Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  aomclem8 Structured version   Visualization version   GIF version

Theorem aomclem8 40005
Description: Lemma for dfac11 40006. Perform variable substitutions. This is the most we can say without invoking regularity. (Contributed by Stefan O'Rear, 20-Jan-2015.)
Hypotheses
Ref Expression
aomclem8.a (𝜑𝐴 ∈ On)
aomclem8.y (𝜑 → ∀𝑎 ∈ 𝒫 (𝑅1𝐴)(𝑎 ≠ ∅ → (𝑦𝑎) ∈ ((𝒫 𝑎 ∩ Fin) ∖ {∅})))
Assertion
Ref Expression
aomclem8 (𝜑 → ∃𝑏 𝑏 We (𝑅1𝐴))
Distinct variable groups:   𝜑,𝑏   𝐴,𝑎,𝑏   𝑦,𝑎,𝑏
Allowed substitution hints:   𝜑(𝑦,𝑎)   𝐴(𝑦)

Proof of Theorem aomclem8
Dummy variables 𝑐 𝑑 𝑒 𝑓 𝑔 𝑖 𝑗 𝑙 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elequ2 2126 . . . . . . 7 ( = 𝑏 → (𝑖𝑖𝑏))
2 elequ2 2126 . . . . . . . 8 (𝑔 = 𝑐 → (𝑖𝑔𝑖𝑐))
32notbid 321 . . . . . . 7 (𝑔 = 𝑐 → (¬ 𝑖𝑔 ↔ ¬ 𝑖𝑐))
41, 3bi2anan9r 639 . . . . . 6 ((𝑔 = 𝑐 = 𝑏) → ((𝑖 ∧ ¬ 𝑖𝑔) ↔ (𝑖𝑏 ∧ ¬ 𝑖𝑐)))
5 elequ2 2126 . . . . . . . . 9 (𝑔 = 𝑐 → (𝑗𝑔𝑗𝑐))
6 elequ2 2126 . . . . . . . . 9 ( = 𝑏 → (𝑗𝑗𝑏))
75, 6bi2bian9 640 . . . . . . . 8 ((𝑔 = 𝑐 = 𝑏) → ((𝑗𝑔𝑗) ↔ (𝑗𝑐𝑗𝑏)))
87imbi2d 344 . . . . . . 7 ((𝑔 = 𝑐 = 𝑏) → ((𝑗(𝑒 dom 𝑒)𝑖 → (𝑗𝑔𝑗)) ↔ (𝑗(𝑒 dom 𝑒)𝑖 → (𝑗𝑐𝑗𝑏))))
98ralbidv 3162 . . . . . 6 ((𝑔 = 𝑐 = 𝑏) → (∀𝑗 ∈ (𝑅1 dom 𝑒)(𝑗(𝑒 dom 𝑒)𝑖 → (𝑗𝑔𝑗)) ↔ ∀𝑗 ∈ (𝑅1 dom 𝑒)(𝑗(𝑒 dom 𝑒)𝑖 → (𝑗𝑐𝑗𝑏))))
104, 9anbi12d 633 . . . . 5 ((𝑔 = 𝑐 = 𝑏) → (((𝑖 ∧ ¬ 𝑖𝑔) ∧ ∀𝑗 ∈ (𝑅1 dom 𝑒)(𝑗(𝑒 dom 𝑒)𝑖 → (𝑗𝑔𝑗))) ↔ ((𝑖𝑏 ∧ ¬ 𝑖𝑐) ∧ ∀𝑗 ∈ (𝑅1 dom 𝑒)(𝑗(𝑒 dom 𝑒)𝑖 → (𝑗𝑐𝑗𝑏)))))
1110rexbidv 3256 . . . 4 ((𝑔 = 𝑐 = 𝑏) → (∃𝑖 ∈ (𝑅1 dom 𝑒)((𝑖 ∧ ¬ 𝑖𝑔) ∧ ∀𝑗 ∈ (𝑅1 dom 𝑒)(𝑗(𝑒 dom 𝑒)𝑖 → (𝑗𝑔𝑗))) ↔ ∃𝑖 ∈ (𝑅1 dom 𝑒)((𝑖𝑏 ∧ ¬ 𝑖𝑐) ∧ ∀𝑗 ∈ (𝑅1 dom 𝑒)(𝑗(𝑒 dom 𝑒)𝑖 → (𝑗𝑐𝑗𝑏)))))
12 elequ1 2118 . . . . . . 7 (𝑖 = 𝑑 → (𝑖𝑏𝑑𝑏))
13 elequ1 2118 . . . . . . . 8 (𝑖 = 𝑑 → (𝑖𝑐𝑑𝑐))
1413notbid 321 . . . . . . 7 (𝑖 = 𝑑 → (¬ 𝑖𝑐 ↔ ¬ 𝑑𝑐))
1512, 14anbi12d 633 . . . . . 6 (𝑖 = 𝑑 → ((𝑖𝑏 ∧ ¬ 𝑖𝑐) ↔ (𝑑𝑏 ∧ ¬ 𝑑𝑐)))
16 breq2 5034 . . . . . . . . 9 (𝑖 = 𝑑 → (𝑗(𝑒 dom 𝑒)𝑖𝑗(𝑒 dom 𝑒)𝑑))
1716imbi1d 345 . . . . . . . 8 (𝑖 = 𝑑 → ((𝑗(𝑒 dom 𝑒)𝑖 → (𝑗𝑐𝑗𝑏)) ↔ (𝑗(𝑒 dom 𝑒)𝑑 → (𝑗𝑐𝑗𝑏))))
1817ralbidv 3162 . . . . . . 7 (𝑖 = 𝑑 → (∀𝑗 ∈ (𝑅1 dom 𝑒)(𝑗(𝑒 dom 𝑒)𝑖 → (𝑗𝑐𝑗𝑏)) ↔ ∀𝑗 ∈ (𝑅1 dom 𝑒)(𝑗(𝑒 dom 𝑒)𝑑 → (𝑗𝑐𝑗𝑏))))
19 breq1 5033 . . . . . . . . 9 (𝑗 = 𝑓 → (𝑗(𝑒 dom 𝑒)𝑑𝑓(𝑒 dom 𝑒)𝑑))
20 elequ1 2118 . . . . . . . . . 10 (𝑗 = 𝑓 → (𝑗𝑐𝑓𝑐))
21 elequ1 2118 . . . . . . . . . 10 (𝑗 = 𝑓 → (𝑗𝑏𝑓𝑏))
2220, 21bibi12d 349 . . . . . . . . 9 (𝑗 = 𝑓 → ((𝑗𝑐𝑗𝑏) ↔ (𝑓𝑐𝑓𝑏)))
