∪ dom 𝑒)((𝑖 ∈ ℎ ∧ ¬ 𝑖 ∈ 𝑔) ∧ ∀𝑗 ∈ (𝑅1‘∪ dom 𝑒)(𝑗(𝑒‘∪ dom 𝑒)𝑖 → (𝑗 ∈ 𝑔 ↔ 𝑗 ∈ ℎ)))}))‘((𝑅1‘dom
𝑒) ∖ ran 𝑔)))) “ {ℎ})}) |
133 | 102, 107,
132 | ifbieq12d 4448 |
. . . . 5
⊢ (𝑙 = 𝑒 → if(dom 𝑙 = ∪ dom 𝑙, {〈𝑔, ℎ〉 ∣ ((rank‘𝑔) E (rank‘ℎ) ∨ ((rank‘𝑔) = (rank‘ℎ) ∧ 𝑔(𝑙‘suc (rank‘𝑔))ℎ))}, {〈𝑔, ℎ〉 ∣ ∩
(◡recs((𝑔 ∈ V ↦ ((𝑔 ∈ V ↦ sup((𝑦‘𝑔), (𝑅1‘dom 𝑙), {〈𝑔, ℎ〉 ∣ ∃𝑖 ∈ (𝑅1‘∪ dom 𝑙)((𝑖 ∈ ℎ ∧ ¬ 𝑖 ∈ 𝑔) ∧ ∀𝑗 ∈ (𝑅1‘∪ dom 𝑙)(𝑗(𝑙‘∪ dom 𝑙)𝑖 → (𝑗 ∈ 𝑔 ↔ 𝑗 ∈ ℎ)))}))‘((𝑅1‘dom
𝑙) ∖ ran 𝑔)))) “ {𝑔}) ∈ ∩ (◡recs((𝑔 ∈ V ↦ ((𝑔 ∈ V ↦ sup((𝑦‘𝑔), (𝑅1‘dom 𝑙), {〈𝑔, ℎ〉 ∣ ∃𝑖 ∈ (𝑅1‘∪ dom 𝑙)((𝑖 ∈ ℎ ∧ ¬ 𝑖 ∈ 𝑔) ∧ ∀𝑗 ∈ (𝑅1‘∪ dom 𝑙)(𝑗(𝑙‘∪ dom 𝑙)𝑖 → (𝑗 ∈ 𝑔 ↔ 𝑗 ∈ ℎ)))}))‘((𝑅1‘dom
𝑙) ∖ ran 𝑔)))) “ {ℎ})}) = if(dom 𝑒 = ∪ dom 𝑒, {〈𝑔, ℎ〉 ∣ ((rank‘𝑔) E (rank‘ℎ) ∨ ((rank‘𝑔) = (rank‘ℎ) ∧ 𝑔(𝑒‘suc (rank‘𝑔))ℎ))}, {〈𝑔, ℎ〉 ∣ ∩
(◡recs((𝑔 ∈ V ↦ ((𝑔 ∈ V ↦ sup((𝑦‘𝑔), (𝑅1‘dom 𝑒), {〈𝑔, ℎ〉 ∣ ∃𝑖 ∈ (𝑅1‘∪ dom 𝑒)((𝑖 ∈ ℎ ∧ ¬ 𝑖 ∈ 𝑔) ∧ ∀𝑗 ∈ (𝑅1‘∪ dom 𝑒)(𝑗(𝑒‘∪ dom 𝑒)𝑖 → (𝑗 ∈ 𝑔 ↔ 𝑗 ∈ ℎ)))}))‘((𝑅1‘dom
𝑒) ∖ ran 𝑔)))) “ {𝑔}) ∈ ∩ (◡recs((𝑔 ∈ V ↦ ((𝑔 ∈ V ↦ sup((𝑦‘𝑔), (𝑅1‘dom 𝑒), {〈𝑔, ℎ〉 ∣ ∃𝑖 ∈ (𝑅1‘∪ dom 𝑒)((𝑖 ∈ ℎ ∧ ¬ 𝑖 ∈ 𝑔) ∧ ∀𝑗 ∈ (𝑅1‘∪ dom 𝑒)(𝑗(𝑒‘∪ dom 𝑒)𝑖 → (𝑗 ∈ 𝑔 ↔ 𝑗 ∈ ℎ)))}))‘((𝑅1‘dom
