Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  aomclem8 Structured version   Visualization version   GIF version

Theorem aomclem8 43164
Description: Lemma for dfac11 43165. Perform variable substitutions. This is the most we can say without invoking regularity. (Contributed by Stefan O'Rear, 20-Jan-2015.)
Hypotheses
Ref Expression
aomclem8.a (𝜑𝐴 ∈ On)
aomclem8.y (𝜑 → ∀𝑎 ∈ 𝒫 (𝑅1𝐴)(𝑎 ≠ ∅ → (𝑦𝑎) ∈ ((𝒫 𝑎 ∩ Fin) ∖ {∅})))
Assertion
Ref Expression
aomclem8 (𝜑 → ∃𝑏 𝑏 We (𝑅1𝐴))
Distinct variable groups:   𝜑,𝑏   𝐴,𝑎,𝑏   𝑦,𝑎,𝑏
Allowed substitution hints:   𝜑(𝑦,𝑎)   𝐴(𝑦)

Proof of Theorem aomclem8
Dummy variables 𝑐 𝑑 𝑒 𝑓 𝑔 𝑖 𝑗 𝑙 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elequ2 2126 . . . . . . 7 ( = 𝑏 → (𝑖𝑖𝑏))
2 elequ2 2126 . . . . . . . 8 (𝑔 = 𝑐 → (𝑖𝑔𝑖𝑐))
32notbid 318 . . . . . . 7 (𝑔 = 𝑐 → (¬ 𝑖𝑔 ↔ ¬ 𝑖𝑐))
41, 3bi2anan9r 639 . . . . . 6 ((𝑔 = 𝑐 = 𝑏) → ((𝑖 ∧ ¬ 𝑖𝑔) ↔ (𝑖𝑏 ∧ ¬ 𝑖𝑐)))
5 elequ2 2126 . . . . . . . . 9 (𝑔 = 𝑐 → (𝑗𝑔𝑗𝑐))
6 elequ2 2126 . . . . . . . . 9 ( = 𝑏 → (𝑗𝑗𝑏))
75, 6bi2bian9 640 . . . . . . . 8 ((𝑔 = 𝑐 = 𝑏) → ((𝑗𝑔𝑗) ↔ (𝑗𝑐𝑗𝑏)))
87imbi2d 340 . . . . . . 7 ((𝑔 = 𝑐 = 𝑏) → ((𝑗(𝑒 dom 𝑒)𝑖 → (𝑗𝑔𝑗)) ↔ (𝑗(𝑒 dom 𝑒)𝑖 → (𝑗𝑐𝑗𝑏))))
98ralbidv 3155 . . . . . 6 ((𝑔 = 𝑐 = 𝑏) → (∀𝑗 ∈ (𝑅1 dom 𝑒)(𝑗(𝑒 dom 𝑒)𝑖 → (𝑗𝑔𝑗)) ↔ ∀𝑗 ∈ (𝑅1 dom 𝑒)(𝑗(𝑒 dom 𝑒)𝑖 → (𝑗𝑐𝑗𝑏))))
104, 9anbi12d 632 . . . . 5 ((𝑔 = 𝑐 = 𝑏) → (((𝑖 ∧ ¬ 𝑖𝑔) ∧ ∀𝑗 ∈ (𝑅1 dom 𝑒)(𝑗(𝑒 dom 𝑒)𝑖 → (𝑗𝑔𝑗))) ↔ ((𝑖𝑏 ∧ ¬ 𝑖𝑐) ∧ ∀𝑗 ∈ (𝑅1 dom 𝑒)(𝑗(𝑒 dom 𝑒)𝑖 → (𝑗𝑐𝑗𝑏)))))
1110rexbidv 3156 . . . 4 ((𝑔 = 𝑐 = 𝑏) → (∃𝑖 ∈ (𝑅1 dom 𝑒)((𝑖 ∧ ¬ 𝑖𝑔) ∧ ∀𝑗 ∈ (𝑅1 dom 𝑒)(𝑗(𝑒 dom 𝑒)𝑖 → (𝑗𝑔𝑗))) ↔ ∃𝑖 ∈ (𝑅1 dom 𝑒)((𝑖𝑏 ∧ ¬ 𝑖𝑐) ∧ ∀𝑗 ∈ (𝑅1 dom 𝑒)(𝑗(𝑒 dom 𝑒)𝑖 → (𝑗𝑐𝑗𝑏)))))
12 elequ1 2118 . . . . . . 7 (𝑖 = 𝑑 → (𝑖𝑏𝑑𝑏))
13 elequ1 2118 . . . . . . . 8 (𝑖 = 𝑑 → (𝑖𝑐𝑑𝑐))
1413notbid 318 . . . . . . 7 (𝑖 = 𝑑 → (¬ 𝑖𝑐 ↔ ¬ 𝑑𝑐))
1512, 14anbi12d 632 . . . . . 6 (𝑖 = 𝑑 → ((𝑖𝑏 ∧ ¬ 𝑖𝑐) ↔ (𝑑𝑏 ∧ ¬ 𝑑𝑐)))
16 breq2 5093 . . . . . . . . 9 (𝑖 = 𝑑 → (𝑗(𝑒 dom 𝑒)𝑖𝑗(𝑒 dom 𝑒)𝑑))
1716imbi1d 341 . . . . . . . 8 (𝑖 = 𝑑 → ((𝑗(𝑒 dom 𝑒)𝑖 → (𝑗𝑐𝑗𝑏)) ↔ (𝑗(𝑒 dom 𝑒)𝑑 → (𝑗𝑐𝑗𝑏))))
1817ralbidv 3155 . . . . . . 7 (𝑖 = 𝑑 → (∀𝑗 ∈ (𝑅1 dom 𝑒)(𝑗(𝑒 dom 𝑒)𝑖 → (𝑗𝑐𝑗𝑏)) ↔ ∀𝑗 ∈ (𝑅1 dom 𝑒)(𝑗(𝑒 dom 𝑒)𝑑 → (𝑗𝑐𝑗𝑏))))
19 breq1 5092 . . . . . . . . 9 (𝑗 = 𝑓 → (𝑗(𝑒 dom 𝑒)𝑑𝑓(𝑒 dom 𝑒)𝑑))
20 elequ1 2118 . . . . . . . . . 10 (𝑗 = 𝑓 → (𝑗𝑐𝑓𝑐))
21 elequ1 2118 . . . . . . . . . 10 (𝑗 = 𝑓 → (𝑗𝑏𝑓𝑏))
2220, 21bibi12d 345 . . . . . . . . 9 (𝑗 = 𝑓 → ((𝑗𝑐𝑗𝑏) ↔ (𝑓𝑐𝑓𝑏)))
2319, 22imbi12d 344 . . . . . . . 8 (𝑗 = 𝑓 → ((𝑗(𝑒 dom 𝑒)𝑑 → (𝑗𝑐𝑗𝑏)) ↔ (𝑓(𝑒 dom 𝑒)𝑑 → (𝑓𝑐𝑓𝑏))))
2423cbvralvw 3210 . . . . . . 7 (∀𝑗 ∈ (𝑅1 dom 𝑒)(𝑗(𝑒 dom 𝑒)𝑑 → (𝑗𝑐𝑗𝑏)) ↔ ∀𝑓 ∈ (𝑅1 dom 𝑒)(𝑓(𝑒 dom 𝑒)𝑑 → (𝑓𝑐𝑓𝑏)))
2518, 24bitrdi 287 . . . . . 6 (𝑖 = 𝑑 → (∀𝑗 ∈ (𝑅1 dom 𝑒)(𝑗(𝑒 dom 𝑒)𝑖 → (𝑗𝑐𝑗𝑏)) ↔ ∀𝑓 ∈ (𝑅1 dom 𝑒)(𝑓(𝑒 dom 𝑒)𝑑 → (𝑓𝑐𝑓𝑏))))
2615, 25anbi12d 632 . . . . 5 (𝑖 = 𝑑 → (((𝑖𝑏 ∧ ¬ 𝑖𝑐) ∧ ∀𝑗 ∈ (𝑅1 dom 𝑒)(𝑗(𝑒 dom 𝑒)𝑖 → (𝑗𝑐𝑗𝑏))) ↔ ((𝑑𝑏 ∧ ¬ 𝑑𝑐) ∧ ∀𝑓 ∈ (𝑅1 dom 𝑒)(𝑓(𝑒 dom 𝑒)𝑑 → (𝑓𝑐𝑓𝑏)))))
2726cbvrexvw 3211 . . . 4 (∃𝑖 ∈ (𝑅1 dom 𝑒)((𝑖𝑏 ∧ ¬ 𝑖𝑐) ∧ ∀𝑗 ∈ (𝑅1 dom 𝑒)(𝑗(𝑒 dom 𝑒)𝑖 → (𝑗𝑐𝑗𝑏))) ↔ ∃𝑑 ∈ (𝑅1 dom 𝑒)((𝑑𝑏 ∧ ¬ 𝑑𝑐) ∧ ∀𝑓 ∈ (𝑅1 dom 𝑒)(𝑓(𝑒 dom 𝑒)𝑑 → (𝑓𝑐𝑓𝑏))))
2811, 27bitrdi 287 . . 3 ((𝑔 = 𝑐 = 𝑏) → (∃𝑖 ∈ (𝑅1 dom 𝑒)((𝑖 ∧ ¬ 𝑖𝑔) ∧ ∀𝑗 ∈ (𝑅1 dom 𝑒)(𝑗(𝑒 dom 𝑒)𝑖 → (𝑗𝑔𝑗))) ↔ ∃𝑑 ∈ (𝑅1 dom 𝑒)((𝑑𝑏 ∧ ¬ 𝑑𝑐) ∧ ∀𝑓 ∈ (𝑅1 dom 𝑒)(𝑓(𝑒 dom 𝑒)𝑑 → (𝑓𝑐𝑓𝑏)))))
2928cbvopabv 5162 . 2 {⟨𝑔, ⟩ ∣ ∃𝑖 ∈ (𝑅1 dom 𝑒)((𝑖 ∧ ¬ 𝑖𝑔) ∧ ∀𝑗 ∈ (𝑅1 dom 𝑒)(𝑗(𝑒 dom 𝑒)𝑖 → (𝑗𝑔𝑗)))} = {⟨𝑐, 𝑏⟩ ∣ ∃𝑑 ∈ (𝑅1 dom 𝑒)((𝑑𝑏 ∧ ¬ 𝑑𝑐) ∧ ∀𝑓 ∈ (𝑅1 dom 𝑒)(𝑓(𝑒 dom 𝑒)𝑑 → (𝑓𝑐𝑓𝑏)))}
30 nfcv 2894 . . 3 𝑐sup((𝑦𝑔), (𝑅1‘dom 𝑒), {⟨𝑔, ⟩ ∣ ∃𝑖 ∈ (𝑅1 dom 𝑒)((𝑖 ∧ ¬ 𝑖𝑔) ∧ ∀𝑗 ∈ (𝑅1 dom 𝑒)(𝑗(𝑒 dom 𝑒)𝑖 → (𝑗𝑔𝑗)))})
31 nfcv 2894 . . . 4 𝑔(𝑦𝑐)
32 nfcv 2894 . . . 4 𝑔(𝑅1‘dom 𝑒)
33 nfopab1 5159 . . . 4 𝑔{⟨𝑔, ⟩ ∣ ∃𝑖 ∈ (𝑅1 dom 𝑒)((𝑖 ∧ ¬ 𝑖𝑔) ∧ ∀𝑗 ∈ (𝑅1 dom 𝑒)(𝑗(𝑒 dom 𝑒)𝑖 → (𝑗𝑔𝑗)))}
3431, 32, 33nfsup 9335 . . 3 𝑔sup((𝑦𝑐), (𝑅1‘dom 𝑒), {⟨𝑔, ⟩ ∣ ∃𝑖 ∈ (𝑅1 dom 𝑒)((𝑖 ∧ ¬ 𝑖𝑔) ∧ ∀𝑗 ∈ (𝑅1 dom 𝑒)(𝑗(𝑒 dom 𝑒)𝑖 → (𝑗𝑔𝑗)))})
35 fveq2 6822 . . . 4 (𝑔 = 𝑐 → (𝑦𝑔) = (𝑦𝑐))
3635supeq1d 9330 . . 3 (𝑔 = 𝑐 → sup((𝑦𝑔), (𝑅1‘dom 𝑒), {⟨𝑔, ⟩ ∣ ∃𝑖 ∈ (𝑅1 dom 𝑒)((𝑖 ∧ ¬ 𝑖𝑔) ∧ ∀𝑗 ∈ (𝑅1 dom 𝑒)(𝑗(𝑒 dom 𝑒)𝑖 → (𝑗𝑔𝑗)))}) = sup((𝑦𝑐), (𝑅1‘dom 𝑒), {⟨𝑔, ⟩ ∣ ∃𝑖 ∈ (𝑅1 dom 𝑒)((𝑖 ∧ ¬ 𝑖𝑔) ∧ ∀𝑗 ∈ (𝑅1 dom 𝑒)(𝑗(𝑒 dom 𝑒)𝑖 → (𝑗𝑔𝑗)))}))