2319, 22imbi12d 348 . . . . . . . 8 (𝑗 = 𝑓 → ((𝑗(𝑒 dom 𝑒)𝑑 → (𝑗𝑐𝑗𝑏)) ↔ (𝑓(𝑒 dom 𝑒)𝑑 → (𝑓𝑐𝑓𝑏))))
2423cbvralvw 3396 . . . . . . 7 (∀𝑗 ∈ (𝑅1 dom 𝑒)(𝑗(𝑒 dom 𝑒)𝑑 → (𝑗𝑐𝑗𝑏)) ↔ ∀𝑓 ∈ (𝑅1 dom 𝑒)(𝑓(𝑒 dom 𝑒)𝑑 → (𝑓𝑐𝑓𝑏)))
2518, 24syl6bb 290 . . . . . 6 (𝑖 = 𝑑 → (∀𝑗 ∈ (𝑅1 dom 𝑒)(𝑗(𝑒 dom 𝑒)𝑖 → (𝑗𝑐𝑗𝑏)) ↔ ∀𝑓 ∈ (𝑅1 dom 𝑒)(𝑓(𝑒 dom 𝑒)𝑑 → (𝑓𝑐𝑓𝑏))))
2615, 25anbi12d 633 . . . . 5 (𝑖 = 𝑑 → (((𝑖𝑏 ∧ ¬ 𝑖𝑐) ∧ ∀𝑗 ∈ (𝑅1 dom 𝑒)(𝑗(𝑒 dom 𝑒)𝑖 → (𝑗𝑐𝑗𝑏))) ↔ ((𝑑𝑏 ∧ ¬ 𝑑𝑐) ∧ ∀𝑓 ∈ (𝑅1 dom 𝑒)(𝑓(𝑒 dom 𝑒)𝑑 → (𝑓𝑐𝑓𝑏)))))
2726cbvrexvw 3397 . . . 4 (∃𝑖 ∈ (𝑅1 dom 𝑒)((𝑖𝑏 ∧ ¬ 𝑖𝑐) ∧ ∀𝑗 ∈ (𝑅1 dom 𝑒)(𝑗(𝑒 dom 𝑒)𝑖 → (𝑗𝑐𝑗𝑏))) ↔ ∃𝑑 ∈ (𝑅1 dom 𝑒)((𝑑𝑏 ∧ ¬ 𝑑𝑐) ∧ ∀𝑓 ∈ (𝑅1 dom 𝑒)(𝑓(𝑒 dom 𝑒)𝑑 → (𝑓𝑐𝑓𝑏))))
2811, 27syl6bb 290 . . 3 ((𝑔 = 𝑐 = 𝑏) → (∃𝑖 ∈ (𝑅1 dom 𝑒)((𝑖 ∧ ¬ 𝑖𝑔) ∧ ∀𝑗 ∈ (𝑅1 dom 𝑒)(𝑗(𝑒 dom 𝑒)𝑖 → (𝑗𝑔𝑗))) ↔ ∃𝑑 ∈ (𝑅1 dom 𝑒)((𝑑𝑏 ∧ ¬ 𝑑𝑐) ∧ ∀𝑓 ∈ (𝑅1 dom 𝑒)(𝑓(𝑒 dom 𝑒)𝑑 → (𝑓𝑐𝑓𝑏)))))
2928cbvopabv 5102 . 2 {⟨𝑔, ⟩ ∣ ∃𝑖 ∈ (𝑅1 dom 𝑒)((𝑖 ∧ ¬ 𝑖𝑔) ∧ ∀𝑗 ∈ (𝑅1 dom 𝑒)(𝑗(𝑒 dom 𝑒)𝑖 → (𝑗𝑔𝑗)))} = {⟨𝑐, 𝑏⟩ ∣ ∃𝑑 ∈ (𝑅1 dom 𝑒)((𝑑𝑏 ∧ ¬ 𝑑𝑐) ∧ ∀𝑓 ∈ (𝑅1 dom 𝑒)(𝑓(𝑒 dom 𝑒)𝑑 → (𝑓𝑐𝑓𝑏)))}
30 nfcv 2955 . . 3 𝑐sup((𝑦𝑔), (𝑅1‘dom 𝑒), {⟨𝑔, ⟩ ∣ ∃𝑖 ∈ (𝑅1 dom 𝑒)((𝑖 ∧ ¬ 𝑖𝑔) ∧ ∀𝑗 ∈ (𝑅1 dom 𝑒)(𝑗(𝑒 dom 𝑒)𝑖 → (𝑗𝑔𝑗)))})
31 nfcv 2955 . . . 4 𝑔(𝑦𝑐)
32 nfcv 2955 . . . 4 𝑔(𝑅1‘dom 𝑒)
33 nfopab1 5099 . . . 4 𝑔{⟨𝑔, ⟩ ∣ ∃𝑖 ∈ (𝑅1 dom 𝑒)((𝑖 ∧ ¬ 𝑖𝑔) ∧ ∀𝑗 ∈ (𝑅1 dom 𝑒)(𝑗(𝑒 dom 𝑒)𝑖 → (𝑗𝑔𝑗)))}
3431, 32, 33nfsup 8899 . . 3 𝑔sup((𝑦𝑐), (𝑅1‘dom 𝑒), {⟨𝑔, ⟩ ∣ ∃𝑖 ∈ (𝑅1 dom 𝑒)((𝑖 ∧ ¬ 𝑖𝑔) ∧ ∀𝑗 ∈ (𝑅1 dom 𝑒)(𝑗(𝑒 dom 𝑒)𝑖 → (𝑗𝑔𝑗)))})
35 fveq2 6645 . . . 4 (𝑔 = 𝑐 → (𝑦𝑔) = (𝑦𝑐))
3635supeq1d 8894 . . 3 (𝑔 = 𝑐 → sup((𝑦𝑔), (𝑅1‘dom 𝑒), {⟨𝑔, ⟩ ∣ ∃𝑖 ∈ (𝑅1 dom 𝑒)((𝑖 ∧ ¬ 𝑖𝑔) ∧ ∀𝑗 ∈ (𝑅1 dom 𝑒)(𝑗(𝑒 dom 𝑒)𝑖 → (𝑗𝑔𝑗)))}) = sup((𝑦𝑐), (𝑅1‘dom 𝑒), {⟨𝑔, ⟩ ∣ ∃𝑖 ∈ (𝑅1 dom 𝑒)((𝑖 ∧ ¬ 𝑖𝑔) ∧ ∀𝑗 ∈ (𝑅1 dom 𝑒)(𝑗(𝑒 dom 𝑒)𝑖 → (𝑗𝑔𝑗)))}))
3730, 34, 36cbvmpt 5131 . 2 (𝑔 ∈ V ↦ sup((𝑦𝑔), (𝑅1‘dom 𝑒), {⟨𝑔, ⟩ ∣ ∃𝑖 ∈ (𝑅1 dom 𝑒)((𝑖 ∧ ¬ 𝑖𝑔) ∧ ∀𝑗 ∈ (𝑅1 dom 𝑒)(𝑗(𝑒 dom 𝑒)𝑖 → (𝑗𝑔𝑗)))})) = (𝑐 ∈ V ↦ sup((𝑦𝑐), (𝑅1‘dom 𝑒), {⟨𝑔, ⟩ ∣ ∃𝑖 ∈ (𝑅1 dom 𝑒)((𝑖 ∧ ¬ 𝑖𝑔) ∧ ∀𝑗 ∈ (𝑅1 dom 𝑒)(𝑗(𝑒 dom 𝑒)𝑖 → (𝑗𝑔𝑗)))}))
38 nfcv 2955 . . . 4 𝑐((𝑔 ∈ V ↦ sup((𝑦𝑔), (𝑅1‘dom 𝑒), {⟨𝑔, ⟩ ∣ ∃𝑖 ∈ (𝑅1 dom 𝑒)((𝑖 ∧ ¬ 𝑖𝑔) ∧ ∀𝑗 ∈ (𝑅1 dom 𝑒)(𝑗(𝑒 dom 𝑒)𝑖 → (𝑗𝑔𝑗)))}))‘((𝑅1‘dom 𝑒) ∖ ran 𝑔))
39 nffvmpt1 6656 . . . 4 𝑔((𝑔 ∈ V ↦ sup((𝑦𝑔), (𝑅1‘dom 𝑒), {⟨𝑔, ⟩ ∣ ∃𝑖 ∈ (𝑅1 dom 𝑒)((𝑖 ∧ ¬ 𝑖𝑔) ∧ ∀𝑗 ∈ (𝑅1 dom 𝑒)(𝑗(𝑒 dom 𝑒)𝑖 → (𝑗𝑔𝑗)))}))‘((𝑅1‘dom 𝑒) ∖ ran 𝑐))
40 rneq 5770 . . . . . 6 (𝑔 = 𝑐 → ran 𝑔 = ran 𝑐)
4140difeq2d 4050 . . . . 5 (𝑔 = 𝑐 → ((𝑅1‘dom 𝑒) ∖ ran 𝑔) = ((𝑅1‘dom 𝑒) ∖ ran 𝑐))