𝑒) ∖ ran 𝑔)))) “ {ℎ})})) |
134 | 109 | sqxpeqd 5556 |
. . . . 5
⊢ (𝑙 = 𝑒 → ((𝑅1‘dom
𝑙) ×
(𝑅1‘dom 𝑙)) = ((𝑅1‘dom 𝑒) ×
(𝑅1‘dom 𝑒))) |
135 | 133, 134 | ineq12d 4118 |
. . . 4
⊢ (𝑙 = 𝑒 → (if(dom 𝑙 = ∪ dom 𝑙, {〈𝑔, ℎ〉 ∣ ((rank‘𝑔) E (rank‘ℎ) ∨ ((rank‘𝑔) = (rank‘ℎ) ∧ 𝑔(𝑙‘suc (rank‘𝑔))ℎ))}, {〈𝑔, ℎ〉 ∣ ∩
(◡recs((𝑔 ∈ V ↦ ((𝑔 ∈ V ↦ sup((𝑦‘𝑔), (𝑅1‘dom 𝑙), {〈𝑔, ℎ〉 ∣ ∃𝑖 ∈ (𝑅1‘∪ dom 𝑙)((𝑖 ∈ ℎ ∧ ¬ 𝑖 ∈ 𝑔) ∧ ∀𝑗 ∈ (𝑅1‘∪ dom 𝑙)(𝑗(𝑙‘∪ dom 𝑙)𝑖 → (𝑗 ∈ 𝑔 ↔ 𝑗 ∈ ℎ)))}))‘((𝑅1‘dom
𝑙) ∖ ran 𝑔)))) “ {𝑔}) ∈ ∩ (◡recs((𝑔 ∈ V ↦ ((𝑔 ∈ V ↦ sup((𝑦‘𝑔), (𝑅1‘dom 𝑙), {〈𝑔, ℎ〉 ∣ ∃𝑖 ∈ (𝑅1‘∪ dom 𝑙)((𝑖 ∈ ℎ ∧ ¬ 𝑖 ∈ 𝑔) ∧ ∀𝑗 ∈ (𝑅1‘∪ dom 𝑙)(𝑗(𝑙‘∪ dom 𝑙)𝑖 → (𝑗 ∈ 𝑔 ↔ 𝑗 ∈ ℎ)))}))‘((𝑅1‘dom
𝑙) ∖ ran 𝑔)))) “ {ℎ})}) ∩ ((𝑅1‘dom
𝑙) ×
(𝑅1‘dom 𝑙))) = (if(dom 𝑒 = ∪ dom 𝑒, {〈𝑔, ℎ〉 ∣ ((rank‘𝑔) E (rank‘ℎ) ∨ ((rank‘𝑔) = (rank‘ℎ) ∧ 𝑔(𝑒‘suc (rank‘𝑔))ℎ))}, {〈𝑔, ℎ〉 ∣ ∩
(◡recs((𝑔 ∈ V ↦ ((𝑔 ∈ V ↦ sup((𝑦‘𝑔), (𝑅1‘dom 𝑒), {〈𝑔, ℎ〉 ∣ ∃𝑖 ∈ (𝑅1‘∪ dom 𝑒)((𝑖 ∈ ℎ ∧ ¬ 𝑖 ∈ 𝑔) ∧ ∀𝑗 ∈ (𝑅1‘∪ dom 𝑒)(𝑗(𝑒‘∪ dom 𝑒)𝑖 → (𝑗 ∈ 𝑔 ↔ 𝑗 ∈ ℎ)))}))‘((𝑅1‘dom
𝑒) ∖ ran 𝑔)))) “ {𝑔}) ∈ ∩ (◡recs((𝑔 ∈ V ↦ ((𝑔 ∈ V ↦ sup((𝑦‘𝑔), (𝑅1‘dom 𝑒), {〈𝑔, ℎ〉 ∣ ∃𝑖 ∈ (𝑅1‘∪ dom 𝑒)((𝑖 ∈ ℎ ∧ ¬ 𝑖 ∈ 𝑔) ∧ ∀𝑗 ∈ (𝑅1‘∪ dom 𝑒)(𝑗(𝑒‘∪ dom 𝑒)𝑖 → (𝑗 ∈ 𝑔 ↔ 𝑗 ∈ ℎ)))}))‘((𝑅1‘dom