3730, 34, 36cbvmpt 5191 . 2 (𝑔 ∈ V ↦ sup((𝑦𝑔), (𝑅1‘dom 𝑒), {⟨𝑔, ⟩ ∣ ∃𝑖 ∈ (𝑅1 dom 𝑒)((𝑖 ∧ ¬ 𝑖𝑔) ∧ ∀𝑗 ∈ (𝑅1 dom 𝑒)(𝑗(𝑒 dom 𝑒)𝑖 → (𝑗𝑔𝑗)))})) = (𝑐 ∈ V ↦ sup((𝑦𝑐), (𝑅1‘dom 𝑒), {⟨𝑔, ⟩ ∣ ∃𝑖 ∈ (𝑅1 dom 𝑒)((𝑖 ∧ ¬ 𝑖𝑔) ∧ ∀𝑗 ∈ (𝑅1 dom 𝑒)(𝑗(𝑒 dom 𝑒)𝑖 → (𝑗𝑔𝑗)))}))
38 nfcv 2894 . . . 4 𝑐((𝑔 ∈ V ↦ sup((𝑦𝑔), (𝑅1‘dom 𝑒), {⟨𝑔, ⟩ ∣ ∃𝑖 ∈ (𝑅1 dom 𝑒)((𝑖 ∧ ¬ 𝑖𝑔) ∧ ∀𝑗 ∈ (𝑅1 dom 𝑒)(𝑗(𝑒 dom 𝑒)𝑖 → (𝑗𝑔𝑗)))}))‘((𝑅1‘dom 𝑒) ∖ ran 𝑔))
39 nffvmpt1 6833 . . . 4 𝑔((𝑔 ∈ V ↦ sup((𝑦𝑔), (𝑅1‘dom 𝑒), {⟨𝑔, ⟩ ∣ ∃𝑖 ∈ (𝑅1 dom 𝑒)((𝑖 ∧ ¬ 𝑖𝑔) ∧ ∀𝑗 ∈ (𝑅1 dom 𝑒)(𝑗(𝑒 dom 𝑒)𝑖 → (𝑗𝑔𝑗)))}))‘((𝑅1‘dom 𝑒) ∖ ran 𝑐))
40 rneq 5875 . . . . . 6 (𝑔 = 𝑐 → ran 𝑔 = ran 𝑐)
4140difeq2d 4073 . . . . 5 (𝑔 = 𝑐 → ((𝑅1‘dom 𝑒) ∖ ran 𝑔) = ((𝑅1‘dom 𝑒) ∖ ran 𝑐))
4241fveq2d 6826 . . . 4 (𝑔 = 𝑐 → ((𝑔 ∈ V ↦ sup((𝑦𝑔), (𝑅1‘dom 𝑒), {⟨𝑔, ⟩ ∣ ∃𝑖 ∈ (𝑅1 dom 𝑒)((𝑖 ∧ ¬ 𝑖𝑔) ∧ ∀𝑗 ∈ (𝑅1 dom 𝑒)(𝑗(𝑒 dom 𝑒)𝑖 → (𝑗𝑔𝑗)))}))‘((𝑅1‘dom 𝑒) ∖ ran 𝑔)) = ((𝑔 ∈ V ↦ sup((𝑦𝑔), (𝑅1‘dom 𝑒), {⟨𝑔, ⟩ ∣ ∃𝑖 ∈ (𝑅1 dom 𝑒)((𝑖 ∧ ¬ 𝑖𝑔) ∧ ∀𝑗 ∈ (𝑅1 dom 𝑒)(𝑗(𝑒 dom 𝑒)𝑖 → (𝑗𝑔𝑗)))}))‘((𝑅1‘dom 𝑒) ∖ ran 𝑐)))
4338, 39, 42cbvmpt 5191 . . 3 (𝑔 ∈ V ↦ ((𝑔 ∈ V ↦ sup((𝑦𝑔), (𝑅1‘dom 𝑒), {⟨𝑔, ⟩ ∣ ∃𝑖 ∈ (𝑅1 dom 𝑒)((𝑖 ∧ ¬ 𝑖𝑔) ∧ ∀𝑗 ∈ (𝑅1 dom 𝑒)(𝑗(𝑒 dom 𝑒)𝑖 → (𝑗𝑔𝑗)))}))‘((𝑅1‘dom 𝑒) ∖ ran 𝑔))) = (𝑐 ∈ V ↦ ((𝑔 ∈ V ↦ sup((𝑦𝑔), (𝑅1‘dom 𝑒), {⟨𝑔, ⟩ ∣ ∃𝑖 ∈ (𝑅1 dom 𝑒)((𝑖 ∧ ¬ 𝑖𝑔) ∧ ∀𝑗 ∈ (𝑅1 dom 𝑒)(𝑗(𝑒 dom 𝑒)𝑖 → (𝑗𝑔𝑗)))}))‘((𝑅1‘dom 𝑒) ∖ ran 𝑐)))
44 recseq 8293 . . 3 ((𝑔 ∈ V ↦ ((𝑔 ∈ V ↦ sup((𝑦𝑔), (𝑅1‘dom 𝑒), {⟨𝑔, ⟩ ∣ ∃𝑖 ∈ (𝑅1 dom 𝑒)((𝑖 ∧ ¬ 𝑖𝑔) ∧ ∀𝑗 ∈ (𝑅1 dom 𝑒)(𝑗(𝑒 dom 𝑒)𝑖 → (𝑗𝑔𝑗)))}))‘((𝑅1‘dom 𝑒) ∖ ran 𝑔))) = (𝑐 ∈ V ↦ ((𝑔 ∈ V ↦ sup((𝑦𝑔), (𝑅1‘dom 𝑒), {⟨𝑔, ⟩ ∣ ∃𝑖 ∈ (𝑅1 dom 𝑒)((𝑖 ∧ ¬ 𝑖𝑔) ∧ ∀𝑗 ∈ (𝑅1 dom 𝑒)(𝑗(𝑒 dom 𝑒)𝑖 → (𝑗𝑔𝑗)))}))‘((𝑅1‘dom 𝑒) ∖ ran 𝑐))) → recs((𝑔 ∈ V ↦ ((𝑔 ∈ V ↦ sup((𝑦𝑔), (𝑅1‘dom 𝑒), {⟨𝑔, ⟩ ∣ ∃𝑖 ∈ (𝑅1 dom 𝑒)((𝑖 ∧ ¬ 𝑖𝑔) ∧ ∀𝑗 ∈ (𝑅1 dom 𝑒)(𝑗(𝑒 dom 𝑒)𝑖 → (𝑗𝑔𝑗)))}))‘((𝑅1‘dom 𝑒) ∖ ran 𝑔)))) = recs((𝑐 ∈ V ↦ ((𝑔 ∈ V ↦ sup((𝑦𝑔), (𝑅1‘dom 𝑒), {⟨𝑔, ⟩ ∣ ∃𝑖 ∈ (𝑅1 dom 𝑒)((𝑖 ∧ ¬ 𝑖𝑔) ∧ ∀𝑗 ∈ (𝑅1 dom 𝑒)(𝑗(𝑒 dom 𝑒)𝑖 → (𝑗𝑔𝑗)))}))‘((𝑅1‘dom 𝑒) ∖ ran 𝑐)))))
4543, 44ax-mp 5 . 2 recs((𝑔 ∈ V ↦ ((𝑔 ∈ V ↦ sup((𝑦𝑔), (𝑅1‘dom 𝑒), {⟨𝑔, ⟩ ∣ ∃𝑖 ∈ (𝑅1 dom 𝑒)((𝑖 ∧ ¬ 𝑖𝑔) ∧ ∀𝑗 ∈ (𝑅1 dom 𝑒)(𝑗(𝑒 dom 𝑒)𝑖 → (𝑗𝑔𝑗)))}))‘((𝑅1‘dom 𝑒) ∖ ran 𝑔)))) = recs((𝑐 ∈ V ↦ ((𝑔 ∈ V ↦ sup((𝑦𝑔), (𝑅1‘dom 𝑒), {⟨𝑔, ⟩ ∣ ∃𝑖 ∈ (𝑅1 dom 𝑒)((𝑖 ∧ ¬ 𝑖𝑔) ∧ ∀𝑗 ∈ (𝑅1 dom 𝑒)(𝑗(𝑒 dom 𝑒)𝑖 → (𝑗𝑔𝑗)))}))‘((𝑅1‘dom 𝑒) ∖ ran 𝑐))))
46 nfv 1915 . . 3 𝑐 (recs((𝑔 ∈ V ↦ ((𝑔 ∈ V ↦ sup((𝑦𝑔), (𝑅1‘dom 𝑒), {⟨𝑔, ⟩ ∣ ∃𝑖 ∈ (𝑅1 dom 𝑒)((𝑖 ∧ ¬ 𝑖𝑔) ∧ ∀𝑗 ∈ (𝑅1 dom 𝑒)(𝑗(𝑒 dom 𝑒)𝑖 → (𝑗𝑔𝑗)))}))‘((𝑅1‘dom 𝑒) ∖ ran 𝑔)))) “ {𝑔}) ∈ (recs((𝑔 ∈ V ↦ ((𝑔 ∈ V ↦ sup((𝑦𝑔), (𝑅1‘dom 𝑒), {⟨𝑔, ⟩ ∣ ∃𝑖 ∈ (𝑅1 dom 𝑒)((𝑖 ∧ ¬ 𝑖𝑔) ∧ ∀𝑗 ∈ (𝑅1 dom 𝑒)(𝑗(𝑒 dom 𝑒)𝑖 → (𝑗𝑔𝑗)))}))‘((𝑅1‘dom 𝑒) ∖ ran 𝑔)))) “ {})
47 nfv 1915 . . 3 𝑏 (recs((𝑔 ∈ V ↦ ((𝑔 ∈ V ↦ sup((𝑦𝑔), (𝑅1‘dom 𝑒), {⟨𝑔, ⟩ ∣ ∃𝑖 ∈ (𝑅1 dom 𝑒)((𝑖 ∧ ¬ 𝑖𝑔) ∧ ∀𝑗 ∈ (𝑅1 dom 𝑒)(𝑗(𝑒 dom 𝑒)𝑖 → (𝑗𝑔𝑗)))}))‘((𝑅1‘dom 𝑒) ∖ ran 𝑔)))) “ {𝑔}) ∈ (recs((𝑔 ∈ V ↦ ((𝑔 ∈ V ↦ sup((𝑦𝑔), (𝑅1‘dom 𝑒), {⟨𝑔, ⟩ ∣ ∃𝑖 ∈ (𝑅1 dom 𝑒)((𝑖 ∧ ¬ 𝑖𝑔) ∧ ∀𝑗 ∈ (𝑅1 dom 𝑒)(𝑗(𝑒 dom 𝑒)𝑖 → (𝑗𝑔𝑗)))}))‘((𝑅1‘dom 𝑒) ∖ ran 𝑔)))) “ {})
48 nfmpt1 5188 . . . . . . . 8 𝑔(𝑔 ∈ V ↦ ((𝑔 ∈ V ↦ sup((𝑦𝑔), (𝑅1‘dom 𝑒), {⟨𝑔, ⟩ ∣ ∃𝑖 ∈ (𝑅1 dom 𝑒)((𝑖 ∧ ¬ 𝑖𝑔) ∧ ∀𝑗 ∈ (𝑅1 dom 𝑒)(𝑗(𝑒 dom 𝑒)𝑖 → (𝑗𝑔𝑗)))}))‘((𝑅1‘dom 𝑒) ∖ ran 𝑔)))
4948nfrecs 8294 . . . . . . 7 𝑔recs((𝑔 ∈ V ↦ ((𝑔 ∈ V ↦ sup((𝑦𝑔), (𝑅1‘dom 𝑒), {⟨𝑔, ⟩ ∣ ∃𝑖 ∈ (𝑅1 dom 𝑒)((𝑖 ∧ ¬ 𝑖𝑔) ∧ ∀𝑗 ∈ (𝑅1 dom 𝑒)(𝑗(𝑒 dom 𝑒)𝑖 → (𝑗𝑔𝑗)))}))‘((𝑅1‘dom 𝑒) ∖ ran 𝑔))))
5049nfcnv 5817 . . . . . 6 𝑔recs((𝑔 ∈ V ↦ ((𝑔 ∈ V ↦ sup((𝑦𝑔), (𝑅1‘dom 𝑒), {⟨𝑔, ⟩ ∣ ∃𝑖 ∈ (𝑅1 dom 𝑒)((𝑖 ∧ ¬ 𝑖𝑔) ∧ ∀𝑗 ∈ (𝑅1 dom 𝑒)(𝑗(𝑒 dom 𝑒)𝑖 → (𝑗𝑔𝑗)))}))‘((𝑅1‘dom 𝑒) ∖ ran 𝑔))))
51 nfcv 2894 . . . . . 6 𝑔{𝑐}
5250, 51nfima 6016 . . . . 5 𝑔(recs((𝑔 ∈ V ↦ ((𝑔 ∈ V ↦ sup((𝑦𝑔), (𝑅1‘dom 𝑒), {⟨𝑔, ⟩ ∣ ∃𝑖 ∈ (𝑅1 dom 𝑒)((𝑖 ∧ ¬ 𝑖𝑔) ∧ ∀𝑗 ∈ (𝑅1 dom 𝑒)(𝑗(𝑒 dom 𝑒)𝑖 → (𝑗𝑔𝑗)))}))‘((𝑅1‘dom 𝑒) ∖ ran 𝑔)))) “ {𝑐})
5352nfint 4905 . . . 4 𝑔 (recs((𝑔 ∈ V ↦ ((𝑔 ∈ V ↦ sup((𝑦𝑔), (𝑅1‘dom 𝑒), {⟨𝑔, ⟩ ∣ ∃𝑖 ∈ (𝑅1 dom 𝑒)((𝑖 ∧ ¬ 𝑖𝑔) ∧ ∀𝑗 ∈ (𝑅1 dom 𝑒)(𝑗(𝑒 dom 𝑒)𝑖 → (𝑗𝑔𝑗)))}))‘((𝑅1‘dom 𝑒) ∖ ran 𝑔)))) “ {𝑐})
54 nfcv 2894 . . . . . 6 𝑔{𝑏}
5550, 54nfima 6016 . . . . 5 𝑔(recs((𝑔 ∈ V ↦ ((𝑔 ∈ V ↦ sup((𝑦𝑔), (𝑅1‘dom 𝑒), {⟨𝑔, ⟩ ∣ ∃𝑖 ∈ (𝑅1 dom 𝑒)((𝑖 ∧ ¬ 𝑖𝑔) ∧ ∀𝑗 ∈ (𝑅1 dom 𝑒)(𝑗(𝑒 dom 𝑒)𝑖 → (𝑗𝑔𝑗)))}))‘((𝑅1‘dom 𝑒) ∖ ran 𝑔)))) “ {𝑏})
5655nfint 4905 . . . 4 𝑔 (recs((𝑔 ∈ V ↦ ((𝑔 ∈ V ↦ sup((𝑦𝑔), (𝑅1‘dom 𝑒), {⟨𝑔, ⟩ ∣ ∃𝑖 ∈ (𝑅1 dom 𝑒)((𝑖 ∧ ¬ 𝑖𝑔) ∧ ∀𝑗 ∈ (𝑅1 dom 𝑒)(𝑗(𝑒 dom 𝑒)𝑖 → (𝑗𝑔𝑗)))}))‘((𝑅1‘dom 𝑒) ∖ ran 𝑔)))) “ {𝑏})