4241fveq2d 6649 . . . 4 (𝑔 = 𝑐 → ((𝑔 ∈ V ↦ sup((𝑦𝑔), (𝑅1‘dom 𝑒), {⟨𝑔, ⟩ ∣ ∃𝑖 ∈ (𝑅1 dom 𝑒)((𝑖 ∧ ¬ 𝑖𝑔) ∧ ∀𝑗 ∈ (𝑅1 dom 𝑒)(𝑗(𝑒 dom 𝑒)𝑖 → (𝑗𝑔𝑗)))}))‘((𝑅1‘dom 𝑒) ∖ ran 𝑔)) = ((𝑔 ∈ V ↦ sup((𝑦𝑔), (𝑅1‘dom 𝑒), {⟨𝑔, ⟩ ∣ ∃𝑖 ∈ (𝑅1 dom 𝑒)((𝑖 ∧ ¬ 𝑖𝑔) ∧ ∀𝑗 ∈ (𝑅1 dom 𝑒)(𝑗(𝑒 dom 𝑒)𝑖 → (𝑗𝑔𝑗)))}))‘((𝑅1‘dom 𝑒) ∖ ran 𝑐)))
4338, 39, 42cbvmpt 5131 . . 3 (𝑔 ∈ V ↦ ((𝑔 ∈ V ↦ sup((𝑦𝑔), (𝑅1‘dom 𝑒), {⟨𝑔, ⟩ ∣ ∃𝑖 ∈ (𝑅1 dom 𝑒)((𝑖 ∧ ¬ 𝑖𝑔) ∧ ∀𝑗 ∈ (𝑅1 dom 𝑒)(𝑗(𝑒 dom 𝑒)𝑖 → (𝑗𝑔𝑗)))}))‘((𝑅1‘dom 𝑒) ∖ ran 𝑔))) = (𝑐 ∈ V ↦ ((𝑔 ∈ V ↦ sup((𝑦𝑔), (𝑅1‘dom 𝑒), {⟨𝑔, ⟩ ∣ ∃𝑖 ∈ (𝑅1 dom 𝑒)((𝑖 ∧ ¬ 𝑖𝑔) ∧ ∀𝑗 ∈ (𝑅1 dom 𝑒)(𝑗(𝑒 dom 𝑒)𝑖 → (𝑗𝑔𝑗)))}))‘((𝑅1‘dom 𝑒) ∖ ran 𝑐)))
44 recseq 7993 . . 3 ((𝑔 ∈ V ↦ ((𝑔 ∈ V ↦ sup((𝑦𝑔), (𝑅1‘dom 𝑒), {⟨𝑔, ⟩ ∣ ∃𝑖 ∈ (𝑅1 dom 𝑒)((𝑖 ∧ ¬ 𝑖𝑔) ∧ ∀𝑗 ∈ (𝑅1 dom 𝑒)(𝑗(𝑒 dom 𝑒)𝑖 → (𝑗𝑔𝑗)))}))‘((𝑅1‘dom 𝑒) ∖ ran 𝑔))) = (𝑐 ∈ V ↦ ((𝑔 ∈ V ↦ sup((𝑦𝑔), (𝑅1‘dom 𝑒), {⟨𝑔, ⟩ ∣ ∃𝑖 ∈ (𝑅1 dom 𝑒)((𝑖 ∧ ¬ 𝑖𝑔) ∧ ∀𝑗 ∈ (𝑅1 dom 𝑒)(𝑗(𝑒 dom 𝑒)𝑖 → (𝑗𝑔𝑗)))}))‘((𝑅1‘dom 𝑒) ∖ ran 𝑐))) → recs((𝑔 ∈ V ↦ ((𝑔 ∈ V ↦ sup((𝑦𝑔), (𝑅1‘dom 𝑒), {⟨𝑔, ⟩ ∣ ∃𝑖 ∈ (𝑅1 dom 𝑒)((𝑖 ∧ ¬ 𝑖𝑔) ∧ ∀𝑗 ∈ (𝑅1 dom 𝑒)(𝑗(𝑒 dom 𝑒)𝑖 → (𝑗𝑔𝑗)))}))‘((𝑅1‘dom 𝑒) ∖ ran 𝑔)))) = recs((𝑐 ∈ V ↦ ((𝑔 ∈ V ↦ sup((𝑦𝑔), (𝑅1‘dom 𝑒), {⟨𝑔, ⟩ ∣ ∃𝑖 ∈ (𝑅1 dom 𝑒)((𝑖 ∧ ¬ 𝑖𝑔) ∧ ∀𝑗 ∈ (𝑅1 dom 𝑒)(𝑗(𝑒 dom 𝑒)𝑖 → (𝑗𝑔𝑗)))}))‘((𝑅1‘dom 𝑒) ∖ ran 𝑐)))))
4543, 44ax-mp 5 . 2 recs((𝑔 ∈ V ↦ ((𝑔 ∈ V ↦ sup((𝑦𝑔), (𝑅1‘dom 𝑒), {⟨𝑔, ⟩ ∣ ∃𝑖 ∈ (𝑅1 dom 𝑒)((𝑖 ∧ ¬ 𝑖𝑔) ∧ ∀𝑗 ∈ (𝑅1 dom 𝑒)(𝑗(𝑒 dom 𝑒)𝑖 → (𝑗𝑔𝑗)))}))‘((𝑅1‘dom 𝑒) ∖ ran 𝑔)))) = recs((𝑐 ∈ V ↦ ((𝑔 ∈ V ↦ sup((𝑦𝑔), (𝑅1‘dom 𝑒), {⟨𝑔, ⟩ ∣ ∃𝑖 ∈ (𝑅1 dom 𝑒)((𝑖 ∧ ¬ 𝑖𝑔) ∧ ∀𝑗 ∈ (𝑅1 dom 𝑒)(𝑗(𝑒 dom 𝑒)𝑖 → (𝑗𝑔𝑗)))}))‘((𝑅1‘dom 𝑒) ∖ ran 𝑐))))
46 nfv 1915 . . 3 𝑐 (recs((𝑔 ∈ V ↦ ((𝑔 ∈ V ↦ sup((𝑦𝑔), (𝑅1‘dom 𝑒), {⟨𝑔, ⟩ ∣ ∃𝑖 ∈ (𝑅1 dom 𝑒)((𝑖 ∧ ¬ 𝑖𝑔) ∧ ∀𝑗 ∈ (𝑅1 dom 𝑒)(𝑗(𝑒 dom 𝑒)𝑖 → (𝑗𝑔𝑗)))}))‘((𝑅1‘dom 𝑒) ∖ ran 𝑔)))) “ {𝑔}) ∈ (recs((𝑔 ∈ V ↦ ((𝑔 ∈ V ↦ sup((𝑦𝑔), (𝑅1‘dom 𝑒), {⟨𝑔, ⟩ ∣ ∃𝑖 ∈ (𝑅1 dom 𝑒)((𝑖 ∧ ¬ 𝑖𝑔) ∧ ∀𝑗 ∈ (𝑅1 dom 𝑒)(𝑗(𝑒 dom 𝑒)𝑖 → (𝑗𝑔𝑗)))}))‘((𝑅1‘dom 𝑒) ∖ ran 𝑔)))) “ {})
47 nfv 1915 . . 3 𝑏 (recs((𝑔 ∈ V ↦ ((𝑔 ∈ V ↦ sup((𝑦𝑔), (𝑅1‘dom 𝑒), {⟨𝑔, ⟩ ∣ ∃𝑖 ∈ (𝑅1 dom 𝑒)((𝑖 ∧ ¬ 𝑖𝑔) ∧ ∀𝑗 ∈ (𝑅1 dom 𝑒)(𝑗(𝑒 dom 𝑒)𝑖 → (𝑗𝑔𝑗)))}))‘((𝑅1‘dom 𝑒) ∖ ran 𝑔)))) “ {𝑔}) ∈ (recs((𝑔 ∈ V ↦ ((𝑔 ∈ V ↦ sup((𝑦𝑔), (𝑅1‘dom 𝑒), {⟨𝑔, ⟩ ∣ ∃𝑖 ∈ (𝑅1 dom 𝑒)((𝑖 ∧ ¬ 𝑖𝑔) ∧ ∀𝑗 ∈ (𝑅1 dom 𝑒)(𝑗(𝑒 dom 𝑒)𝑖 → (𝑗𝑔𝑗)))}))‘((𝑅1‘dom 𝑒) ∖ ran 𝑔)))) “ {})
48 nfmpt1 5128 . . . . . . . 8 𝑔(𝑔 ∈ V ↦ ((𝑔 ∈ V ↦ sup((𝑦𝑔), (𝑅1‘dom 𝑒), {⟨𝑔, ⟩ ∣ ∃𝑖 ∈ (𝑅1 dom 𝑒)((𝑖 ∧ ¬ 𝑖𝑔) ∧ ∀𝑗 ∈ (𝑅1 dom 𝑒)(𝑗(𝑒 dom 𝑒)𝑖 → (𝑗𝑔𝑗)))}))‘((𝑅1‘dom 𝑒) ∖ ran 𝑔)))