𝑒) ∖ ran 𝑔)))) “ {ℎ})}) ∩ ((𝑅1‘dom
𝑒) ×
(𝑅1‘dom 𝑒)))) |
136 | 135 | cbvmptv 5135 |
. . 3
⊢ (𝑙 ∈ V ↦ (if(dom 𝑙 = ∪
dom 𝑙, {〈𝑔, ℎ〉 ∣ ((rank‘𝑔) E (rank‘ℎ) ∨ ((rank‘𝑔) = (rank‘ℎ) ∧ 𝑔(𝑙‘suc (rank‘𝑔))ℎ))}, {〈𝑔, ℎ〉 ∣ ∩
(◡recs((𝑔 ∈ V ↦ ((𝑔 ∈ V ↦ sup((𝑦‘𝑔), (𝑅1‘dom 𝑙), {〈𝑔, ℎ〉 ∣ ∃𝑖 ∈ (𝑅1‘∪ dom 𝑙)((𝑖 ∈ ℎ ∧ ¬ 𝑖 ∈ 𝑔) ∧ ∀𝑗 ∈ (𝑅1‘∪ dom 𝑙)(𝑗(𝑙‘∪ dom 𝑙)𝑖 → (𝑗 ∈ 𝑔 ↔ 𝑗 ∈ ℎ)))}))‘((𝑅1‘dom
𝑙) ∖ ran 𝑔)))) “ {𝑔}) ∈ ∩ (◡recs((𝑔 ∈ V ↦ ((𝑔 ∈ V ↦ sup((𝑦‘𝑔), (𝑅1‘dom 𝑙), {〈𝑔, ℎ〉 ∣ ∃𝑖 ∈ (𝑅1‘∪ dom 𝑙)((𝑖 ∈ ℎ ∧ ¬ 𝑖 ∈ 𝑔) ∧ ∀𝑗 ∈ (𝑅1‘∪ dom 𝑙)(𝑗(𝑙‘∪ dom 𝑙)𝑖 → (𝑗 ∈ 𝑔 ↔ 𝑗 ∈ ℎ)))}))‘((𝑅1‘dom
𝑙) ∖ ran 𝑔)))) “ {ℎ})}) ∩ ((𝑅1‘dom
𝑙) ×
(𝑅1‘dom 𝑙)))) = (𝑒 ∈ V ↦ (if(dom 𝑒 = ∪ dom 𝑒, {〈𝑔, ℎ〉 ∣ ((rank‘𝑔) E (rank‘ℎ) ∨ ((rank‘𝑔) = (rank‘ℎ) ∧ 𝑔(𝑒‘suc (rank‘𝑔))ℎ))}, {〈𝑔, ℎ〉 ∣ ∩
(◡recs((𝑔 ∈ V ↦ ((𝑔 ∈ V ↦ sup((𝑦‘𝑔), (𝑅1‘dom 𝑒), {〈𝑔, ℎ〉 ∣ ∃𝑖 ∈ (𝑅1‘∪ dom 𝑒)((𝑖 ∈ ℎ ∧ ¬ 𝑖 ∈ 𝑔) ∧ ∀𝑗 ∈ (𝑅1‘∪ dom 𝑒)(𝑗(𝑒‘∪ dom 𝑒)𝑖 → (𝑗 ∈ 𝑔 ↔ 𝑗 ∈ ℎ)))}))‘((𝑅1‘dom
𝑒) ∖ ran 𝑔)))) “ {𝑔}) ∈ ∩ (◡recs((𝑔 ∈ V ↦ ((𝑔 ∈ V ↦ sup((𝑦‘𝑔), (𝑅1‘dom 𝑒), {〈𝑔, ℎ〉 ∣ ∃𝑖 ∈ (𝑅1‘∪ dom 𝑒)((𝑖 ∈ ℎ ∧ ¬ 𝑖 ∈ 𝑔) ∧ ∀𝑗 ∈ (𝑅1‘∪ dom 𝑒)(𝑗(𝑒‘∪ dom 𝑒)𝑖 → (𝑗 ∈ 𝑔 ↔ 𝑗 ∈ ℎ)))}))‘((𝑅1‘dom