5753, 56nfel 2909 . . 3 𝑔 (recs((𝑔 ∈ V ↦ ((𝑔 ∈ V ↦ sup((𝑦𝑔), (𝑅1‘dom 𝑒), {⟨𝑔, ⟩ ∣ ∃𝑖 ∈ (𝑅1 dom 𝑒)((𝑖 ∧ ¬ 𝑖𝑔) ∧ ∀𝑗 ∈ (𝑅1 dom 𝑒)(𝑗(𝑒 dom 𝑒)𝑖 → (𝑗𝑔𝑗)))}))‘((𝑅1‘dom 𝑒) ∖ ran 𝑔)))) “ {𝑐}) ∈ (recs((𝑔 ∈ V ↦ ((𝑔 ∈ V ↦ sup((𝑦𝑔), (𝑅1‘dom 𝑒), {⟨𝑔, ⟩ ∣ ∃𝑖 ∈ (𝑅1 dom 𝑒)((𝑖 ∧ ¬ 𝑖𝑔) ∧ ∀𝑗 ∈ (𝑅1 dom 𝑒)(𝑗(𝑒 dom 𝑒)𝑖 → (𝑗𝑔𝑗)))}))‘((𝑅1‘dom 𝑒) ∖ ran 𝑔)))) “ {𝑏})
58 nfcv 2894 . . . . . . . . 9 V
59 nfcv 2894 . . . . . . . . . . . 12 (𝑦𝑔)
60 nfcv 2894 . . . . . . . . . . . 12 (𝑅1‘dom 𝑒)
61 nfopab2 5160 . . . . . . . . . . . 12 {⟨𝑔, ⟩ ∣ ∃𝑖 ∈ (𝑅1 dom 𝑒)((𝑖 ∧ ¬ 𝑖𝑔) ∧ ∀𝑗 ∈ (𝑅1 dom 𝑒)(𝑗(𝑒 dom 𝑒)𝑖 → (𝑗𝑔𝑗)))}
6259, 60, 61nfsup 9335 . . . . . . . . . . 11 sup((𝑦𝑔), (𝑅1‘dom 𝑒), {⟨𝑔, ⟩ ∣ ∃𝑖 ∈ (𝑅1 dom 𝑒)((𝑖 ∧ ¬ 𝑖𝑔) ∧ ∀𝑗 ∈ (𝑅1 dom 𝑒)(𝑗(𝑒 dom 𝑒)𝑖 → (𝑗𝑔𝑗)))})
6358, 62nfmpt 5187 . . . . . . . . . 10 (𝑔 ∈ V ↦ sup((𝑦𝑔), (𝑅1‘dom 𝑒), {⟨𝑔, ⟩ ∣ ∃𝑖 ∈ (𝑅1 dom 𝑒)((𝑖 ∧ ¬ 𝑖𝑔) ∧ ∀𝑗 ∈ (𝑅1 dom 𝑒)(𝑗(𝑒 dom 𝑒)𝑖 → (𝑗𝑔𝑗)))}))
64 nfcv 2894 . . . . . . . . . 10 ((𝑅1‘dom 𝑒) ∖ ran 𝑔)
6563, 64nffv 6832 . . . . . . . . 9 ((𝑔 ∈ V ↦ sup((𝑦𝑔), (𝑅1‘dom 𝑒), {⟨𝑔, ⟩ ∣ ∃𝑖 ∈ (𝑅1 dom 𝑒)((𝑖 ∧ ¬ 𝑖𝑔) ∧ ∀𝑗 ∈ (𝑅1 dom 𝑒)(𝑗(𝑒 dom 𝑒)𝑖 → (𝑗𝑔𝑗)))}))‘((𝑅1‘dom 𝑒) ∖ ran 𝑔))
6658, 65nfmpt 5187 . . . . . . . 8 (𝑔 ∈ V ↦ ((𝑔 ∈ V ↦ sup((𝑦𝑔), (𝑅1‘dom 𝑒), {⟨𝑔, ⟩ ∣ ∃𝑖 ∈ (𝑅1 dom 𝑒)((𝑖 ∧ ¬ 𝑖𝑔) ∧ ∀𝑗 ∈ (𝑅1 dom 𝑒)(𝑗(𝑒 dom 𝑒)𝑖 → (𝑗𝑔𝑗)))}))‘((𝑅1‘dom 𝑒) ∖ ran 𝑔)))
6766nfrecs 8294 . . . . . . 7 recs((𝑔 ∈ V ↦ ((𝑔 ∈ V ↦ sup((𝑦𝑔), (𝑅1‘dom 𝑒), {⟨𝑔, ⟩ ∣ ∃𝑖 ∈ (𝑅1 dom 𝑒)((𝑖 ∧ ¬ 𝑖𝑔) ∧ ∀𝑗 ∈ (𝑅1 dom 𝑒)(𝑗(𝑒 dom 𝑒)𝑖 → (𝑗𝑔𝑗)))}))‘((𝑅1‘dom 𝑒) ∖ ran 𝑔))))
6867nfcnv 5817 . . . . . 6 recs((𝑔 ∈ V ↦ ((𝑔 ∈ V ↦ sup((𝑦𝑔), (𝑅1‘dom 𝑒), {⟨𝑔, ⟩ ∣ ∃𝑖 ∈ (𝑅1 dom 𝑒)((𝑖 ∧ ¬ 𝑖𝑔) ∧ ∀𝑗 ∈ (𝑅1 dom 𝑒)(𝑗(𝑒 dom 𝑒)𝑖 → (𝑗𝑔𝑗)))}))‘((𝑅1‘dom 𝑒) ∖ ran 𝑔))))
69 nfcv 2894 . . . . . 6 {𝑐}
7068, 69nfima 6016 . . . . 5 (recs((𝑔 ∈ V ↦ ((𝑔 ∈ V ↦ sup((𝑦𝑔), (𝑅1‘dom 𝑒), {⟨𝑔, ⟩ ∣ ∃𝑖 ∈ (𝑅1 dom 𝑒)((𝑖 ∧ ¬ 𝑖𝑔) ∧ ∀𝑗 ∈ (𝑅1 dom 𝑒)(𝑗(𝑒 dom 𝑒)𝑖 → (𝑗𝑔𝑗)))}))‘((𝑅1‘dom 𝑒) ∖ ran 𝑔)))) “ {𝑐})
7170nfint 4905 . . . 4 (recs((𝑔 ∈ V ↦ ((𝑔 ∈ V ↦ sup((𝑦𝑔), (𝑅1‘dom 𝑒), {⟨𝑔, ⟩ ∣ ∃𝑖 ∈ (𝑅1 dom 𝑒)((𝑖 ∧ ¬ 𝑖𝑔) ∧ ∀𝑗 ∈ (𝑅1 dom 𝑒)(𝑗(𝑒 dom 𝑒)𝑖 → (𝑗𝑔𝑗)))}))‘((𝑅1‘dom 𝑒) ∖ ran 𝑔)))) “ {𝑐})
72 nfcv 2894 . . . . . 6 {𝑏}
7368, 72nfima 6016 . . . . 5 (recs((𝑔 ∈ V ↦ ((𝑔 ∈ V ↦ sup((𝑦𝑔), (𝑅1‘dom 𝑒), {⟨𝑔, ⟩ ∣ ∃𝑖 ∈ (𝑅1 dom 𝑒)((𝑖 ∧ ¬ 𝑖𝑔) ∧ ∀𝑗 ∈ (𝑅1 dom 𝑒)(𝑗(𝑒 dom 𝑒)𝑖 → (𝑗𝑔𝑗)))}))‘((𝑅1‘dom 𝑒) ∖ ran 𝑔)))) “ {𝑏})
7473nfint 4905 . . . 4 (recs((𝑔 ∈ V ↦ ((𝑔 ∈ V ↦ sup((𝑦𝑔), (𝑅1‘dom 𝑒), {⟨𝑔, ⟩ ∣ ∃𝑖 ∈ (𝑅1 dom 𝑒)((𝑖 ∧ ¬ 𝑖𝑔) ∧ ∀𝑗 ∈ (𝑅1 dom 𝑒)(𝑗(𝑒 dom 𝑒)𝑖 → (𝑗𝑔𝑗)))}))‘((𝑅1‘dom 𝑒) ∖ ran 𝑔)))) “ {𝑏})
7571, 74nfel 2909 . . 3 (recs((𝑔 ∈ V ↦ ((𝑔 ∈ V ↦ sup((𝑦𝑔), (𝑅1‘dom 𝑒), {⟨𝑔, ⟩ ∣ ∃𝑖 ∈ (𝑅1 dom 𝑒)((𝑖 ∧ ¬ 𝑖𝑔) ∧ ∀𝑗 ∈ (𝑅1 dom 𝑒)(𝑗(𝑒 dom 𝑒)𝑖 → (𝑗𝑔𝑗)))}))‘((𝑅1‘dom 𝑒) ∖ ran 𝑔)))) “ {𝑐}) ∈ (recs((𝑔 ∈ V ↦ ((𝑔 ∈ V ↦ sup((𝑦𝑔), (𝑅1‘dom 𝑒), {⟨𝑔, ⟩ ∣ ∃𝑖 ∈ (𝑅1 dom 𝑒)((𝑖 ∧ ¬ 𝑖𝑔) ∧ ∀𝑗 ∈ (𝑅1 dom 𝑒)(𝑗(𝑒 dom 𝑒)𝑖 → (𝑗𝑔𝑗)))}))‘((𝑅1‘dom 𝑒) ∖ ran 𝑔)))) “ {𝑏})
76 sneq 4583 . . . . . 6 (𝑔 = 𝑐 → {𝑔} = {𝑐})
7776imaeq2d 6008 . . . . 5 (𝑔 = 𝑐 → (recs((𝑔 ∈ V ↦ ((𝑔 ∈ V ↦ sup((𝑦𝑔), (𝑅1‘dom 𝑒), {⟨𝑔, ⟩ ∣ ∃𝑖 ∈ (𝑅1 dom 𝑒)((𝑖 ∧ ¬ 𝑖𝑔) ∧ ∀𝑗 ∈ (𝑅1 dom 𝑒)(𝑗(𝑒 dom 𝑒)𝑖 → (𝑗𝑔𝑗)))}))‘((𝑅1‘dom 𝑒) ∖ ran 𝑔)))) “ {𝑔}) = (recs((𝑔 ∈ V ↦ ((𝑔 ∈ V ↦ sup((𝑦𝑔), (𝑅1‘dom 𝑒), {⟨𝑔, ⟩ ∣ ∃𝑖 ∈ (𝑅1 dom 𝑒)((𝑖 ∧ ¬ 𝑖𝑔) ∧ ∀𝑗 ∈ (𝑅1 dom 𝑒)(𝑗(𝑒 dom 𝑒)𝑖 → (𝑗𝑔𝑗)))}))‘((𝑅1‘dom 𝑒) ∖ ran 𝑔)))) “ {𝑐}))
7877inteqd 4900 . . . 4 (𝑔 = 𝑐 (recs((𝑔 ∈ V ↦ ((𝑔 ∈ V ↦ sup((𝑦𝑔), (𝑅1‘dom 𝑒), {⟨𝑔, ⟩ ∣ ∃𝑖 ∈ (𝑅1 dom 𝑒)((𝑖 ∧ ¬ 𝑖𝑔) ∧ ∀𝑗 ∈ (𝑅1 dom 𝑒)(𝑗(𝑒 dom 𝑒)𝑖 → (𝑗𝑔𝑗)))}))‘((𝑅1‘dom 𝑒) ∖ ran 𝑔)))) “ {𝑔}) = (recs((𝑔 ∈ V ↦ ((𝑔 ∈ V ↦ sup((𝑦𝑔), (𝑅1‘dom 𝑒), {⟨𝑔, ⟩ ∣ ∃𝑖 ∈ (𝑅1 dom 𝑒)((𝑖 ∧ ¬ 𝑖𝑔) ∧ ∀𝑗 ∈ (𝑅1 dom 𝑒)(𝑗(𝑒 dom 𝑒)𝑖 → (𝑗𝑔𝑗)))}))‘((𝑅1‘dom 𝑒) ∖ ran 𝑔)))) “ {𝑐}))
79 sneq 4583 . . . . . 6 ( = 𝑏 → {} = {𝑏})
8079imaeq2d 6008 . . . . 5 ( = 𝑏 → (recs((𝑔 ∈ V ↦ ((𝑔 ∈ V ↦ sup((𝑦𝑔), (𝑅1‘dom 𝑒), {⟨𝑔, ⟩ ∣ ∃𝑖 ∈ (𝑅1 dom 𝑒)((𝑖 ∧ ¬ 𝑖𝑔) ∧ ∀𝑗 ∈ (𝑅1 dom 𝑒)(𝑗(𝑒 dom 𝑒)𝑖 → (𝑗𝑔𝑗)))}))‘((𝑅1‘dom 𝑒) ∖ ran 𝑔)))) “ {}) = (recs((𝑔 ∈ V ↦ ((𝑔 ∈ V ↦ sup((𝑦𝑔), (𝑅1‘dom 𝑒), {⟨𝑔, ⟩ ∣ ∃𝑖 ∈ (𝑅1 dom 𝑒)((𝑖 ∧ ¬ 𝑖𝑔) ∧ ∀𝑗 ∈ (𝑅1 dom 𝑒)(𝑗(𝑒 dom 𝑒)𝑖 → (𝑗𝑔𝑗)))}))‘((𝑅1‘dom 𝑒) ∖ ran 𝑔)))) “ {𝑏}))