4948nfrecs 7994 . . . . . . 7 𝑔recs((𝑔 ∈ V ↦ ((𝑔 ∈ V ↦ sup((𝑦𝑔), (𝑅1‘dom 𝑒), {⟨𝑔, ⟩ ∣ ∃𝑖 ∈ (𝑅1 dom 𝑒)((𝑖 ∧ ¬ 𝑖𝑔) ∧ ∀𝑗 ∈ (𝑅1 dom 𝑒)(𝑗(𝑒 dom 𝑒)𝑖 → (𝑗𝑔𝑗)))}))‘((𝑅1‘dom 𝑒) ∖ ran 𝑔))))
5049nfcnv 5713 . . . . . 6 𝑔recs((𝑔 ∈ V ↦ ((𝑔 ∈ V ↦ sup((𝑦𝑔), (𝑅1‘dom 𝑒), {⟨𝑔, ⟩ ∣ ∃𝑖 ∈ (𝑅1 dom 𝑒)((𝑖 ∧ ¬ 𝑖𝑔) ∧ ∀𝑗 ∈ (𝑅1 dom 𝑒)(𝑗(𝑒 dom 𝑒)𝑖 → (𝑗𝑔𝑗)))}))‘((𝑅1‘dom 𝑒) ∖ ran 𝑔))))
51 nfcv 2955 . . . . . 6 𝑔{𝑐}
5250, 51nfima 5904 . . . . 5 𝑔(recs((𝑔 ∈ V ↦ ((𝑔 ∈ V ↦ sup((𝑦𝑔), (𝑅1‘dom 𝑒), {⟨𝑔, ⟩ ∣ ∃𝑖 ∈ (𝑅1 dom 𝑒)((𝑖 ∧ ¬ 𝑖𝑔) ∧ ∀𝑗 ∈ (𝑅1 dom 𝑒)(𝑗(𝑒 dom 𝑒)𝑖 → (𝑗𝑔𝑗)))}))‘((𝑅1‘dom 𝑒) ∖ ran 𝑔)))) “ {𝑐})
5352nfint 4848 . . . 4 𝑔 (recs((𝑔 ∈ V ↦ ((𝑔 ∈ V ↦ sup((𝑦𝑔), (𝑅1‘dom 𝑒), {⟨𝑔, ⟩ ∣ ∃𝑖 ∈ (𝑅1 dom 𝑒)((𝑖 ∧ ¬ 𝑖𝑔) ∧ ∀𝑗 ∈ (𝑅1 dom 𝑒)(𝑗(𝑒 dom 𝑒)𝑖 → (𝑗𝑔𝑗)))}))‘((𝑅1‘dom 𝑒) ∖ ran 𝑔)))) “ {𝑐})
54 nfcv 2955 . . . . . 6 𝑔{𝑏}
5550, 54nfima 5904 . . . . 5 𝑔(recs((𝑔 ∈ V ↦ ((𝑔 ∈ V ↦ sup((𝑦𝑔), (𝑅1‘dom 𝑒), {⟨𝑔, ⟩ ∣ ∃𝑖 ∈ (𝑅1 dom 𝑒)((𝑖 ∧ ¬ 𝑖𝑔) ∧ ∀𝑗 ∈ (𝑅1 dom 𝑒)(𝑗(𝑒 dom 𝑒)𝑖 → (𝑗𝑔𝑗)))}))‘((𝑅1‘dom 𝑒) ∖ ran 𝑔)))) “ {𝑏})
5655nfint 4848 . . . 4 𝑔 (recs((𝑔 ∈ V ↦ ((𝑔 ∈ V ↦ sup((𝑦𝑔), (𝑅1‘dom 𝑒), {⟨𝑔, ⟩ ∣ ∃𝑖 ∈ (𝑅1 dom 𝑒)((𝑖 ∧ ¬ 𝑖𝑔) ∧ ∀𝑗 ∈ (𝑅1 dom 𝑒)(𝑗(𝑒 dom 𝑒)𝑖 → (𝑗𝑔𝑗)))}))‘((𝑅1‘dom 𝑒) ∖ ran 𝑔)))) “ {𝑏})
5753, 56nfel 2969 . . 3 𝑔 (recs((𝑔 ∈ V ↦ ((𝑔 ∈ V ↦ sup((𝑦𝑔), (𝑅1‘dom 𝑒), {⟨𝑔, ⟩ ∣ ∃𝑖 ∈ (𝑅1 dom 𝑒)((𝑖 ∧ ¬ 𝑖𝑔) ∧ ∀𝑗 ∈ (𝑅1 dom 𝑒)(𝑗(𝑒 dom 𝑒)𝑖 → (𝑗𝑔𝑗)))}))‘((𝑅1‘dom 𝑒) ∖ ran 𝑔)))) “ {𝑐}) ∈ (recs((𝑔 ∈ V ↦ ((𝑔 ∈ V ↦ sup((𝑦𝑔), (𝑅1‘dom 𝑒), {⟨𝑔, ⟩ ∣ ∃𝑖 ∈ (𝑅1 dom 𝑒)((𝑖 ∧ ¬ 𝑖𝑔) ∧ ∀𝑗 ∈ (𝑅1 dom 𝑒)(𝑗(𝑒 dom 𝑒)𝑖 → (𝑗𝑔𝑗)))}))‘((𝑅1‘dom 𝑒) ∖ ran 𝑔)))) “ {𝑏})
58 nfcv 2955 . . . . . . . . 9 V
59 nfcv 2955 . . . . . . . . . . . 12 (𝑦𝑔)
60 nfcv 2955 . . . . . . . . . . . 12 (𝑅1‘dom 𝑒)
61 nfopab2 5100 . . . . . . . . . . . 12 {⟨𝑔, ⟩ ∣ ∃𝑖 ∈ (𝑅1 dom 𝑒)((𝑖 ∧ ¬ 𝑖𝑔) ∧ ∀𝑗 ∈ (𝑅1 dom 𝑒)(𝑗(𝑒 dom 𝑒)𝑖 → (𝑗𝑔𝑗)))}
6259, 60, 61nfsup 8899 . . . . . . . . . . 11 sup((𝑦𝑔), (𝑅1‘dom 𝑒), {⟨𝑔, ⟩ ∣ ∃𝑖 ∈ (𝑅1 dom 𝑒)((𝑖 ∧ ¬ 𝑖𝑔) ∧ ∀𝑗 ∈ (𝑅1 dom 𝑒)(𝑗(𝑒 dom 𝑒)𝑖 → (𝑗𝑔𝑗)))})
6358, 62nfmpt 5127 . . . . . . . . . 10 (𝑔 ∈ V ↦ sup((𝑦𝑔), (𝑅1‘dom 𝑒), {⟨𝑔, ⟩ ∣ ∃𝑖 ∈ (𝑅1 dom 𝑒)((𝑖 ∧ ¬ 𝑖𝑔) ∧ ∀𝑗 ∈ (𝑅1 dom 𝑒)(𝑗(𝑒 dom 𝑒)𝑖 → (𝑗𝑔𝑗)))}))
64 nfcv 2955 . . . . . . . . . 10 ((𝑅1‘dom 𝑒) ∖ ran 𝑔)
6563, 64nffv 6655 . . . . . . . . 9 ((𝑔 ∈ V ↦ sup((𝑦𝑔), (𝑅1‘dom 𝑒), {⟨𝑔, ⟩ ∣ ∃𝑖 ∈ (𝑅1 dom 𝑒)((𝑖 ∧ ¬ 𝑖𝑔) ∧ ∀𝑗 ∈ (𝑅1 dom 𝑒)(𝑗(𝑒 dom 𝑒)𝑖 → (𝑗𝑔𝑗)))}))‘((𝑅1‘dom 𝑒) ∖ ran 𝑔))
6658, 65nfmpt 5127 . . . . . . . 8 (𝑔 ∈ V ↦ ((𝑔 ∈ V ↦ sup((𝑦𝑔), (𝑅1‘dom 𝑒), {⟨𝑔, ⟩ ∣ ∃𝑖 ∈ (𝑅1 dom 𝑒)((𝑖 ∧ ¬ 𝑖𝑔) ∧ ∀𝑗 ∈ (𝑅1 dom 𝑒)(𝑗(𝑒 dom 𝑒)𝑖 → (𝑗𝑔𝑗)))}))‘((𝑅1‘dom 𝑒) ∖ ran 𝑔)))