𝑒) ∖ ran 𝑔)))) “ {ℎ})}) ∩ ((𝑅1‘dom
𝑒) ×
(𝑅1‘dom 𝑒)))) |
137 | | recseq 8020 |
. . 3
⊢ ((𝑙 ∈ V ↦ (if(dom 𝑙 = ∪
dom 𝑙, {〈𝑔, ℎ〉 ∣ ((rank‘𝑔) E (rank‘ℎ) ∨ ((rank‘𝑔) = (rank‘ℎ) ∧ 𝑔(𝑙‘suc (rank‘𝑔))ℎ))}, {〈𝑔, ℎ〉 ∣ ∩
(◡recs((𝑔 ∈ V ↦ ((𝑔 ∈ V ↦ sup((𝑦‘𝑔), (𝑅1‘dom 𝑙), {〈𝑔, ℎ〉 ∣ ∃𝑖 ∈ (𝑅1‘∪ dom 𝑙)((𝑖 ∈ ℎ ∧ ¬ 𝑖 ∈ 𝑔) ∧ ∀𝑗 ∈ (𝑅1‘∪ dom 𝑙)(𝑗(𝑙‘∪ dom 𝑙)𝑖 → (𝑗 ∈ 𝑔 ↔ 𝑗 ∈ ℎ)))}))‘((𝑅1‘dom
𝑙) ∖ ran 𝑔)))) “ {𝑔}) ∈ ∩ (◡recs((𝑔 ∈ V ↦ ((𝑔 ∈ V ↦ sup((𝑦‘𝑔), (𝑅1‘dom 𝑙), {〈𝑔, ℎ〉 ∣ ∃𝑖 ∈ (𝑅1‘∪ dom 𝑙)((𝑖 ∈ ℎ ∧ ¬ 𝑖 ∈ 𝑔) ∧ ∀𝑗 ∈ (𝑅1‘∪ dom 𝑙)(𝑗(𝑙‘∪ dom 𝑙)𝑖 → (𝑗 ∈ 𝑔 ↔ 𝑗 ∈ ℎ)))}))‘((𝑅1‘dom
𝑙) ∖ ran 𝑔)))) “ {ℎ})}) ∩ ((𝑅1‘dom
𝑙) ×
(𝑅1‘dom 𝑙)))) = (𝑒 ∈ V ↦ (if(dom 𝑒 = ∪ dom 𝑒, {〈𝑔, ℎ〉 ∣ ((rank‘𝑔) E (rank‘ℎ) ∨ ((rank‘𝑔) = (rank‘ℎ) ∧ 𝑔(𝑒‘suc (rank‘𝑔))ℎ))}, {〈𝑔, ℎ〉 ∣ ∩
(◡recs((𝑔 ∈ V ↦ ((𝑔 ∈ V ↦ sup((𝑦‘𝑔), (𝑅1‘dom 𝑒), {〈𝑔, ℎ〉 ∣ ∃𝑖 ∈ (𝑅1‘∪ dom 𝑒)((𝑖 ∈ ℎ ∧ ¬ 𝑖 ∈ 𝑔) ∧ ∀𝑗 ∈ (𝑅1‘∪ dom 𝑒)(𝑗(𝑒‘∪ dom 𝑒)𝑖 → (𝑗 ∈ 𝑔 ↔ 𝑗 ∈ ℎ)))}))‘((𝑅1‘dom
𝑒) ∖ ran 𝑔)))) “ {𝑔}) ∈ ∩ (◡recs((𝑔 ∈ V ↦ ((𝑔 ∈ V ↦ sup((𝑦‘𝑔), (𝑅1‘dom 𝑒), {〈𝑔, ℎ〉 ∣ ∃𝑖 ∈ (𝑅1‘∪ dom 𝑒)((𝑖 ∈ ℎ ∧ ¬ 𝑖 ∈ 𝑔) ∧ ∀𝑗 ∈ (𝑅1‘∪ dom 𝑒)(𝑗(𝑒‘∪ dom 𝑒)𝑖 → (𝑗 ∈ 𝑔 ↔ 𝑗 ∈ ℎ)))}))‘((𝑅1‘dom