8180inteqd 4900 . . . 4 ( = 𝑏 (recs((𝑔 ∈ V ↦ ((𝑔 ∈ V ↦ sup((𝑦𝑔), (𝑅1‘dom 𝑒), {⟨𝑔, ⟩ ∣ ∃𝑖 ∈ (𝑅1 dom 𝑒)((𝑖 ∧ ¬ 𝑖𝑔) ∧ ∀𝑗 ∈ (𝑅1 dom 𝑒)(𝑗(𝑒 dom 𝑒)𝑖 → (𝑗𝑔𝑗)))}))‘((𝑅1‘dom 𝑒) ∖ ran 𝑔)))) “ {}) = (recs((𝑔 ∈ V ↦ ((𝑔 ∈ V ↦ sup((𝑦𝑔), (𝑅1‘dom 𝑒), {⟨𝑔, ⟩ ∣ ∃𝑖 ∈ (𝑅1 dom 𝑒)((𝑖 ∧ ¬ 𝑖𝑔) ∧ ∀𝑗 ∈ (𝑅1 dom 𝑒)(𝑗(𝑒 dom 𝑒)𝑖 → (𝑗𝑔𝑗)))}))‘((𝑅1‘dom 𝑒) ∖ ran 𝑔)))) “ {𝑏}))
82 eleq12 2821 . . . 4 (( (recs((𝑔 ∈ V ↦ ((𝑔 ∈ V ↦ sup((𝑦𝑔), (𝑅1‘dom 𝑒), {⟨𝑔, ⟩ ∣ ∃𝑖 ∈ (𝑅1 dom 𝑒)((𝑖 ∧ ¬ 𝑖𝑔) ∧ ∀𝑗 ∈ (𝑅1 dom 𝑒)(𝑗(𝑒 dom 𝑒)𝑖 → (𝑗𝑔𝑗)))}))‘((𝑅1‘dom 𝑒) ∖ ran 𝑔)))) “ {𝑔}) = (recs((𝑔 ∈ V ↦ ((𝑔 ∈ V ↦ sup((𝑦𝑔), (𝑅1‘dom 𝑒), {⟨𝑔, ⟩ ∣ ∃𝑖 ∈ (𝑅1 dom 𝑒)((𝑖 ∧ ¬ 𝑖𝑔) ∧ ∀𝑗 ∈ (𝑅1 dom 𝑒)(𝑗(𝑒 dom 𝑒)𝑖 → (𝑗𝑔𝑗)))}))‘((𝑅1‘dom 𝑒) ∖ ran 𝑔)))) “ {𝑐}) ∧ (recs((𝑔 ∈ V ↦ ((𝑔 ∈ V ↦ sup((𝑦𝑔), (𝑅1‘dom 𝑒), {⟨𝑔, ⟩ ∣ ∃𝑖 ∈ (𝑅1 dom 𝑒)((𝑖 ∧ ¬ 𝑖𝑔) ∧ ∀𝑗 ∈ (𝑅1 dom 𝑒)(𝑗(𝑒 dom 𝑒)𝑖 → (𝑗𝑔𝑗)))}))‘((𝑅1‘dom 𝑒) ∖ ran 𝑔)))) “ {}) = (recs((𝑔 ∈ V ↦ ((𝑔 ∈ V ↦ sup((𝑦𝑔), (𝑅1‘dom 𝑒), {⟨𝑔, ⟩ ∣ ∃𝑖 ∈ (𝑅1 dom 𝑒)((𝑖 ∧ ¬ 𝑖𝑔) ∧ ∀𝑗 ∈ (𝑅1 dom 𝑒)(𝑗(𝑒 dom 𝑒)𝑖 → (𝑗𝑔𝑗)))}))‘((𝑅1‘dom 𝑒) ∖ ran 𝑔)))) “ {𝑏})) → ( (recs((𝑔 ∈ V ↦ ((𝑔 ∈ V ↦ sup((𝑦𝑔), (𝑅1‘dom 𝑒), {⟨𝑔, ⟩ ∣ ∃𝑖 ∈ (𝑅1 dom 𝑒)((𝑖 ∧ ¬ 𝑖𝑔) ∧ ∀𝑗 ∈ (𝑅1 dom 𝑒)(𝑗(𝑒 dom 𝑒)𝑖 → (𝑗𝑔𝑗)))}))‘((𝑅1‘dom 𝑒) ∖ ran 𝑔)))) “ {𝑔}) ∈ (recs((𝑔 ∈ V ↦ ((𝑔 ∈ V ↦ sup((𝑦𝑔), (𝑅1‘dom 𝑒), {⟨𝑔, ⟩ ∣ ∃𝑖 ∈ (𝑅1 dom 𝑒)((𝑖 ∧ ¬ 𝑖𝑔) ∧ ∀𝑗 ∈ (𝑅1 dom 𝑒)(𝑗(𝑒 dom 𝑒)𝑖 → (𝑗𝑔𝑗)))}))‘((𝑅1‘dom 𝑒) ∖ ran 𝑔)))) “ {}) ↔ (recs((𝑔 ∈ V ↦ ((𝑔 ∈ V ↦ sup((𝑦𝑔), (𝑅1‘dom 𝑒), {⟨𝑔, ⟩ ∣ ∃𝑖 ∈ (𝑅1 dom 𝑒)((𝑖 ∧ ¬ 𝑖𝑔) ∧ ∀𝑗 ∈ (𝑅1 dom 𝑒)(𝑗(𝑒 dom 𝑒)𝑖 → (𝑗𝑔𝑗)))}))‘((𝑅1‘dom 𝑒) ∖ ran 𝑔)))) “ {𝑐}) ∈ (recs((𝑔 ∈ V ↦ ((𝑔 ∈ V ↦ sup((𝑦𝑔), (𝑅1‘dom 𝑒), {⟨𝑔, ⟩ ∣ ∃𝑖 ∈ (𝑅1 dom 𝑒)((𝑖 ∧ ¬ 𝑖𝑔) ∧ ∀𝑗 ∈ (𝑅1 dom 𝑒)(𝑗(𝑒 dom 𝑒)𝑖 → (𝑗𝑔𝑗)))}))‘((𝑅1‘dom 𝑒) ∖ ran 𝑔)))) “ {𝑏})))
8378, 81, 82syl2an 596 . . 3 ((𝑔 = 𝑐 = 𝑏) → ( (recs((𝑔 ∈ V ↦ ((𝑔 ∈ V ↦ sup((𝑦𝑔), (𝑅1‘dom 𝑒), {⟨𝑔, ⟩ ∣ ∃𝑖 ∈ (𝑅1 dom 𝑒)((𝑖 ∧ ¬ 𝑖𝑔) ∧ ∀𝑗 ∈ (𝑅1 dom 𝑒)(𝑗(𝑒 dom 𝑒)𝑖 → (𝑗𝑔𝑗)))}))‘((𝑅1‘dom 𝑒) ∖ ran 𝑔)))) “ {𝑔}) ∈ (recs((𝑔 ∈ V ↦ ((𝑔 ∈ V ↦ sup((𝑦𝑔), (𝑅1‘dom 𝑒), {⟨𝑔, ⟩ ∣ ∃𝑖 ∈ (𝑅1 dom 𝑒)((𝑖 ∧ ¬ 𝑖𝑔) ∧ ∀𝑗 ∈ (𝑅1 dom 𝑒)(𝑗(𝑒 dom 𝑒)𝑖 → (𝑗𝑔𝑗)))}))‘((𝑅1‘dom 𝑒) ∖ ran 𝑔)))) “ {}) ↔ (recs((𝑔 ∈ V ↦ ((𝑔 ∈ V ↦ sup((𝑦𝑔), (𝑅1‘dom 𝑒), {⟨𝑔, ⟩ ∣ ∃𝑖 ∈ (𝑅1 dom 𝑒)((𝑖 ∧ ¬ 𝑖𝑔) ∧ ∀𝑗 ∈ (𝑅1 dom 𝑒)(𝑗(𝑒 dom 𝑒)𝑖 → (𝑗𝑔𝑗)))}))‘((𝑅1‘dom 𝑒) ∖ ran 𝑔)))) “ {𝑐}) ∈ (recs((𝑔 ∈ V ↦ ((𝑔 ∈ V ↦ sup((𝑦𝑔), (𝑅1‘dom 𝑒), {⟨𝑔, ⟩ ∣ ∃𝑖 ∈ (𝑅1 dom 𝑒)((𝑖 ∧ ¬ 𝑖𝑔) ∧ ∀𝑗 ∈ (𝑅1 dom 𝑒)(𝑗(𝑒 dom 𝑒)𝑖 → (𝑗𝑔𝑗)))}))‘((𝑅1‘dom 𝑒) ∖ ran 𝑔)))) “ {𝑏})))
8446, 47, 57, 75, 83cbvopab 5161 . 2 {⟨𝑔, ⟩ ∣ (recs((𝑔 ∈ V ↦ ((𝑔 ∈ V ↦ sup((𝑦𝑔), (𝑅1‘dom 𝑒), {⟨𝑔, ⟩ ∣ ∃𝑖 ∈ (𝑅1 dom 𝑒)((𝑖 ∧ ¬ 𝑖𝑔) ∧ ∀𝑗 ∈ (𝑅1 dom 𝑒)(𝑗(𝑒 dom 𝑒)𝑖 → (𝑗𝑔𝑗)))}))‘((𝑅1‘dom 𝑒) ∖ ran 𝑔)))) “ {𝑔}) ∈ (recs((𝑔 ∈ V ↦ ((𝑔 ∈ V ↦ sup((𝑦𝑔), (𝑅1‘dom 𝑒), {⟨𝑔, ⟩ ∣ ∃𝑖 ∈ (𝑅1 dom 𝑒)((𝑖 ∧ ¬ 𝑖𝑔) ∧ ∀𝑗 ∈ (𝑅1 dom 𝑒)(𝑗(𝑒 dom 𝑒)𝑖 → (𝑗𝑔𝑗)))}))‘((𝑅1‘dom 𝑒) ∖ ran 𝑔)))) “ {})} = {⟨𝑐, 𝑏⟩ ∣ (recs((𝑔 ∈ V ↦ ((𝑔 ∈ V ↦ sup((𝑦𝑔), (𝑅1‘dom 𝑒), {⟨𝑔, ⟩ ∣ ∃𝑖 ∈ (𝑅1 dom 𝑒)((𝑖 ∧ ¬ 𝑖𝑔) ∧ ∀𝑗 ∈ (𝑅1 dom 𝑒)(𝑗(𝑒 dom 𝑒)𝑖 → (𝑗𝑔𝑗)))}))‘((𝑅1‘dom 𝑒) ∖ ran 𝑔)))) “ {𝑐}) ∈ (recs((𝑔 ∈ V ↦ ((𝑔 ∈ V ↦ sup((𝑦𝑔), (𝑅1‘dom 𝑒), {⟨𝑔, ⟩ ∣ ∃𝑖 ∈ (𝑅1 dom 𝑒)((𝑖 ∧ ¬ 𝑖𝑔) ∧ ∀𝑗 ∈ (𝑅1 dom 𝑒)(𝑗(𝑒 dom 𝑒)𝑖 → (𝑗𝑔𝑗)))}))‘((𝑅1‘dom 𝑒) ∖ ran 𝑔)))) “ {𝑏})}
85 fveq2 6822 . . . . 5 (𝑔 = 𝑐 → (rank‘𝑔) = (rank‘𝑐))
86 fveq2 6822 . . . . 5 ( = 𝑏 → (rank‘) = (rank‘𝑏))
8785, 86breqan12d 5105 . . . 4 ((𝑔 = 𝑐 = 𝑏) → ((rank‘𝑔) E (rank‘) ↔ (rank‘𝑐) E (rank‘𝑏)))
8885, 86eqeqan12d 2745 . . . . 5 ((𝑔 = 𝑐 = 𝑏) → ((rank‘𝑔) = (rank‘) ↔ (rank‘𝑐) = (rank‘𝑏)))
89 simpl 482 . . . . . 6 ((𝑔 = 𝑐 = 𝑏) → 𝑔 = 𝑐)
90 suceq 6374 . . . . . . . . 9 ((rank‘𝑔) = (rank‘𝑐) → suc (rank‘𝑔) = suc (rank‘𝑐))
9185, 90syl 17 . . . . . . . 8 (𝑔 = 𝑐 → suc (rank‘𝑔) = suc (rank‘𝑐))
9291adantr 480 . . . . . . 7 ((𝑔 = 𝑐 = 𝑏) → suc (rank‘𝑔) = suc (rank‘𝑐))
9392fveq2d 6826 . . . . . 6 ((𝑔 = 𝑐 = 𝑏) → (𝑒‘suc (rank‘𝑔)) = (𝑒‘suc (rank‘𝑐)))
94 simpr 484 . . . . . 6 ((𝑔 = 𝑐 = 𝑏) → = 𝑏)
9589, 93, 94breq123d 5103 . . . . 5 ((𝑔 = 𝑐 = 𝑏) → (𝑔(𝑒‘suc (rank‘𝑔))𝑐(𝑒‘suc (rank‘𝑐))𝑏))
9688, 95anbi12d 632 . . . 4 ((𝑔 = 𝑐 = 𝑏) → (((rank‘𝑔) = (rank‘) ∧ 𝑔(𝑒‘suc (rank‘𝑔))) ↔ ((rank‘𝑐) = (rank‘𝑏) ∧ 𝑐(𝑒‘suc (rank‘𝑐))𝑏)))
9787, 96orbi12d 918 . . 3 ((𝑔 = 𝑐 = 𝑏) → (((rank‘𝑔) E (rank‘) ∨ ((rank‘𝑔) = (rank‘) ∧ 𝑔(𝑒‘suc (rank‘𝑔)))) ↔ ((rank‘𝑐) E (rank‘𝑏) ∨ ((rank‘𝑐) = (rank‘𝑏) ∧ 𝑐(𝑒‘suc (rank‘𝑐))𝑏))))
9897cbvopabv 5162 . 2 {⟨𝑔, ⟩ ∣ ((rank‘𝑔) E (rank‘) ∨ ((rank‘𝑔) = (rank‘) ∧ 𝑔(𝑒‘suc (rank‘𝑔))))} = {⟨𝑐, 𝑏⟩ ∣ ((rank‘𝑐) E (rank‘𝑏) ∨ ((rank‘𝑐) = (rank‘𝑏) ∧ 𝑐(𝑒‘suc (rank‘𝑐))𝑏))}