6766nfrecs 7994 . . . . . . 7 recs((𝑔 ∈ V ↦ ((𝑔 ∈ V ↦ sup((𝑦𝑔), (𝑅1‘dom 𝑒), {⟨𝑔, ⟩ ∣ ∃𝑖 ∈ (𝑅1 dom 𝑒)((𝑖 ∧ ¬ 𝑖𝑔) ∧ ∀𝑗 ∈ (𝑅1 dom 𝑒)(𝑗(𝑒 dom 𝑒)𝑖 → (𝑗𝑔𝑗)))}))‘((𝑅1‘dom 𝑒) ∖ ran 𝑔))))
6867nfcnv 5713 . . . . . 6 recs((𝑔 ∈ V ↦ ((𝑔 ∈ V ↦ sup((𝑦𝑔), (𝑅1‘dom 𝑒), {⟨𝑔, ⟩ ∣ ∃𝑖 ∈ (𝑅1 dom 𝑒)((𝑖 ∧ ¬ 𝑖𝑔) ∧ ∀𝑗 ∈ (𝑅1 dom 𝑒)(𝑗(𝑒 dom 𝑒)𝑖 → (𝑗𝑔𝑗)))}))‘((𝑅1‘dom 𝑒) ∖ ran 𝑔))))
69 nfcv 2955 . . . . . 6 {𝑐}
7068, 69nfima 5904 . . . . 5 (recs((𝑔 ∈ V ↦ ((𝑔 ∈ V ↦ sup((𝑦𝑔), (𝑅1‘dom 𝑒), {⟨𝑔, ⟩ ∣ ∃𝑖 ∈ (𝑅1 dom 𝑒)((𝑖 ∧ ¬ 𝑖𝑔) ∧ ∀𝑗 ∈ (𝑅1 dom 𝑒)(𝑗(𝑒 dom 𝑒)𝑖 → (𝑗𝑔𝑗)))}))‘((𝑅1‘dom 𝑒) ∖ ran 𝑔)))) “ {𝑐})
7170nfint 4848 . . . 4 (recs((𝑔 ∈ V ↦ ((𝑔 ∈ V ↦ sup((𝑦𝑔), (𝑅1‘dom 𝑒), {⟨𝑔, ⟩ ∣ ∃𝑖 ∈ (𝑅1 dom 𝑒)((𝑖 ∧ ¬ 𝑖𝑔) ∧ ∀𝑗 ∈ (𝑅1 dom 𝑒)(𝑗(𝑒 dom 𝑒)𝑖 → (𝑗𝑔𝑗)))}))‘((𝑅1‘dom 𝑒) ∖ ran 𝑔)))) “ {𝑐})
72 nfcv 2955 . . . . . 6 {𝑏}
7368, 72nfima 5904 . . . . 5 (recs((𝑔 ∈ V ↦ ((𝑔 ∈ V ↦ sup((𝑦𝑔), (𝑅1‘dom 𝑒), {⟨𝑔, ⟩ ∣ ∃𝑖 ∈ (𝑅1 dom 𝑒)((𝑖 ∧ ¬ 𝑖𝑔) ∧ ∀𝑗 ∈ (𝑅1 dom 𝑒)(𝑗(𝑒 dom 𝑒)𝑖 → (𝑗𝑔𝑗)))}))‘((𝑅1‘dom 𝑒) ∖ ran 𝑔)))) “ {𝑏})
7473nfint 4848 . . . 4 (recs((𝑔 ∈ V ↦ ((𝑔 ∈ V ↦ sup((𝑦𝑔), (𝑅1‘dom 𝑒), {⟨𝑔, ⟩ ∣ ∃𝑖 ∈ (𝑅1 dom 𝑒)((𝑖 ∧ ¬ 𝑖𝑔) ∧ ∀𝑗 ∈ (𝑅1 dom 𝑒)(𝑗(𝑒 dom 𝑒)𝑖 → (𝑗𝑔𝑗)))}))‘((𝑅1‘dom 𝑒) ∖ ran 𝑔)))) “ {𝑏})
7571, 74nfel 2969 . . 3 (recs((𝑔 ∈ V ↦ ((𝑔 ∈ V ↦ sup((𝑦𝑔), (𝑅1‘dom 𝑒), {⟨𝑔, ⟩ ∣ ∃𝑖 ∈ (𝑅1 dom 𝑒)((𝑖 ∧ ¬ 𝑖𝑔) ∧ ∀𝑗 ∈ (𝑅1 dom 𝑒)(𝑗(𝑒 dom 𝑒)𝑖 → (𝑗𝑔𝑗)))}))‘((𝑅1‘dom 𝑒) ∖ ran 𝑔)))) “ {𝑐}) ∈ (recs((𝑔 ∈ V ↦ ((𝑔 ∈ V ↦ sup((𝑦𝑔), (𝑅1‘dom 𝑒), {⟨𝑔, ⟩ ∣ ∃𝑖 ∈ (𝑅1 dom 𝑒)((𝑖 ∧ ¬ 𝑖𝑔) ∧ ∀𝑗 ∈ (𝑅1 dom 𝑒)(𝑗(𝑒 dom 𝑒)𝑖 → (𝑗𝑔𝑗)))}))‘((𝑅1‘dom 𝑒) ∖ ran 𝑔)))) “ {𝑏})
76 sneq 4535 . . . . . 6 (𝑔 = 𝑐 → {𝑔} = {𝑐})
7776imaeq2d 5896 . . . . 5 (𝑔 = 𝑐 → (recs((𝑔 ∈ V ↦ ((𝑔 ∈ V ↦ sup((𝑦𝑔), (𝑅1‘dom 𝑒), {⟨𝑔, ⟩ ∣ ∃𝑖 ∈ (𝑅1 dom 𝑒)((𝑖 ∧ ¬ 𝑖𝑔) ∧ ∀𝑗 ∈ (𝑅1 dom 𝑒)(𝑗(𝑒 dom 𝑒)𝑖 → (𝑗𝑔𝑗)))}))‘((𝑅1‘dom 𝑒) ∖ ran 𝑔)))) “ {𝑔}) = (recs((𝑔 ∈ V ↦ ((𝑔 ∈ V ↦ sup((𝑦𝑔), (𝑅1‘dom 𝑒), {⟨𝑔, ⟩ ∣ ∃𝑖 ∈ (𝑅1 dom 𝑒)((𝑖 ∧ ¬ 𝑖𝑔) ∧ ∀𝑗 ∈ (𝑅1 dom 𝑒)(𝑗(𝑒 dom 𝑒)𝑖 → (𝑗𝑔𝑗)))}))‘((𝑅1‘dom 𝑒) ∖ ran 𝑔)))) “ {𝑐}))
7877inteqd 4843 . . . 4 (𝑔 = 𝑐 (recs((𝑔 ∈ V ↦ ((𝑔 ∈ V ↦ sup((𝑦𝑔), (𝑅1‘dom 𝑒), {⟨𝑔, ⟩ ∣ ∃𝑖 ∈ (𝑅1 dom 𝑒)((𝑖 ∧ ¬ 𝑖𝑔) ∧ ∀𝑗 ∈ (𝑅1 dom 𝑒)(𝑗(𝑒 dom 𝑒)𝑖 → (𝑗𝑔𝑗)))}))‘((𝑅1‘dom 𝑒) ∖ ran 𝑔)))) “ {𝑔}) = (recs((𝑔 ∈ V ↦ ((𝑔 ∈ V ↦ sup((𝑦𝑔), (𝑅1‘dom 𝑒), {⟨𝑔, ⟩ ∣ ∃𝑖 ∈ (𝑅1 dom 𝑒)((𝑖 ∧ ¬ 𝑖𝑔) ∧ ∀𝑗 ∈ (𝑅1 dom 𝑒)(𝑗(𝑒 dom 𝑒)𝑖 → (𝑗𝑔𝑗)))}))‘((𝑅1‘dom 𝑒) ∖ ran 𝑔)))) “ {𝑐}))
79 sneq 4535 . . . . . 6 ( = 𝑏 → {} = {𝑏})