𝑒) ∖ ran 𝑔)))) “ {ℎ})}) ∩ ((𝑅1‘dom
𝑒) ×
(𝑅1‘dom 𝑒)))) → recs((𝑙 ∈ V ↦ (if(dom 𝑙 = ∪ dom 𝑙, {〈𝑔, ℎ〉 ∣ ((rank‘𝑔) E (rank‘ℎ) ∨ ((rank‘𝑔) = (rank‘ℎ) ∧ 𝑔(𝑙‘suc (rank‘𝑔))ℎ))}, {〈𝑔, ℎ〉 ∣ ∩
(◡recs((𝑔 ∈ V ↦ ((𝑔 ∈ V ↦ sup((𝑦‘𝑔), (𝑅1‘dom 𝑙), {〈𝑔, ℎ〉 ∣ ∃𝑖 ∈ (𝑅1‘∪ dom 𝑙)((𝑖 ∈ ℎ ∧ ¬ 𝑖 ∈ 𝑔) ∧ ∀𝑗 ∈ (𝑅1‘∪ dom 𝑙)(𝑗(𝑙‘∪ dom 𝑙)𝑖 → (𝑗 ∈ 𝑔 ↔ 𝑗 ∈ ℎ)))}))‘((𝑅1‘dom
𝑙) ∖ ran 𝑔)))) “ {𝑔}) ∈ ∩ (◡recs((𝑔 ∈ V ↦ ((𝑔 ∈ V ↦ sup((𝑦‘𝑔), (𝑅1‘dom 𝑙), {〈𝑔, ℎ〉 ∣ ∃𝑖 ∈ (𝑅1‘∪ dom 𝑙)((𝑖 ∈ ℎ ∧ ¬ 𝑖 ∈ 𝑔) ∧ ∀𝑗 ∈ (𝑅1‘∪ dom 𝑙)(𝑗(𝑙‘∪ dom 𝑙)𝑖 → (𝑗 ∈ 𝑔 ↔ 𝑗 ∈ ℎ)))}))‘((𝑅1‘dom
𝑙) ∖ ran 𝑔)))) “ {ℎ})}) ∩ ((𝑅1‘dom
𝑙) ×
(𝑅1‘dom 𝑙))))) = recs((𝑒 ∈ V ↦ (if(dom 𝑒 = ∪ dom 𝑒, {〈𝑔, ℎ〉 ∣ ((rank‘𝑔) E (rank‘ℎ) ∨ ((rank‘𝑔) = (rank‘ℎ) ∧ 𝑔(𝑒‘suc (rank‘𝑔))ℎ))}, {〈𝑔, ℎ〉 ∣ ∩
(◡recs((𝑔 ∈ V ↦ ((𝑔 ∈ V ↦ sup((𝑦‘𝑔), (𝑅1‘dom 𝑒), {〈𝑔, ℎ〉 ∣ ∃𝑖 ∈ (𝑅1‘∪ dom 𝑒)((𝑖 ∈ ℎ ∧ ¬ 𝑖 ∈ 𝑔) ∧ ∀𝑗 ∈ (𝑅1‘∪ dom 𝑒)(𝑗(𝑒‘∪ dom 𝑒)𝑖 → (𝑗 ∈ 𝑔 ↔ 𝑗 ∈ ℎ)))}))‘((𝑅1‘dom
𝑒) ∖ ran 𝑔)))) “ {𝑔}) ∈ ∩ (◡recs((𝑔 ∈ V ↦ ((𝑔 ∈ V ↦ sup((𝑦‘𝑔), (𝑅1‘dom 𝑒), {〈𝑔, ℎ〉 ∣ ∃𝑖 ∈ (𝑅1‘∪ dom 𝑒)((𝑖 ∈ ℎ ∧ ¬ 𝑖 ∈ 𝑔) ∧ ∀𝑗 ∈ (𝑅1‘∪ dom 𝑒)(𝑗(𝑒‘∪ dom 𝑒)𝑖 → (𝑗 ∈ 𝑔 ↔ 𝑗 ∈ ℎ)))}))‘((𝑅1‘dom