99 eqid 2731 . 2 (if(dom 𝑒 = dom 𝑒, {⟨𝑔, ⟩ ∣ ((rank‘𝑔) E (rank‘) ∨ ((rank‘𝑔) = (rank‘) ∧ 𝑔(𝑒‘suc (rank‘𝑔))))}, {⟨𝑔, ⟩ ∣ (recs((𝑔 ∈ V ↦ ((𝑔 ∈ V ↦ sup((𝑦𝑔), (𝑅1‘dom 𝑒), {⟨𝑔, ⟩ ∣ ∃𝑖 ∈ (𝑅1 dom 𝑒)((𝑖 ∧ ¬ 𝑖𝑔) ∧ ∀𝑗 ∈ (𝑅1 dom 𝑒)(𝑗(𝑒 dom 𝑒)𝑖 → (𝑗𝑔𝑗)))}))‘((𝑅1‘dom 𝑒) ∖ ran 𝑔)))) “ {𝑔}) ∈ (recs((𝑔 ∈ V ↦ ((𝑔 ∈ V ↦ sup((𝑦𝑔), (𝑅1‘dom 𝑒), {⟨𝑔, ⟩ ∣ ∃𝑖 ∈ (𝑅1 dom 𝑒)((𝑖 ∧ ¬ 𝑖𝑔) ∧ ∀𝑗 ∈ (𝑅1 dom 𝑒)(𝑗(𝑒 dom 𝑒)𝑖 → (𝑗𝑔𝑗)))}))‘((𝑅1‘dom 𝑒) ∖ ran 𝑔)))) “ {})}) ∩ ((𝑅1‘dom 𝑒) × (𝑅1‘dom 𝑒))) = (if(dom 𝑒 = dom 𝑒, {⟨𝑔, ⟩ ∣ ((rank‘𝑔) E (rank‘) ∨ ((rank‘𝑔) = (rank‘) ∧ 𝑔(𝑒‘suc (rank‘𝑔))))}, {⟨𝑔, ⟩ ∣ (recs((𝑔 ∈ V ↦ ((𝑔 ∈ V ↦ sup((𝑦𝑔), (𝑅1‘dom 𝑒), {⟨𝑔, ⟩ ∣ ∃𝑖 ∈ (𝑅1 dom 𝑒)((𝑖 ∧ ¬ 𝑖𝑔) ∧ ∀𝑗 ∈ (𝑅1 dom 𝑒)(𝑗(𝑒 dom 𝑒)𝑖 → (𝑗𝑔𝑗)))}))‘((𝑅1‘dom 𝑒) ∖ ran 𝑔)))) “ {𝑔}) ∈ (recs((𝑔 ∈ V ↦ ((𝑔 ∈ V ↦ sup((𝑦𝑔), (𝑅1‘dom 𝑒), {⟨𝑔, ⟩ ∣ ∃𝑖 ∈ (𝑅1 dom 𝑒)((𝑖 ∧ ¬ 𝑖𝑔) ∧ ∀𝑗 ∈ (𝑅1 dom 𝑒)(𝑗(𝑒 dom 𝑒)𝑖 → (𝑗𝑔𝑗)))}))‘((𝑅1‘dom 𝑒) ∖ ran 𝑔)))) “ {})}) ∩ ((𝑅1‘dom 𝑒) × (𝑅1‘dom 𝑒)))
100 dmeq 5842 . . . . . . 7 (𝑙 = 𝑒 → dom 𝑙 = dom 𝑒)
101100unieqd 4869 . . . . . . 7 (𝑙 = 𝑒 dom 𝑙 = dom 𝑒)
102100, 101eqeq12d 2747 . . . . . 6 (𝑙 = 𝑒 → (dom 𝑙 = dom 𝑙 ↔ dom 𝑒 = dom 𝑒))
103 fveq1 6821 . . . . . . . . . 10 (𝑙 = 𝑒 → (𝑙‘suc (rank‘𝑔)) = (𝑒‘suc (rank‘𝑔)))
104103breqd 5100 . . . . . . . . 9 (𝑙 = 𝑒 → (𝑔(𝑙‘suc (rank‘𝑔))𝑔(𝑒‘suc (rank‘𝑔))))
105104anbi2d 630 . . . . . . . 8 (𝑙 = 𝑒 → (((rank‘𝑔) = (rank‘) ∧ 𝑔(𝑙‘suc (rank‘𝑔))) ↔ ((rank‘𝑔) = (rank‘) ∧ 𝑔(𝑒‘suc (rank‘𝑔)))))
106105orbi2d 915 . . . . . . 7 (𝑙 = 𝑒 → (((rank‘𝑔) E (rank‘) ∨ ((rank‘𝑔) = (rank‘) ∧ 𝑔(𝑙‘suc (rank‘𝑔)))) ↔ ((rank‘𝑔) E (rank‘) ∨ ((rank‘𝑔) = (rank‘) ∧ 𝑔(𝑒‘suc (rank‘𝑔))))))
107106opabbidv 5155 . . . . . 6 (𝑙 = 𝑒 → {⟨𝑔, ⟩ ∣ ((rank‘𝑔) E (rank‘) ∨ ((rank‘𝑔) = (rank‘) ∧ 𝑔(𝑙‘suc (rank‘𝑔))))} = {⟨𝑔, ⟩ ∣ ((rank‘𝑔) E (rank‘) ∨ ((rank‘𝑔) = (rank‘) ∧ 𝑔(𝑒‘suc (rank‘𝑔))))})
108 eqidd 2732 . . . . . . . . . . . . . . . 16 (𝑙 = 𝑒 → (𝑦𝑔) = (𝑦𝑔))
109100fveq2d 6826 . . . . . . . . . . . . . . . 16 (𝑙 = 𝑒 → (𝑅1‘dom 𝑙) = (𝑅1‘dom 𝑒))
110101fveq2d 6826 . . . . . . . . . . . . . . . . . 18 (𝑙 = 𝑒 → (𝑅1 dom 𝑙) = (𝑅1 dom 𝑒))
111 id 22 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑙 = 𝑒𝑙 = 𝑒)
112111, 101fveq12d 6829 . . . . . . . . . . . . . . . . . . . . . 22 (𝑙 = 𝑒 → (𝑙 dom 𝑙) = (𝑒 dom 𝑒))
113112breqd 5100 . . . . . . . . . . . . . . . . . . . . 21 (𝑙 = 𝑒 → (𝑗(𝑙 dom 𝑙)𝑖𝑗(𝑒 dom 𝑒)𝑖))
114113imbi1d 341 . . . . . . . . . . . . . . . . . . . 20 (𝑙 = 𝑒 → ((𝑗(𝑙 dom 𝑙)𝑖 → (𝑗𝑔𝑗)) ↔ (𝑗(𝑒 dom 𝑒)𝑖 → (𝑗𝑔𝑗))))
115110, 114raleqbidv 3312 . . . . . . . . . . . . . . . . . . 19 (𝑙 = 𝑒 → (∀𝑗 ∈ (𝑅1 dom 𝑙)(𝑗(𝑙 dom 𝑙)𝑖 → (𝑗𝑔𝑗)) ↔ ∀𝑗 ∈ (𝑅1 dom 𝑒)(𝑗(𝑒 dom 𝑒)𝑖 → (𝑗𝑔𝑗))))
116115anbi2d 630 . . . . . . . . . . . . . . . . . 18 (𝑙 = 𝑒 → (((𝑖 ∧ ¬ 𝑖𝑔) ∧ ∀𝑗 ∈ (𝑅1 dom 𝑙)(𝑗(𝑙 dom 𝑙)𝑖 → (𝑗𝑔𝑗))) ↔ ((𝑖 ∧ ¬ 𝑖𝑔) ∧ ∀𝑗 ∈ (𝑅1 dom 𝑒)(𝑗(𝑒 dom 𝑒)𝑖 → (𝑗𝑔𝑗)))))
117110, 116rexeqbidv 3313 . . . . . . . . . . . . . . . . 17 (𝑙 = 𝑒 → (∃𝑖 ∈ (𝑅1 dom 𝑙)((𝑖 ∧ ¬ 𝑖𝑔) ∧ ∀𝑗 ∈ (𝑅1 dom 𝑙)(𝑗(𝑙 dom 𝑙)𝑖 → (𝑗𝑔𝑗))) ↔ ∃𝑖 ∈ (𝑅1 dom 𝑒)((𝑖 ∧ ¬ 𝑖𝑔) ∧ ∀𝑗 ∈ (𝑅1 dom 𝑒)(𝑗(𝑒 dom 𝑒)𝑖 → (𝑗𝑔𝑗)))))
118117opabbidv 5155 . . . . . . . . . . . . . . . 16 (𝑙 = 𝑒 → {⟨𝑔, ⟩ ∣ ∃𝑖 ∈ (𝑅1 dom 𝑙)((𝑖 ∧ ¬ 𝑖𝑔) ∧ ∀𝑗 ∈ (𝑅1 dom 𝑙)(𝑗(𝑙 dom 𝑙)𝑖 → (𝑗𝑔𝑗)))} = {⟨𝑔, ⟩ ∣ ∃𝑖 ∈ (𝑅1 dom 𝑒)((𝑖 ∧ ¬ 𝑖𝑔) ∧ ∀𝑗 ∈ (𝑅1 dom 𝑒)(𝑗(𝑒 dom 𝑒)𝑖 → (𝑗𝑔𝑗)))})
119108, 109, 118supeq123d 9334 . . . . . . . . . . . . . . 15 (𝑙 = 𝑒 → sup((𝑦𝑔), (𝑅1‘dom 𝑙), {⟨𝑔, ⟩ ∣ ∃𝑖 ∈ (𝑅1 dom 𝑙)((𝑖 ∧ ¬ 𝑖𝑔) ∧ ∀𝑗 ∈ (𝑅1 dom 𝑙)(𝑗(𝑙 dom 𝑙)𝑖 → (𝑗𝑔𝑗)))}) = sup((𝑦𝑔), (𝑅1‘dom 𝑒), {⟨𝑔, ⟩ ∣ ∃𝑖 ∈ (𝑅1 dom 𝑒)((𝑖 ∧ ¬ 𝑖𝑔) ∧ ∀𝑗 ∈ (𝑅1 dom 𝑒)(𝑗(𝑒 dom 𝑒)𝑖 → (𝑗𝑔𝑗)))}))
120119mpteq2dv 5183 . . . . . . . . . . . . . 14 (𝑙 = 𝑒 → (𝑔 ∈ V ↦ sup((𝑦𝑔), (𝑅1‘dom 𝑙), {⟨𝑔, ⟩ ∣ ∃𝑖 ∈ (𝑅1 dom 𝑙)((𝑖 ∧ ¬ 𝑖𝑔) ∧ ∀𝑗 ∈ (𝑅1 dom 𝑙)(𝑗(𝑙 dom 𝑙)𝑖 → (𝑗𝑔𝑗)))})) = (𝑔 ∈ V ↦ sup((𝑦𝑔), (𝑅1‘dom 𝑒), {⟨𝑔, ⟩ ∣ ∃𝑖 ∈ (𝑅1 dom 𝑒)((𝑖 ∧ ¬ 𝑖𝑔) ∧ ∀𝑗 ∈ (𝑅1 dom 𝑒)(𝑗(𝑒 dom 𝑒)𝑖 → (𝑗𝑔𝑗)))})))
121109difeq1d 4072 . . . . . . . . . . . . . 14 (𝑙 = 𝑒 → ((𝑅1‘dom 𝑙) ∖ ran 𝑔) = ((𝑅1‘dom 𝑒) ∖ ran 𝑔))
122120, 121fveq12d 6829 . . . . . . . . . . . . 13 (𝑙 = 𝑒 → ((𝑔 ∈ V ↦ sup((𝑦𝑔), (𝑅1‘dom 𝑙), {⟨𝑔, ⟩ ∣ ∃𝑖 ∈ (𝑅1 dom 𝑙)((𝑖 ∧ ¬ 𝑖𝑔) ∧ ∀𝑗 ∈ (𝑅1 dom 𝑙)(𝑗(𝑙 dom 𝑙)𝑖 → (𝑗𝑔𝑗)))}))‘((𝑅1‘dom 𝑙) ∖ ran 𝑔)) = ((𝑔 ∈ V ↦ sup((𝑦𝑔), (𝑅1‘dom 𝑒), {⟨𝑔, ⟩ ∣ ∃𝑖 ∈ (𝑅1 dom 𝑒)((𝑖 ∧ ¬ 𝑖𝑔) ∧ ∀𝑗 ∈ (𝑅1 dom 𝑒)(𝑗(𝑒 dom 𝑒)𝑖 → (𝑗𝑔𝑗)))}))‘((𝑅1‘dom 𝑒) ∖ ran 𝑔)))