8079imaeq2d 5896 . . . . 5 ( = 𝑏 → (recs((𝑔 ∈ V ↦ ((𝑔 ∈ V ↦ sup((𝑦𝑔), (𝑅1‘dom 𝑒), {⟨𝑔, ⟩ ∣ ∃𝑖 ∈ (𝑅1 dom 𝑒)((𝑖 ∧ ¬ 𝑖𝑔) ∧ ∀𝑗 ∈ (𝑅1 dom 𝑒)(𝑗(𝑒 dom 𝑒)𝑖 → (𝑗𝑔𝑗)))}))‘((𝑅1‘dom 𝑒) ∖ ran 𝑔)))) “ {}) = (recs((𝑔 ∈ V ↦ ((𝑔 ∈ V ↦ sup((𝑦𝑔), (𝑅1‘dom 𝑒), {⟨𝑔, ⟩ ∣ ∃𝑖 ∈ (𝑅1 dom 𝑒)((𝑖 ∧ ¬ 𝑖𝑔) ∧ ∀𝑗 ∈ (𝑅1 dom 𝑒)(𝑗(𝑒 dom 𝑒)𝑖 → (𝑗𝑔𝑗)))}))‘((𝑅1‘dom 𝑒) ∖ ran 𝑔)))) “ {𝑏}))
8180inteqd 4843 . . . 4 ( = 𝑏 (recs((𝑔 ∈ V ↦ ((𝑔 ∈ V ↦ sup((𝑦𝑔), (𝑅1‘dom 𝑒), {⟨𝑔, ⟩ ∣ ∃𝑖 ∈ (𝑅1 dom 𝑒)((𝑖 ∧ ¬ 𝑖𝑔) ∧ ∀𝑗 ∈ (𝑅1 dom 𝑒)(𝑗(𝑒 dom 𝑒)𝑖 → (𝑗𝑔𝑗)))}))‘((𝑅1‘dom 𝑒) ∖ ran 𝑔)))) “ {}) = (recs((𝑔 ∈ V ↦ ((𝑔 ∈ V ↦ sup((𝑦𝑔), (𝑅1‘dom 𝑒), {⟨𝑔, ⟩ ∣ ∃𝑖 ∈ (𝑅1 dom 𝑒)((𝑖 ∧ ¬ 𝑖𝑔) ∧ ∀𝑗 ∈ (𝑅1 dom 𝑒)(𝑗(𝑒 dom 𝑒)𝑖 → (𝑗𝑔𝑗)))}))‘((𝑅1‘dom 𝑒) ∖ ran 𝑔)))) “ {𝑏}))
82 eleq12 2879 . . . 4 (( (recs((𝑔 ∈ V ↦ ((𝑔 ∈ V ↦ sup((𝑦𝑔), (𝑅1‘dom 𝑒), {⟨𝑔, ⟩ ∣ ∃𝑖 ∈ (𝑅1 dom 𝑒)((𝑖 ∧ ¬ 𝑖𝑔) ∧ ∀𝑗 ∈ (𝑅1 dom 𝑒)(𝑗(𝑒 dom 𝑒)𝑖 → (𝑗𝑔𝑗)))}))‘((𝑅1‘dom 𝑒) ∖ ran 𝑔)))) “ {𝑔}) = (recs((𝑔 ∈ V ↦ ((𝑔 ∈ V ↦ sup((𝑦𝑔), (𝑅1‘dom 𝑒), {⟨𝑔, ⟩ ∣ ∃𝑖 ∈ (𝑅1 dom 𝑒)((𝑖 ∧ ¬ 𝑖𝑔) ∧ ∀𝑗 ∈ (𝑅1 dom 𝑒)(𝑗(𝑒 dom 𝑒)𝑖 → (𝑗𝑔𝑗)))}))‘((𝑅1‘dom 𝑒) ∖ ran 𝑔)))) “ {𝑐}) ∧ (recs((𝑔 ∈ V ↦ ((𝑔 ∈ V ↦ sup((𝑦𝑔), (𝑅1‘dom 𝑒), {⟨𝑔, ⟩ ∣ ∃𝑖 ∈ (𝑅1 dom 𝑒)((𝑖 ∧ ¬ 𝑖𝑔) ∧ ∀𝑗 ∈ (𝑅1 dom 𝑒)(𝑗(𝑒 dom 𝑒)𝑖 → (𝑗𝑔𝑗)))}))‘((𝑅1‘dom 𝑒) ∖ ran 𝑔)))) “ {}) = (recs((𝑔 ∈ V ↦ ((𝑔 ∈ V ↦ sup((𝑦𝑔), (𝑅1‘dom 𝑒), {⟨𝑔, ⟩ ∣ ∃𝑖 ∈ (𝑅1 dom 𝑒)((𝑖 ∧ ¬ 𝑖𝑔) ∧ ∀𝑗 ∈ (𝑅1 dom 𝑒)(𝑗(𝑒 dom 𝑒)𝑖 → (𝑗𝑔𝑗)))}))‘((𝑅1‘dom 𝑒) ∖ ran 𝑔)))) “ {𝑏})) → ( (recs((𝑔 ∈ V ↦ ((𝑔 ∈ V ↦ sup((𝑦𝑔), (𝑅1‘dom 𝑒), {⟨𝑔, ⟩ ∣ ∃𝑖 ∈ (𝑅1 dom 𝑒)((𝑖 ∧ ¬ 𝑖𝑔) ∧ ∀𝑗 ∈ (𝑅1 dom 𝑒)(𝑗(𝑒 dom 𝑒)𝑖 → (𝑗𝑔𝑗)))}))‘((𝑅1‘dom 𝑒) ∖ ran 𝑔)))) “ {𝑔}) ∈ (recs((𝑔 ∈ V ↦ ((𝑔 ∈ V ↦ sup((𝑦𝑔), (𝑅1‘dom 𝑒), {⟨𝑔, ⟩ ∣ ∃𝑖 ∈ (𝑅1 dom 𝑒)((𝑖 ∧ ¬ 𝑖𝑔) ∧ ∀𝑗 ∈ (𝑅1 dom 𝑒)(𝑗(𝑒 dom 𝑒)𝑖 → (𝑗𝑔𝑗)))}))‘((𝑅1‘dom 𝑒) ∖ ran 𝑔)))) “ {}) ↔ (recs((𝑔 ∈ V ↦ ((𝑔 ∈ V ↦ sup((𝑦𝑔), (𝑅1‘dom 𝑒), {⟨𝑔, ⟩ ∣ ∃𝑖 ∈ (𝑅1 dom 𝑒)((𝑖 ∧ ¬ 𝑖𝑔) ∧ ∀𝑗 ∈ (𝑅1 dom 𝑒)(𝑗(𝑒 dom 𝑒)𝑖 → (𝑗𝑔𝑗)))}))‘((𝑅1‘dom 𝑒) ∖ ran 𝑔)))) “ {𝑐}) ∈ (recs((𝑔 ∈ V ↦ ((𝑔 ∈ V ↦ sup((𝑦𝑔), (𝑅1‘dom 𝑒), {⟨𝑔, ⟩ ∣ ∃𝑖 ∈ (𝑅1 dom 𝑒)((𝑖 ∧ ¬ 𝑖𝑔) ∧ ∀𝑗 ∈ (𝑅1 dom 𝑒)(𝑗(𝑒 dom 𝑒)𝑖 → (𝑗𝑔𝑗)))}))‘((𝑅1‘dom 𝑒) ∖ ran 𝑔)))) “ {𝑏})))
8378, 81, 82syl2an 598 . . 3 ((𝑔 = 𝑐 = 𝑏) → ( (recs((𝑔 ∈ V ↦ ((𝑔 ∈ V ↦ sup((𝑦𝑔), (𝑅1‘dom 𝑒), {⟨𝑔, ⟩ ∣ ∃𝑖 ∈ (𝑅1 dom 𝑒)((𝑖 ∧ ¬ 𝑖𝑔) ∧ ∀𝑗 ∈ (𝑅1 dom 𝑒)(𝑗(𝑒 dom 𝑒)𝑖 → (𝑗𝑔𝑗)))}))‘((𝑅1‘dom 𝑒) ∖ ran 𝑔)))) “ {𝑔}) ∈ (recs((𝑔 ∈ V ↦ ((𝑔 ∈ V ↦ sup((𝑦𝑔), (𝑅1‘dom 𝑒), {⟨𝑔, ⟩ ∣ ∃𝑖 ∈ (𝑅1 dom 𝑒)((𝑖 ∧ ¬ 𝑖𝑔) ∧ ∀𝑗 ∈ (𝑅1 dom 𝑒)(𝑗(𝑒 dom 𝑒)𝑖 → (𝑗𝑔𝑗)))}))‘((𝑅1‘dom 𝑒) ∖ ran 𝑔)))) “ {}) ↔ (recs((𝑔 ∈ V ↦ ((𝑔 ∈ V ↦ sup((𝑦𝑔), (𝑅1‘dom 𝑒), {⟨𝑔, ⟩ ∣ ∃𝑖 ∈ (𝑅1 dom 𝑒)((𝑖 ∧ ¬ 𝑖𝑔) ∧ ∀𝑗 ∈ (𝑅1 dom 𝑒)(𝑗(𝑒 dom 𝑒)𝑖 → (𝑗𝑔𝑗)))}))‘((𝑅1‘dom 𝑒) ∖ ran 𝑔)))) “ {𝑐}) ∈ (recs((𝑔 ∈ V ↦ ((𝑔 ∈ V ↦ sup((𝑦𝑔), (𝑅1‘dom 𝑒), {⟨𝑔, ⟩ ∣ ∃𝑖 ∈ (𝑅1 dom 𝑒)((𝑖 ∧ ¬ 𝑖𝑔) ∧ ∀𝑗 ∈ (𝑅1 dom 𝑒)(𝑗(𝑒 dom 𝑒)𝑖 → (𝑗𝑔𝑗)))}))‘((𝑅1‘dom 𝑒) ∖ ran 𝑔)))) “ {𝑏})))