𝑒) ∖ ran 𝑔)))) “ {ℎ})}) ∩ ((𝑅1‘dom
𝑒) ×
(𝑅1‘dom 𝑒)))))) |
138 | 136, 137 | ax-mp 5 |
. 2
⊢
recs((𝑙 ∈ V
↦ (if(dom 𝑙 = ∪ dom 𝑙, {〈𝑔, ℎ〉 ∣ ((rank‘𝑔) E (rank‘ℎ) ∨ ((rank‘𝑔) = (rank‘ℎ) ∧ 𝑔(𝑙‘suc (rank‘𝑔))ℎ))}, {〈𝑔, ℎ〉 ∣ ∩
(◡recs((𝑔 ∈ V ↦ ((𝑔 ∈ V ↦ sup((𝑦‘𝑔), (𝑅1‘dom 𝑙), {〈𝑔, ℎ〉 ∣ ∃𝑖 ∈ (𝑅1‘∪ dom 𝑙)((𝑖 ∈ ℎ ∧ ¬ 𝑖 ∈ 𝑔) ∧ ∀𝑗 ∈ (𝑅1‘∪ dom 𝑙)(𝑗(𝑙‘∪ dom 𝑙)𝑖 → (𝑗 ∈ 𝑔 ↔ 𝑗 ∈ ℎ)))}))‘((𝑅1‘dom
𝑙) ∖ ran 𝑔)))) “ {𝑔}) ∈ ∩ (◡recs((𝑔 ∈ V ↦ ((𝑔 ∈ V ↦ sup((𝑦‘𝑔), (𝑅1‘dom 𝑙), {〈𝑔, ℎ〉 ∣ ∃𝑖 ∈ (𝑅1‘∪ dom 𝑙)((𝑖 ∈ ℎ ∧ ¬ 𝑖 ∈ 𝑔) ∧ ∀𝑗 ∈ (𝑅1‘∪ dom 𝑙)(𝑗(𝑙‘∪ dom 𝑙)𝑖 → (𝑗 ∈ 𝑔 ↔ 𝑗 ∈ ℎ)))}))‘((𝑅1‘dom
𝑙) ∖ ran 𝑔)))) “ {ℎ})}) ∩ ((𝑅1‘dom
𝑙) ×
(𝑅1‘dom 𝑙))))) = recs((𝑒 ∈ V ↦ (if(dom 𝑒 = ∪ dom 𝑒, {〈𝑔, ℎ〉 ∣ ((rank‘𝑔) E (rank‘ℎ) ∨ ((rank‘𝑔) = (rank‘ℎ) ∧ 𝑔(𝑒‘suc (rank‘𝑔))ℎ))}, {〈𝑔, ℎ〉 ∣ ∩
(◡recs((𝑔 ∈ V ↦ ((𝑔 ∈ V ↦ sup((𝑦‘𝑔), (𝑅1‘dom 𝑒), {〈𝑔, ℎ〉 ∣ ∃𝑖 ∈ (𝑅1‘∪ dom 𝑒)((𝑖 ∈ ℎ ∧ ¬ 𝑖 ∈ 𝑔) ∧ ∀𝑗 ∈ (𝑅1‘∪ dom 𝑒)(𝑗(𝑒‘∪ dom 𝑒)𝑖 → (𝑗 ∈ 𝑔 ↔ 𝑗 ∈ ℎ)))}))‘((𝑅1‘dom
𝑒) ∖ ran 𝑔)))) “ {𝑔}) ∈ ∩ (◡recs((𝑔 ∈ V ↦ ((𝑔 ∈ V ↦ sup((𝑦‘𝑔), (𝑅1‘dom 𝑒), {〈𝑔, ℎ〉 ∣ ∃𝑖 ∈ (𝑅1‘∪ dom 𝑒)((𝑖 ∈ ℎ ∧ ¬ 𝑖 ∈ 𝑔) ∧ ∀𝑗 ∈ (𝑅1‘∪ dom 𝑒)(𝑗(𝑒‘∪ dom 𝑒)𝑖 → (𝑗 ∈ 𝑔 ↔ 𝑗 ∈ ℎ)))}))‘((𝑅1‘dom