123122mpteq2dv 5183 . . . . . . . . . . . 12 (𝑙 = 𝑒 → (𝑔 ∈ V ↦ ((𝑔 ∈ V ↦ sup((𝑦𝑔), (𝑅1‘dom 𝑙), {⟨𝑔, ⟩ ∣ ∃𝑖 ∈ (𝑅1 dom 𝑙)((𝑖 ∧ ¬ 𝑖𝑔) ∧ ∀𝑗 ∈ (𝑅1 dom 𝑙)(𝑗(𝑙 dom 𝑙)𝑖 → (𝑗𝑔𝑗)))}))‘((𝑅1‘dom 𝑙) ∖ ran 𝑔))) = (𝑔 ∈ V ↦ ((𝑔 ∈ V ↦ sup((𝑦𝑔), (𝑅1‘dom 𝑒), {⟨𝑔, ⟩ ∣ ∃𝑖 ∈ (𝑅1 dom 𝑒)((𝑖 ∧ ¬ 𝑖𝑔) ∧ ∀𝑗 ∈ (𝑅1 dom 𝑒)(𝑗(𝑒 dom 𝑒)𝑖 → (𝑗𝑔𝑗)))}))‘((𝑅1‘dom 𝑒) ∖ ran 𝑔))))
124 recseq 8293 . . . . . . . . . . . 12 ((𝑔 ∈ V ↦ ((𝑔 ∈ V ↦ sup((𝑦𝑔), (𝑅1‘dom 𝑙), {⟨𝑔, ⟩ ∣ ∃𝑖 ∈ (𝑅1 dom 𝑙)((𝑖 ∧ ¬ 𝑖𝑔) ∧ ∀𝑗 ∈ (𝑅1 dom 𝑙)(𝑗(𝑙 dom 𝑙)𝑖 → (𝑗𝑔𝑗)))}))‘((𝑅1‘dom 𝑙) ∖ ran 𝑔))) = (𝑔 ∈ V ↦ ((𝑔 ∈ V ↦ sup((𝑦𝑔), (𝑅1‘dom 𝑒), {⟨𝑔, ⟩ ∣ ∃𝑖 ∈ (𝑅1 dom 𝑒)((𝑖 ∧ ¬ 𝑖𝑔) ∧ ∀𝑗 ∈ (𝑅1 dom 𝑒)(𝑗(𝑒 dom 𝑒)𝑖 → (𝑗𝑔𝑗)))}))‘((𝑅1‘dom 𝑒) ∖ ran 𝑔))) → recs((𝑔 ∈ V ↦ ((𝑔 ∈ V ↦ sup((𝑦𝑔), (𝑅1‘dom 𝑙), {⟨𝑔, ⟩ ∣ ∃𝑖 ∈ (𝑅1 dom 𝑙)((𝑖 ∧ ¬ 𝑖𝑔) ∧ ∀𝑗 ∈ (𝑅1 dom 𝑙)(𝑗(𝑙 dom 𝑙)𝑖 → (𝑗𝑔𝑗)))}))‘((𝑅1‘dom 𝑙) ∖ ran 𝑔)))) = recs((𝑔 ∈ V ↦ ((𝑔 ∈ V ↦ sup((𝑦𝑔), (𝑅1‘dom 𝑒), {⟨𝑔, ⟩ ∣ ∃𝑖 ∈ (𝑅1 dom 𝑒)((𝑖 ∧ ¬ 𝑖𝑔) ∧ ∀𝑗 ∈ (𝑅1 dom 𝑒)(𝑗(𝑒 dom 𝑒)𝑖 → (𝑗𝑔𝑗)))}))‘((𝑅1‘dom 𝑒) ∖ ran 𝑔)))))
125123, 124syl 17 . . . . . . . . . . 11 (𝑙 = 𝑒 → recs((𝑔 ∈ V ↦ ((𝑔 ∈ V ↦ sup((𝑦𝑔), (𝑅1‘dom 𝑙), {⟨𝑔, ⟩ ∣ ∃𝑖 ∈ (𝑅1 dom 𝑙)((𝑖 ∧ ¬ 𝑖𝑔) ∧ ∀𝑗 ∈ (𝑅1 dom 𝑙)(𝑗(𝑙 dom 𝑙)𝑖 → (𝑗𝑔𝑗)))}))‘((𝑅1‘dom 𝑙) ∖ ran 𝑔)))) = recs((𝑔 ∈ V ↦ ((𝑔 ∈ V ↦ sup((𝑦𝑔), (𝑅1‘dom 𝑒), {⟨𝑔, ⟩ ∣ ∃𝑖 ∈ (𝑅1 dom 𝑒)((𝑖 ∧ ¬ 𝑖𝑔) ∧ ∀𝑗 ∈ (𝑅1 dom 𝑒)(𝑗(𝑒 dom 𝑒)𝑖 → (𝑗𝑔𝑗)))}))‘((𝑅1‘dom 𝑒) ∖ ran 𝑔)))))
126125cnveqd 5814 . . . . . . . . . 10 (𝑙 = 𝑒recs((𝑔 ∈ V ↦ ((𝑔 ∈ V ↦ sup((𝑦𝑔), (𝑅1‘dom 𝑙), {⟨𝑔, ⟩ ∣ ∃𝑖 ∈ (𝑅1 dom 𝑙)((𝑖 ∧ ¬ 𝑖𝑔) ∧ ∀𝑗 ∈ (𝑅1 dom 𝑙)(𝑗(𝑙 dom 𝑙)𝑖 → (𝑗𝑔𝑗)))}))‘((𝑅1‘dom 𝑙) ∖ ran 𝑔)))) = recs((𝑔 ∈ V ↦ ((𝑔 ∈ V ↦ sup((𝑦𝑔), (𝑅1‘dom 𝑒), {⟨𝑔, ⟩ ∣ ∃𝑖 ∈ (𝑅1 dom 𝑒)((𝑖 ∧ ¬ 𝑖𝑔) ∧ ∀𝑗 ∈ (𝑅1 dom 𝑒)(𝑗(𝑒 dom 𝑒)𝑖 → (𝑗𝑔𝑗)))}))‘((𝑅1‘dom 𝑒) ∖ ran 𝑔)))))
127126imaeq1d 6007 . . . . . . . . 9 (𝑙 = 𝑒 → (recs((𝑔 ∈ V ↦ ((𝑔 ∈ V ↦ sup((𝑦𝑔), (𝑅1‘dom 𝑙), {⟨𝑔, ⟩ ∣ ∃𝑖 ∈ (𝑅1 dom 𝑙)((𝑖 ∧ ¬ 𝑖𝑔) ∧ ∀𝑗 ∈ (𝑅1 dom 𝑙)(𝑗(𝑙 dom 𝑙)𝑖 → (𝑗𝑔𝑗)))}))‘((𝑅1‘dom 𝑙) ∖ ran 𝑔)))) “ {𝑔}) = (recs((𝑔 ∈ V ↦ ((𝑔 ∈ V ↦ sup((𝑦𝑔), (𝑅1‘dom 𝑒), {⟨𝑔, ⟩ ∣ ∃𝑖 ∈ (𝑅1 dom 𝑒)((𝑖 ∧ ¬ 𝑖𝑔) ∧ ∀𝑗 ∈ (𝑅1 dom 𝑒)(𝑗(𝑒 dom 𝑒)𝑖 → (𝑗𝑔𝑗)))}))‘((𝑅1‘dom 𝑒) ∖ ran 𝑔)))) “ {𝑔}))
128127inteqd 4900 . . . . . . . 8 (𝑙 = 𝑒 (recs((𝑔 ∈ V ↦ ((𝑔 ∈ V ↦ sup((𝑦𝑔), (𝑅1‘dom 𝑙), {⟨𝑔, ⟩ ∣ ∃𝑖 ∈ (𝑅1 dom 𝑙)((𝑖 ∧ ¬ 𝑖𝑔) ∧ ∀𝑗 ∈ (𝑅1 dom 𝑙)(𝑗(𝑙 dom 𝑙)𝑖 → (𝑗𝑔𝑗)))}))‘((𝑅1‘dom 𝑙) ∖ ran 𝑔)))) “ {𝑔}) = (recs((𝑔 ∈ V ↦ ((𝑔 ∈ V ↦ sup((𝑦𝑔), (𝑅1‘dom 𝑒), {⟨𝑔, ⟩ ∣ ∃𝑖 ∈ (𝑅1 dom 𝑒)((𝑖 ∧ ¬ 𝑖𝑔) ∧ ∀𝑗 ∈ (𝑅1 dom 𝑒)(𝑗(𝑒 dom 𝑒)𝑖 → (𝑗𝑔𝑗)))}))‘((𝑅1‘dom 𝑒) ∖ ran 𝑔)))) “ {𝑔}))
129126imaeq1d 6007 . . . . . . . . 9 (𝑙 = 𝑒 → (recs((𝑔 ∈ V ↦ ((𝑔 ∈ V ↦ sup((𝑦𝑔), (𝑅1‘dom 𝑙), {⟨𝑔, ⟩ ∣ ∃𝑖 ∈ (𝑅1 dom 𝑙)((𝑖 ∧ ¬ 𝑖𝑔) ∧ ∀𝑗 ∈ (𝑅1 dom 𝑙)(𝑗(𝑙 dom 𝑙)𝑖 → (𝑗𝑔𝑗)))}))‘((𝑅1‘dom 𝑙) ∖ ran 𝑔)))) “ {}) = (recs((𝑔 ∈ V ↦ ((𝑔 ∈ V ↦ sup((𝑦𝑔), (𝑅1‘dom 𝑒), {⟨𝑔, ⟩ ∣ ∃𝑖 ∈ (𝑅1 dom 𝑒)((𝑖 ∧ ¬ 𝑖𝑔) ∧ ∀𝑗 ∈ (𝑅1 dom 𝑒)(𝑗(𝑒 dom 𝑒)𝑖 → (𝑗𝑔𝑗)))}))‘((𝑅1‘dom 𝑒) ∖ ran 𝑔)))) “ {}))
130129inteqd 4900 . . . . . . . 8 (𝑙 = 𝑒 (recs((𝑔 ∈ V ↦ ((𝑔 ∈ V ↦ sup((𝑦𝑔), (𝑅1‘dom 𝑙), {⟨𝑔, ⟩ ∣ ∃𝑖 ∈ (𝑅1 dom 𝑙)((𝑖 ∧ ¬ 𝑖𝑔) ∧ ∀𝑗 ∈ (𝑅1 dom 𝑙)(𝑗(𝑙 dom 𝑙)𝑖 → (𝑗𝑔𝑗)))}))‘((𝑅1‘dom 𝑙) ∖ ran 𝑔)))) “ {}) = (recs((𝑔 ∈ V ↦ ((𝑔 ∈ V ↦ sup((𝑦𝑔), (𝑅1‘dom 𝑒), {⟨𝑔, ⟩ ∣ ∃𝑖 ∈ (𝑅1 dom 𝑒)((𝑖 ∧ ¬ 𝑖𝑔) ∧ ∀𝑗 ∈ (𝑅1 dom 𝑒)(𝑗(𝑒 dom 𝑒)𝑖 → (𝑗𝑔𝑗)))}))‘((𝑅1‘dom 𝑒) ∖ ran 𝑔)))) “ {}))
131128, 130eleq12d 2825 . . . . . . 7 (𝑙 = 𝑒 → ( (recs((𝑔 ∈ V ↦ ((𝑔 ∈ V ↦ sup((𝑦𝑔), (𝑅1‘dom 𝑙), {⟨𝑔, ⟩ ∣ ∃𝑖 ∈ (𝑅1 dom 𝑙)((𝑖 ∧ ¬ 𝑖𝑔) ∧ ∀𝑗 ∈ (𝑅1 dom 𝑙)(𝑗(𝑙 dom 𝑙)𝑖 → (𝑗𝑔𝑗)))}))‘((𝑅1‘dom 𝑙) ∖ ran 𝑔)))) “ {𝑔}) ∈ (recs((𝑔 ∈ V ↦ ((𝑔 ∈ V ↦ sup((𝑦𝑔), (𝑅1‘dom 𝑙), {⟨𝑔, ⟩ ∣ ∃𝑖 ∈ (𝑅1 dom 𝑙)((𝑖 ∧ ¬ 𝑖𝑔) ∧ ∀𝑗 ∈ (𝑅1 dom 𝑙)(𝑗(𝑙 dom 𝑙)𝑖 → (𝑗𝑔𝑗)))}))‘((𝑅1‘dom 𝑙) ∖ ran 𝑔)))) “ {}) ↔ (recs((𝑔 ∈ V ↦ ((𝑔 ∈ V ↦ sup((𝑦𝑔), (𝑅1‘dom 𝑒), {⟨𝑔, ⟩ ∣ ∃𝑖 ∈ (𝑅1 dom 𝑒)((𝑖 ∧ ¬ 𝑖𝑔) ∧ ∀𝑗 ∈ (𝑅1 dom 𝑒)(𝑗(𝑒 dom 𝑒)𝑖 → (𝑗𝑔𝑗)))}))‘((𝑅1‘dom 𝑒) ∖ ran 𝑔)))) “ {𝑔}) ∈ (recs((𝑔 ∈ V ↦ ((𝑔 ∈ V ↦ sup((𝑦𝑔), (𝑅1‘dom 𝑒), {⟨𝑔, ⟩ ∣ ∃𝑖 ∈ (𝑅1 dom 𝑒)((𝑖 ∧ ¬ 𝑖𝑔) ∧ ∀𝑗 ∈ (𝑅1 dom 𝑒)(𝑗(𝑒 dom 𝑒)𝑖 → (𝑗𝑔𝑗)))}))‘((𝑅1‘dom 𝑒) ∖ ran 𝑔)))) “ {})))