8446, 47, 57, 75, 83cbvopab 5101 . 2 {⟨𝑔, ⟩ ∣ (recs((𝑔 ∈ V ↦ ((𝑔 ∈ V ↦ sup((𝑦𝑔), (𝑅1‘dom 𝑒), {⟨𝑔, ⟩ ∣ ∃𝑖 ∈ (𝑅1 dom 𝑒)((𝑖 ∧ ¬ 𝑖𝑔) ∧ ∀𝑗 ∈ (𝑅1 dom 𝑒)(𝑗(𝑒 dom 𝑒)𝑖 → (𝑗𝑔𝑗)))}))‘((𝑅1‘dom 𝑒) ∖ ran 𝑔)))) “ {𝑔}) ∈ (recs((𝑔 ∈ V ↦ ((𝑔 ∈ V ↦ sup((𝑦𝑔), (𝑅1‘dom 𝑒), {⟨𝑔, ⟩ ∣ ∃𝑖 ∈ (𝑅1 dom 𝑒)((𝑖 ∧ ¬ 𝑖𝑔) ∧ ∀𝑗 ∈ (𝑅1 dom 𝑒)(𝑗(𝑒 dom 𝑒)𝑖 → (𝑗𝑔𝑗)))}))‘((𝑅1‘dom 𝑒) ∖ ran 𝑔)))) “ {})} = {⟨𝑐, 𝑏⟩ ∣ (recs((𝑔 ∈ V ↦ ((𝑔 ∈ V ↦ sup((𝑦𝑔), (𝑅1‘dom 𝑒), {⟨𝑔, ⟩ ∣ ∃𝑖 ∈ (𝑅1 dom 𝑒)((𝑖 ∧ ¬ 𝑖𝑔) ∧ ∀𝑗 ∈ (𝑅1 dom 𝑒)(𝑗(𝑒 dom 𝑒)𝑖 → (𝑗𝑔𝑗)))}))‘((𝑅1‘dom 𝑒) ∖ ran 𝑔)))) “ {𝑐}) ∈ (recs((𝑔 ∈ V ↦ ((𝑔 ∈ V ↦ sup((𝑦𝑔), (𝑅1‘dom 𝑒), {⟨𝑔, ⟩ ∣ ∃𝑖 ∈ (𝑅1 dom 𝑒)((𝑖 ∧ ¬ 𝑖𝑔) ∧ ∀𝑗 ∈ (𝑅1 dom 𝑒)(𝑗(𝑒 dom 𝑒)𝑖 → (𝑗𝑔𝑗)))}))‘((𝑅1‘dom 𝑒) ∖ ran 𝑔)))) “ {𝑏})}
85 fveq2 6645 . . . . 5 (𝑔 = 𝑐 → (rank‘𝑔) = (rank‘𝑐))
86 fveq2 6645 . . . . 5 ( = 𝑏 → (rank‘) = (rank‘𝑏))
8785, 86breqan12d 5046 . . . 4 ((𝑔 = 𝑐 = 𝑏) → ((rank‘𝑔) E (rank‘) ↔ (rank‘𝑐) E (rank‘𝑏)))
8885, 86eqeqan12d 2815 . . . . 5 ((𝑔 = 𝑐 = 𝑏) → ((rank‘𝑔) = (rank‘) ↔ (rank‘𝑐) = (rank‘𝑏)))
89 simpl 486 . . . . . 6 ((𝑔 = 𝑐 = 𝑏) → 𝑔 = 𝑐)
90 suceq 6224 . . . . . . . . 9 ((rank‘𝑔) = (rank‘𝑐) → suc (rank‘𝑔) = suc (rank‘𝑐))
9185, 90syl 17 . . . . . . . 8 (𝑔 = 𝑐 → suc (rank‘𝑔) = suc (rank‘𝑐))
9291adantr 484 . . . . . . 7 ((𝑔 = 𝑐 = 𝑏) → suc (rank‘𝑔) = suc (rank‘𝑐))
9392fveq2d 6649 . . . . . 6 ((𝑔 = 𝑐 = 𝑏) → (𝑒‘suc (rank‘𝑔)) = (𝑒‘suc (rank‘𝑐)))
94 simpr 488 . . . . . 6 ((𝑔 = 𝑐 = 𝑏) → = 𝑏)
9589, 93, 94breq123d 5044 . . . . 5 ((𝑔 = 𝑐 = 𝑏) → (𝑔(𝑒‘suc (rank‘𝑔))𝑐(𝑒‘suc (rank‘𝑐))𝑏))
9688, 95anbi12d 633 . . . 4 ((𝑔 = 𝑐 = 𝑏) → (((rank‘𝑔) = (rank‘) ∧ 𝑔(𝑒‘suc (rank‘𝑔))) ↔ ((rank‘𝑐) = (rank‘𝑏) ∧ 𝑐(𝑒‘suc (rank‘𝑐))𝑏)))
9787, 96orbi12d 916 . . 3 ((𝑔 = 𝑐 = 𝑏) → (((rank‘𝑔) E (rank‘) ∨ ((rank‘𝑔) = (rank‘) ∧ 𝑔(𝑒‘suc (rank‘𝑔)))) ↔ ((rank‘𝑐) E (rank‘𝑏) ∨ ((rank‘𝑐) = (rank‘𝑏) ∧ 𝑐(𝑒‘suc (rank‘𝑐))𝑏))))
9897cbvopabv 5102 . 2 {⟨𝑔, ⟩ ∣ ((rank‘𝑔) E (rank‘) ∨ ((rank‘𝑔) = (rank‘) ∧ 𝑔(𝑒‘suc (rank‘𝑔))))} = {⟨𝑐, 𝑏⟩ ∣ ((rank‘𝑐) E (rank‘𝑏) ∨ ((rank‘𝑐) = (rank‘𝑏) ∧ 𝑐(𝑒‘suc (rank‘𝑐))𝑏))}