𝑒) ∖ ran 𝑔)))) “ {ℎ})}) ∩ ((𝑅1‘dom
𝑒) ×
(𝑅1‘dom 𝑒))))) |
139 | | aomclem8.a |
. 2
⊢ (𝜑 → 𝐴 ∈ On) |
140 | | aomclem8.y |
. . 3
⊢ (𝜑 → ∀𝑎 ∈ 𝒫
(𝑅1‘𝐴)(𝑎 ≠ ∅ → (𝑦‘𝑎) ∈ ((𝒫 𝑎 ∩ Fin) ∖
{∅}))) |
141 | | neeq1 3013 |
. . . . 5
⊢ (𝑎 = 𝑐 → (𝑎 ≠ ∅ ↔ 𝑐 ≠ ∅)) |
142 | | fveq2 6658 |
. . . . . 6
⊢ (𝑎 = 𝑐 → (𝑦‘𝑎) = (𝑦‘𝑐)) |
143 | | pweq 4510 |
. . . . . . . 8
⊢ (𝑎 = 𝑐 → 𝒫 𝑎 = 𝒫 𝑐) |
144 | 143 | ineq1d 4116 |
. . . . . . 7
⊢ (𝑎 = 𝑐 → (𝒫 𝑎 ∩ Fin) = (𝒫 𝑐 ∩ Fin)) |
145 | 144 | difeq1d 4027 |
. . . . . 6
⊢ (𝑎 = 𝑐 → ((𝒫 𝑎 ∩ Fin) ∖ {∅}) = ((𝒫
𝑐 ∩ Fin) ∖
{∅})) |
146 | 142, 145 | eleq12d 2846 |
. . . . 5
⊢ (𝑎 = 𝑐 → ((𝑦‘𝑎) ∈ ((𝒫 𝑎 ∩ Fin) ∖ {∅}) ↔ (𝑦‘𝑐) ∈ ((𝒫 𝑐 ∩ Fin) ∖
{∅}))) |
147 | 141, 146 | imbi12d 348 |
. . . 4
⊢ (𝑎 = 𝑐 → ((𝑎 ≠ ∅ → (𝑦‘𝑎) ∈ ((𝒫 𝑎 ∩ Fin) ∖ {∅})) ↔ (𝑐 ≠ ∅ → (𝑦‘𝑐) ∈ ((𝒫 𝑐 ∩ Fin) ∖
{∅})))) |
148 | 147 | cbvralvw 3361 |
. . 3
⊢
(∀𝑎 ∈
𝒫 (𝑅1‘𝐴)(𝑎 ≠ ∅ → (𝑦‘𝑎) ∈ ((𝒫 𝑎 ∩ Fin) ∖ {∅})) ↔
∀𝑐 ∈ 𝒫
(𝑅1‘𝐴)(𝑐 ≠ ∅ → (𝑦‘𝑐) ∈ ((𝒫 𝑐 ∩ Fin) ∖
{∅}))) |
149 | 140, 148 | sylib 221 |
. 2
⊢ (𝜑 → ∀𝑐 ∈ 𝒫
(𝑅1‘𝐴)(𝑐 ≠ ∅ → (𝑦‘𝑐) ∈ ((𝒫 𝑐 ∩ Fin) ∖
{∅}))) |
150 | 29, 37, 45, 84, 98, 99, 138, 139, 149 | aomclem7 40377 |
1
⊢ (𝜑 → ∃𝑏 𝑏 We (𝑅1‘𝐴)) |