132131opabbidv 5155 . . . . . 6 (𝑙 = 𝑒 → {⟨𝑔, ⟩ ∣ (recs((𝑔 ∈ V ↦ ((𝑔 ∈ V ↦ sup((𝑦𝑔), (𝑅1‘dom 𝑙), {⟨𝑔, ⟩ ∣ ∃𝑖 ∈ (𝑅1 dom 𝑙)((𝑖 ∧ ¬ 𝑖𝑔) ∧ ∀𝑗 ∈ (𝑅1 dom 𝑙)(𝑗(𝑙 dom 𝑙)𝑖 → (𝑗𝑔𝑗)))}))‘((𝑅1‘dom 𝑙) ∖ ran 𝑔)))) “ {𝑔}) ∈ (recs((𝑔 ∈ V ↦ ((𝑔 ∈ V ↦ sup((𝑦𝑔), (𝑅1‘dom 𝑙), {⟨𝑔, ⟩ ∣ ∃𝑖 ∈ (𝑅1 dom 𝑙)((𝑖 ∧ ¬ 𝑖𝑔) ∧ ∀𝑗 ∈ (𝑅1 dom 𝑙)(𝑗(𝑙 dom 𝑙)𝑖 → (𝑗𝑔𝑗)))}))‘((𝑅1‘dom 𝑙) ∖ ran 𝑔)))) “ {})} = {⟨𝑔, ⟩ ∣ (recs((𝑔 ∈ V ↦ ((𝑔 ∈ V ↦ sup((𝑦𝑔), (𝑅1‘dom 𝑒), {⟨𝑔, ⟩ ∣ ∃𝑖 ∈ (𝑅1 dom 𝑒)((𝑖 ∧ ¬ 𝑖𝑔) ∧ ∀𝑗 ∈ (𝑅1 dom 𝑒)(𝑗(𝑒 dom 𝑒)𝑖 → (𝑗𝑔𝑗)))}))‘((𝑅1‘dom 𝑒) ∖ ran 𝑔)))) “ {𝑔}) ∈ (recs((𝑔 ∈ V ↦ ((𝑔 ∈ V ↦ sup((𝑦𝑔), (𝑅1‘dom 𝑒), {⟨𝑔, ⟩ ∣ ∃𝑖 ∈ (𝑅1 dom 𝑒)((𝑖 ∧ ¬ 𝑖𝑔) ∧ ∀𝑗 ∈ (𝑅1 dom 𝑒)(𝑗(𝑒 dom 𝑒)𝑖 → (𝑗𝑔𝑗)))}))‘((𝑅1‘dom 𝑒) ∖ ran 𝑔)))) “ {})})
133102, 107, 132ifbieq12d 4501 . . . . 5 (𝑙 = 𝑒 → if(dom 𝑙 = dom 𝑙, {⟨𝑔, ⟩ ∣ ((rank‘𝑔) E (rank‘) ∨ ((rank‘𝑔) = (rank‘) ∧ 𝑔(𝑙‘suc (rank‘𝑔))))}, {⟨𝑔, ⟩ ∣ (recs((𝑔 ∈ V ↦ ((𝑔 ∈ V ↦ sup((𝑦𝑔), (𝑅1‘dom 𝑙), {⟨𝑔, ⟩ ∣ ∃𝑖 ∈ (𝑅1 dom 𝑙)((𝑖 ∧ ¬ 𝑖𝑔) ∧ ∀𝑗 ∈ (𝑅1 dom 𝑙)(𝑗(𝑙 dom 𝑙)𝑖 → (𝑗𝑔𝑗)))}))‘((𝑅1‘dom 𝑙) ∖ ran 𝑔)))) “ {𝑔}) ∈ (recs((𝑔 ∈ V ↦ ((𝑔 ∈ V ↦ sup((𝑦𝑔), (𝑅1‘dom 𝑙), {⟨𝑔, ⟩ ∣ ∃𝑖 ∈ (𝑅1 dom 𝑙)((𝑖 ∧ ¬ 𝑖𝑔) ∧ ∀𝑗 ∈ (𝑅1 dom 𝑙)(𝑗(𝑙 dom 𝑙)𝑖 → (𝑗𝑔𝑗)))}))‘((𝑅1‘dom 𝑙) ∖ ran 𝑔)))) “ {})}) = if(dom 𝑒 = dom 𝑒, {⟨𝑔, ⟩ ∣ ((rank‘𝑔) E (rank‘) ∨ ((rank‘𝑔) = (rank‘) ∧ 𝑔(𝑒‘suc (rank‘𝑔))))}, {⟨𝑔, ⟩ ∣ (recs((𝑔 ∈ V ↦ ((𝑔 ∈ V ↦ sup((𝑦𝑔), (𝑅1‘dom 𝑒), {⟨𝑔, ⟩ ∣ ∃𝑖 ∈ (𝑅1 dom 𝑒)((𝑖 ∧ ¬ 𝑖𝑔) ∧ ∀𝑗 ∈ (𝑅1 dom 𝑒)(𝑗(𝑒 dom 𝑒)𝑖 → (𝑗𝑔𝑗)))}))‘((𝑅1‘dom 𝑒) ∖ ran 𝑔)))) “ {𝑔}) ∈ (recs((𝑔 ∈ V ↦ ((𝑔 ∈ V ↦ sup((𝑦𝑔), (𝑅1‘dom 𝑒), {⟨𝑔, ⟩ ∣ ∃𝑖 ∈ (𝑅1 dom 𝑒)((𝑖 ∧ ¬ 𝑖𝑔) ∧ ∀𝑗 ∈ (𝑅1 dom 𝑒)(𝑗(𝑒 dom 𝑒)𝑖 → (𝑗𝑔𝑗)))}))‘((𝑅1‘dom 𝑒) ∖ ran 𝑔)))) “ {})}))
134109sqxpeqd 5646 . . . . 5 (𝑙 = 𝑒 → ((𝑅1‘dom 𝑙) × (𝑅1‘dom 𝑙)) = ((𝑅1‘dom 𝑒) × (𝑅1‘dom 𝑒)))
135133, 134ineq12d 4168 . . . 4 (𝑙 = 𝑒 → (if(dom 𝑙 = dom 𝑙, {⟨𝑔, ⟩ ∣ ((rank‘𝑔) E (rank‘) ∨ ((rank‘𝑔) = (rank‘) ∧ 𝑔(𝑙‘suc (rank‘𝑔))))}, {⟨𝑔, ⟩ ∣ (recs((𝑔 ∈ V ↦ ((𝑔 ∈ V ↦ sup((𝑦𝑔), (𝑅1‘dom 𝑙), {⟨𝑔, ⟩ ∣ ∃𝑖 ∈ (𝑅1 dom 𝑙)((𝑖 ∧ ¬ 𝑖𝑔) ∧ ∀𝑗 ∈ (𝑅1 dom 𝑙)(𝑗(𝑙 dom 𝑙)𝑖 → (𝑗𝑔𝑗)))}))‘((𝑅1‘dom 𝑙) ∖ ran 𝑔)))) “ {𝑔}) ∈ (recs((𝑔 ∈ V ↦ ((𝑔 ∈ V ↦ sup((𝑦𝑔), (𝑅1‘dom 𝑙), {⟨𝑔, ⟩ ∣ ∃𝑖 ∈ (𝑅1 dom 𝑙)((𝑖 ∧ ¬ 𝑖𝑔) ∧ ∀𝑗 ∈ (𝑅1 dom 𝑙)(𝑗(𝑙 dom 𝑙)𝑖 → (𝑗𝑔𝑗)))}))‘((𝑅1‘dom 𝑙) ∖ ran 𝑔)))) “ {})}) ∩ ((𝑅1‘dom 𝑙) × (𝑅1‘dom 𝑙))) = (if(dom 𝑒 = dom 𝑒, {⟨𝑔, ⟩ ∣ ((rank‘𝑔) E (rank‘) ∨ ((rank‘𝑔) = (rank‘) ∧ 𝑔(𝑒‘suc (rank‘𝑔))))}, {⟨𝑔, ⟩ ∣ (recs((𝑔 ∈ V ↦ ((𝑔 ∈ V ↦ sup((𝑦𝑔), (𝑅1‘dom 𝑒), {⟨𝑔, ⟩ ∣ ∃𝑖 ∈ (𝑅1 dom 𝑒)((𝑖 ∧ ¬ 𝑖𝑔) ∧ ∀𝑗 ∈ (𝑅1 dom 𝑒)(𝑗(𝑒 dom 𝑒)𝑖 → (𝑗𝑔𝑗)))}))‘((𝑅1‘dom 𝑒) ∖ ran 𝑔)))) “ {𝑔}) ∈ (recs((𝑔 ∈ V ↦ ((𝑔 ∈ V ↦ sup((𝑦𝑔), (𝑅1‘dom 𝑒), {⟨𝑔, ⟩ ∣ ∃𝑖 ∈ (𝑅1 dom 𝑒)((𝑖 ∧ ¬ 𝑖𝑔) ∧ ∀𝑗 ∈ (𝑅1 dom 𝑒)(𝑗(𝑒 dom 𝑒)𝑖 → (𝑗𝑔𝑗)))}))‘((𝑅1‘dom 𝑒) ∖ ran 𝑔)))) “ {})}) ∩ ((𝑅1‘dom 𝑒) × (𝑅1‘dom 𝑒))))
136135cbvmptv 5193 . . 3 (𝑙 ∈ V ↦ (if(dom 𝑙 = dom 𝑙, {⟨𝑔, ⟩ ∣ ((rank‘𝑔) E (rank‘) ∨ ((rank‘𝑔) = (rank‘) ∧ 𝑔(𝑙‘suc (rank‘𝑔))))}, {⟨𝑔, ⟩ ∣ (recs((𝑔 ∈ V ↦ ((𝑔 ∈ V ↦ sup((𝑦𝑔), (𝑅1‘dom 𝑙), {⟨𝑔, ⟩ ∣ ∃𝑖 ∈ (𝑅1 dom 𝑙)((𝑖 ∧ ¬ 𝑖𝑔) ∧ ∀𝑗 ∈ (𝑅1 dom 𝑙)(𝑗(𝑙 dom 𝑙)𝑖 → (𝑗𝑔𝑗)))}))‘((𝑅1‘dom 𝑙) ∖ ran 𝑔)))) “ {𝑔}) ∈ (recs((𝑔 ∈ V ↦ ((𝑔 ∈ V ↦ sup((𝑦𝑔), (𝑅1‘dom 𝑙), {⟨𝑔, ⟩ ∣ ∃𝑖 ∈ (𝑅1 dom 𝑙)((𝑖 ∧ ¬ 𝑖𝑔) ∧ ∀𝑗 ∈ (𝑅1 dom 𝑙)(𝑗(𝑙 dom 𝑙)𝑖 → (𝑗𝑔𝑗)))}))‘((𝑅1‘dom 𝑙) ∖ ran 𝑔)))) “ {})}) ∩ ((𝑅1‘dom 𝑙) × (𝑅1‘dom 𝑙)))) = (𝑒 ∈ V ↦ (if(dom 𝑒 = dom 𝑒, {⟨𝑔, ⟩ ∣ ((rank‘𝑔) E (rank‘) ∨ ((rank‘𝑔) = (rank‘) ∧ 𝑔(𝑒‘suc (rank‘𝑔))))}, {⟨𝑔, ⟩ ∣ (recs((𝑔 ∈ V ↦ ((𝑔 ∈ V ↦ sup((𝑦𝑔), (𝑅1‘dom 𝑒), {⟨𝑔, ⟩ ∣ ∃𝑖 ∈ (𝑅1 dom 𝑒)((𝑖 ∧ ¬ 𝑖𝑔) ∧ ∀𝑗 ∈ (𝑅1 dom 𝑒)(𝑗(𝑒 dom 𝑒)𝑖 → (𝑗𝑔𝑗)))}))‘((𝑅1‘dom 𝑒) ∖ ran 𝑔)))) “ {𝑔}) ∈ (recs((𝑔 ∈ V ↦ ((𝑔 ∈ V ↦ sup((𝑦𝑔), (𝑅1‘dom 𝑒), {⟨𝑔, ⟩ ∣ ∃𝑖 ∈ (𝑅1 dom 𝑒)((𝑖 ∧ ¬ 𝑖𝑔) ∧ ∀𝑗 ∈ (𝑅1 dom 𝑒)(𝑗(𝑒 dom 𝑒)𝑖 → (𝑗𝑔𝑗)))}))‘((𝑅1‘dom 𝑒) ∖ ran 𝑔)))) “ {})}) ∩ ((𝑅1‘dom 𝑒) × (𝑅1‘dom 𝑒))))
137 recseq 8293 . . 3 ((𝑙 ∈ V ↦ (if(dom 𝑙 = dom 𝑙, {⟨𝑔, ⟩ ∣ ((rank‘𝑔) E (rank‘) ∨ ((rank‘𝑔) = (rank‘) ∧ 𝑔(𝑙‘suc (rank‘𝑔))))}, {⟨𝑔, ⟩ ∣ (recs((𝑔 ∈ V ↦ ((𝑔 ∈ V ↦ sup((𝑦𝑔), (𝑅1‘dom 𝑙), {⟨𝑔, ⟩ ∣ ∃𝑖 ∈ (𝑅1 dom 𝑙)((𝑖 ∧ ¬ 𝑖𝑔) ∧ ∀𝑗 ∈ (𝑅1 dom 𝑙)(𝑗(𝑙 dom 𝑙)𝑖 → (𝑗𝑔𝑗)))}))‘((𝑅1‘dom 𝑙) ∖ ran 𝑔)))) “ {𝑔}) ∈ (recs((𝑔 ∈ V ↦ ((𝑔 ∈ V ↦ sup((𝑦𝑔), (𝑅1‘dom 𝑙), {⟨𝑔, ⟩ ∣ ∃𝑖 ∈ (𝑅1 dom 𝑙)((𝑖 ∧ ¬ 𝑖𝑔) ∧ ∀𝑗 ∈ (𝑅1 dom 𝑙)(𝑗(𝑙 dom 𝑙)𝑖 → (𝑗𝑔𝑗)))}))‘((𝑅1‘dom 𝑙) ∖ ran 𝑔)))) “ {})}) ∩ ((𝑅1‘dom 𝑙) × (𝑅1‘dom 𝑙)))) = (𝑒 ∈ V ↦ (if(dom 𝑒 = dom 𝑒, {⟨𝑔, ⟩ ∣ ((rank‘𝑔) E (rank‘) ∨ ((rank‘𝑔) = (rank‘) ∧ 𝑔(𝑒‘suc (rank‘𝑔))))}, {⟨𝑔, ⟩ ∣ (recs((𝑔 ∈ V ↦ ((𝑔 ∈ V ↦ sup((𝑦𝑔), (𝑅1‘dom 𝑒), {⟨𝑔, ⟩ ∣ ∃𝑖 ∈ (𝑅1 dom 𝑒)((𝑖 ∧ ¬ 𝑖𝑔) ∧ ∀𝑗 ∈ (𝑅1 dom 𝑒)(𝑗(𝑒 dom 𝑒)𝑖 → (𝑗𝑔𝑗)))}))‘((𝑅1‘dom 𝑒) ∖ ran 𝑔)))) “ {𝑔}) ∈ (recs((𝑔 ∈ V ↦ ((𝑔 ∈ V ↦ sup((𝑦𝑔), (𝑅1‘dom 𝑒), {⟨𝑔, ⟩ ∣ ∃𝑖 ∈ (𝑅1 dom 𝑒)((𝑖 ∧ ¬ 𝑖𝑔) ∧ ∀𝑗 ∈ (𝑅1 dom 𝑒)(𝑗(𝑒 dom 𝑒)𝑖 → (𝑗𝑔𝑗)))}))‘((𝑅1‘dom 𝑒) ∖ ran 𝑔)))) “ {})}) ∩ ((𝑅1‘dom 𝑒) × (𝑅1‘dom 𝑒)))) → recs((𝑙 ∈ V ↦ (if(dom 𝑙 = dom 𝑙, {⟨𝑔, ⟩ ∣ ((rank‘𝑔) E (rank‘) ∨ ((rank‘𝑔) = (rank‘) ∧ 𝑔(𝑙‘suc (rank‘𝑔))))}, {⟨𝑔, ⟩ ∣ (recs((𝑔 ∈ V ↦ ((𝑔 ∈ V ↦ sup((𝑦𝑔), (𝑅1‘dom 𝑙), {⟨𝑔, ⟩ ∣ ∃𝑖 ∈ (𝑅1 dom 𝑙)((𝑖 ∧ ¬ 𝑖𝑔) ∧ ∀𝑗 ∈ (𝑅1 dom 𝑙)(𝑗(𝑙 dom 𝑙)𝑖 → (𝑗𝑔𝑗)))}))‘((𝑅1‘dom 𝑙) ∖ ran 𝑔)))) “ {𝑔}) ∈ (recs((𝑔 ∈ V ↦ ((𝑔 ∈ V ↦ sup((𝑦𝑔), (𝑅1‘dom 𝑙), {⟨𝑔, ⟩ ∣ ∃𝑖 ∈ (𝑅1 dom 𝑙)((𝑖 ∧ ¬ 𝑖𝑔) ∧ ∀𝑗 ∈ (𝑅1 dom 𝑙)(𝑗(𝑙 dom 𝑙)𝑖 → (𝑗𝑔𝑗)))}))‘((𝑅1‘dom 𝑙) ∖ ran 𝑔)))) “ {})}) ∩ ((𝑅1‘dom 𝑙) × (𝑅1‘dom 𝑙))))) = recs((𝑒 ∈ V ↦ (if(dom 𝑒 = dom 𝑒, {⟨𝑔, ⟩ ∣ ((rank‘𝑔) E (rank‘) ∨ ((rank‘𝑔) = (rank‘) ∧ 𝑔(𝑒‘suc (rank‘𝑔))))}, {⟨𝑔, ⟩ ∣ (recs((𝑔 ∈ V ↦ ((𝑔 ∈ V ↦ sup((𝑦𝑔), (𝑅1‘dom 𝑒), {⟨𝑔, ⟩ ∣ ∃𝑖 ∈ (𝑅1 dom 𝑒)((𝑖 ∧ ¬ 𝑖𝑔) ∧ ∀𝑗 ∈ (𝑅1 dom 𝑒)(𝑗(𝑒 dom 𝑒)𝑖 → (𝑗𝑔𝑗)))}))‘((𝑅1‘dom 𝑒) ∖ ran 𝑔)))) “ {𝑔}) ∈ (recs((𝑔 ∈ V ↦ ((𝑔 ∈ V ↦ sup((𝑦𝑔), (𝑅1‘dom 𝑒), {⟨𝑔, ⟩ ∣ ∃𝑖 ∈ (𝑅1 dom 𝑒)((𝑖 ∧ ¬ 𝑖𝑔) ∧ ∀𝑗 ∈ (𝑅1 dom 𝑒)(𝑗(𝑒 dom 𝑒)𝑖 → (𝑗𝑔𝑗)))}))‘((𝑅1‘dom 𝑒) ∖ ran 𝑔)))) “ {})}) ∩ ((𝑅1‘dom 𝑒) × (𝑅1‘dom 𝑒))))))
138136, 137ax-mp 5 . 2 recs((𝑙 ∈ V ↦ (if(dom 𝑙 = dom 𝑙, {⟨𝑔, ⟩ ∣ ((rank‘𝑔) E (rank‘) ∨ ((rank‘𝑔) = (rank‘) ∧ 𝑔(𝑙‘suc (rank‘𝑔))))}, {⟨𝑔, ⟩ ∣ (recs((𝑔 ∈ V ↦ ((𝑔 ∈ V ↦ sup((𝑦𝑔), (𝑅1‘dom 𝑙), {⟨𝑔, ⟩ ∣ ∃𝑖 ∈ (𝑅1 dom 𝑙)((𝑖 ∧ ¬ 𝑖𝑔) ∧ ∀𝑗 ∈ (𝑅1 dom 𝑙)(𝑗(𝑙 dom 𝑙)𝑖 → (𝑗𝑔𝑗)))}))‘((𝑅1‘dom 𝑙) ∖ ran 𝑔)))) “ {𝑔}) ∈ (recs((𝑔 ∈ V ↦ ((𝑔 ∈ V ↦ sup((𝑦𝑔), (𝑅1‘dom 𝑙), {⟨𝑔, ⟩ ∣ ∃𝑖 ∈ (𝑅1 dom 𝑙)((𝑖 ∧ ¬ 𝑖𝑔) ∧ ∀𝑗 ∈ (𝑅1 dom 𝑙)(𝑗(𝑙 dom 𝑙)𝑖 → (𝑗𝑔𝑗)))}))‘((𝑅1‘dom 𝑙) ∖ ran 𝑔)))) “ {})}) ∩ ((𝑅1‘dom 𝑙) × (𝑅1‘dom 𝑙))))) = recs((𝑒 ∈ V ↦ (if(dom 𝑒 = dom 𝑒, {⟨𝑔, ⟩ ∣ ((rank‘𝑔) E (rank‘) ∨ ((rank‘𝑔) = (rank‘) ∧ 𝑔(𝑒‘suc (rank‘𝑔))))}, {⟨𝑔, ⟩ ∣ (recs((𝑔 ∈ V ↦ ((𝑔 ∈ V ↦ sup((𝑦𝑔), (𝑅1‘dom 𝑒), {⟨𝑔, ⟩ ∣ ∃𝑖 ∈ (𝑅1 dom 𝑒)((𝑖 ∧ ¬ 𝑖𝑔) ∧ ∀𝑗 ∈ (𝑅1 dom 𝑒)(𝑗(𝑒 dom 𝑒)𝑖 → (𝑗𝑔𝑗)))}))‘((𝑅1‘dom 𝑒) ∖ ran 𝑔)))) “ {𝑔}) ∈ (recs((𝑔 ∈ V ↦ ((𝑔 ∈ V ↦ sup((𝑦𝑔), (𝑅1‘dom 𝑒), {⟨𝑔, ⟩ ∣ ∃𝑖 ∈ (𝑅1 dom 𝑒)((𝑖 ∧ ¬ 𝑖𝑔) ∧ ∀𝑗 ∈ (𝑅1 dom 𝑒)(𝑗(𝑒 dom 𝑒)𝑖 → (𝑗𝑔𝑗)))}))‘((𝑅1‘dom 𝑒) ∖ ran 𝑔)))) “ {})}) ∩ ((𝑅1‘dom 𝑒) × (𝑅1‘dom 𝑒)))))
139 aomclem8.a . 2 (𝜑𝐴 ∈ On)
140 aomclem8.y . . 3 (𝜑 → ∀𝑎 ∈ 𝒫 (𝑅1𝐴)(𝑎 ≠ ∅ → (𝑦𝑎) ∈ ((𝒫 𝑎 ∩ Fin) ∖ {∅})))
141 neeq1 2990 . . . . 5 (𝑎 = 𝑐 → (𝑎 ≠ ∅ ↔ 𝑐 ≠ ∅))
142 fveq2 6822 . . . . . 6 (𝑎 = 𝑐 → (𝑦𝑎) = (𝑦𝑐))
143 pweq 4561 . . . . . . . 8 (𝑎 = 𝑐 → 𝒫 𝑎 = 𝒫 𝑐)
144143ineq1d 4166 . . . . . . 7 (𝑎 = 𝑐 → (𝒫 𝑎 ∩ Fin) = (𝒫 𝑐 ∩ Fin))
145144difeq1d 4072 . . . . . 6 (𝑎 = 𝑐 → ((𝒫 𝑎 ∩ Fin) ∖ {∅}) = ((𝒫 𝑐 ∩ Fin) ∖ {∅}))
146142, 145eleq12d 2825 . . . . 5 (𝑎 = 𝑐 → ((𝑦𝑎) ∈ ((𝒫 𝑎 ∩ Fin) ∖ {∅}) ↔ (𝑦𝑐) ∈ ((𝒫 𝑐 ∩ Fin) ∖ {∅})))
147141, 146imbi12d 344 . . . 4 (𝑎 = 𝑐 → ((𝑎 ≠ ∅ → (𝑦𝑎) ∈ ((𝒫 𝑎 ∩ Fin) ∖ {∅})) ↔ (𝑐 ≠ ∅ → (𝑦𝑐) ∈ ((𝒫 𝑐 ∩ Fin) ∖ {∅}))))
148147cbvralvw 3210 . . 3 (∀𝑎 ∈ 𝒫 (𝑅1𝐴)(𝑎 ≠ ∅ → (𝑦𝑎) ∈ ((𝒫 𝑎 ∩ Fin) ∖ {∅})) ↔ ∀𝑐 ∈ 𝒫 (𝑅1𝐴)(𝑐 ≠ ∅ → (𝑦𝑐) ∈ ((𝒫 𝑐 ∩ Fin) ∖ {∅})))
149140, 148sylib 218 . 2 (𝜑 → ∀𝑐 ∈ 𝒫 (𝑅1𝐴)(𝑐 ≠ ∅ → (𝑦𝑐) ∈ ((𝒫 𝑐 ∩ Fin) ∖ {∅})))
15029, 37, 45, 84, 98, 99, 138, 139, 149aomclem7 43163 1 (𝜑 → ∃𝑏 𝑏 We (𝑅1𝐴))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wo 847   = wceq 1541  wex 1780  wcel 2111  wne 2928  wral 3047  wrex 3056  Vcvv 3436  cdif 3894  cin 3896  c0 4280  ifcif 4472  𝒫 cpw 4547  {csn 4573   cuni 4856   cint 4895   class class class wbr 5089  {copab 5151  cmpt 5170   E cep 5513   We wwe 5566   × cxp 5612  ccnv 5613  dom cdm 5614  ran crn 5615  cima 5617  Oncon0 6306  suc csuc 6308  cfv 6481  recscrecs 8290  Fincfn 8869  supcsup 9324  𝑅1cr1 9655  rankcrnk 9656
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5215  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7668
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-tp 4578  df-op 4580  df-uni 4857  df-int 4896  df-iun 4941  df-br 5090  df-opab 5152  df-mpt 5171  df-tr 5197  df-id 5509  df-eprel 5514  df-po 5522  df-so 5523  df-fr 5567  df-we 5569  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-isom 6490  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-om 7797  df-1st 7921  df-2nd 7922  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-1o 8385  df-2o 8386  df-map 8752  df-en 8870  df-fin 8873  df-sup 9326  df-r1 9657  df-rank 9658
This theorem is referenced by:  dfac11  43165
  Copyright terms: Public domain W3C validator