99 eqid 2798 . 2 (if(dom 𝑒 = dom 𝑒, {⟨𝑔, ⟩ ∣ ((rank‘𝑔) E (rank‘) ∨ ((rank‘𝑔) = (rank‘) ∧ 𝑔(𝑒‘suc (rank‘𝑔))))}, {⟨𝑔, ⟩ ∣ (recs((𝑔 ∈ V ↦ ((𝑔 ∈ V ↦ sup((𝑦𝑔), (𝑅1‘dom 𝑒), {⟨𝑔, ⟩ ∣ ∃𝑖 ∈ (𝑅1 dom 𝑒)((𝑖 ∧ ¬ 𝑖𝑔) ∧ ∀𝑗 ∈ (𝑅1 dom 𝑒)(𝑗(𝑒 dom 𝑒)𝑖 → (𝑗𝑔𝑗)))}))‘((𝑅1‘dom 𝑒) ∖ ran 𝑔)))) “ {𝑔}) ∈ (recs((𝑔 ∈ V ↦ ((𝑔 ∈ V ↦ sup((𝑦𝑔), (𝑅1‘dom 𝑒), {⟨𝑔, ⟩ ∣ ∃𝑖 ∈ (𝑅1 dom 𝑒)((𝑖 ∧ ¬ 𝑖𝑔) ∧ ∀𝑗 ∈ (𝑅1 dom 𝑒)(𝑗(𝑒 dom 𝑒)𝑖 → (𝑗𝑔𝑗)))}))‘((𝑅1‘dom 𝑒) ∖ ran 𝑔)))) “ {})}) ∩ ((𝑅1‘dom 𝑒) × (𝑅1‘dom 𝑒))) = (if(dom 𝑒 = dom 𝑒, {⟨𝑔, ⟩ ∣ ((rank‘𝑔) E (rank‘) ∨ ((rank‘𝑔) = (rank‘) ∧ 𝑔(𝑒‘suc (rank‘𝑔))))}, {⟨𝑔, ⟩ ∣ (recs((𝑔 ∈ V ↦ ((𝑔 ∈ V ↦ sup((𝑦𝑔), (𝑅1‘dom 𝑒), {⟨𝑔, ⟩ ∣ ∃𝑖 ∈ (𝑅1 dom 𝑒)((𝑖 ∧ ¬ 𝑖𝑔) ∧ ∀𝑗 ∈ (𝑅1 dom 𝑒)(𝑗(𝑒 dom 𝑒)𝑖 → (𝑗𝑔𝑗)))}))‘((𝑅1‘dom 𝑒) ∖ ran 𝑔)))) “ {𝑔}) ∈ (recs((𝑔 ∈ V ↦ ((𝑔 ∈ V ↦ sup((𝑦𝑔), (𝑅1‘dom 𝑒), {⟨𝑔, ⟩ ∣ ∃𝑖 ∈ (𝑅1 dom 𝑒)((𝑖 ∧ ¬ 𝑖𝑔) ∧ ∀𝑗 ∈ (𝑅1 dom 𝑒)(𝑗(𝑒 dom 𝑒)𝑖 → (𝑗𝑔𝑗)))}))‘((𝑅1‘dom 𝑒) ∖ ran 𝑔)))) “ {})}) ∩ ((𝑅1‘dom 𝑒) × (𝑅1‘dom 𝑒)))
100 dmeq 5736 . . . . . . 7 (𝑙 = 𝑒 → dom 𝑙 = dom 𝑒)
101100unieqd 4814 . . . . . . 7 (𝑙 = 𝑒 dom 𝑙 = dom 𝑒)
102100, 101eqeq12d 2814 . . . . . 6 (𝑙 = 𝑒 → (dom 𝑙 = dom 𝑙 ↔ dom 𝑒 = dom 𝑒))
103 fveq1 6644 . . . . . . . . . 10 (𝑙 = 𝑒 → (𝑙‘suc (rank‘𝑔)) = (𝑒‘suc (rank‘𝑔)))
104103breqd 5041 . . . . . . . . 9 (𝑙 = 𝑒 → (𝑔(𝑙‘suc (rank‘𝑔))𝑔(𝑒‘suc (rank‘𝑔))))
105104anbi2d 631 . . . . . . . 8 (𝑙 = 𝑒 → (((rank‘𝑔) = (rank‘) ∧ 𝑔(𝑙‘suc (rank‘𝑔))) ↔ ((rank‘𝑔) = (rank‘) ∧ 𝑔(𝑒‘suc (rank‘𝑔)))))
106105orbi2d 913 . . . . . . 7 (𝑙 = 𝑒 → (((rank‘𝑔) E (rank‘) ∨ ((rank‘𝑔) = (rank‘) ∧ 𝑔(𝑙‘suc (rank‘𝑔)))) ↔ ((rank‘𝑔) E (rank‘) ∨ ((rank‘𝑔) = (rank‘) ∧ 𝑔(𝑒‘suc (rank‘𝑔))))))
107106opabbidv 5096 . . . . . 6 (𝑙 = 𝑒 → {⟨𝑔, ⟩ ∣ ((rank‘𝑔) E (rank‘) ∨ ((rank‘𝑔) = (rank‘) ∧ 𝑔(𝑙‘suc (rank‘𝑔))))} = {⟨𝑔, ⟩ ∣ ((rank‘𝑔) E (rank‘) ∨ ((rank‘𝑔) = (rank‘) ∧ 𝑔(𝑒‘suc (rank‘𝑔))))})
108 eqidd 2799 . . . . . . . . . . . . . . . 16 (𝑙 = 𝑒 → (𝑦𝑔) = (𝑦𝑔))
109100fveq2d 6649 . . . . . . . . . . . . . . . 16 (𝑙 = 𝑒 → (𝑅1‘dom 𝑙) = (𝑅1‘dom 𝑒))
110101fveq2d 6649 . . . . . . . . . . . . . . . . . 18 (𝑙 = 𝑒 → (𝑅1 dom 𝑙) = (𝑅1 dom 𝑒))
111 id 22 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑙 = 𝑒𝑙 = 𝑒)
112111, 101fveq12d 6652 . . . . . . . . . . . . . . . . . . . . . 22 (𝑙 = 𝑒 → (𝑙 dom 𝑙) = (𝑒 dom 𝑒))
113112breqd 5041 . . . . . . . . . . . . . . . . . . . . 21 (𝑙 = 𝑒 → (𝑗(𝑙 dom 𝑙)𝑖𝑗(𝑒 dom 𝑒)𝑖))
114113imbi1d 345 . . . . . . . . . . . . . . . . . . . 20 (𝑙 = 𝑒 → ((𝑗(𝑙 dom 𝑙)𝑖 → (𝑗𝑔𝑗)) ↔ (𝑗(𝑒 dom 𝑒)𝑖 → (𝑗𝑔𝑗))))
115110, 114raleqbidv 3354 . . . . . . . . . . . . . . . . . . 19 (𝑙 = 𝑒 → (∀𝑗 ∈ (𝑅1 dom 𝑙)(𝑗(𝑙 dom 𝑙)𝑖 → (𝑗𝑔𝑗)) ↔ ∀𝑗 ∈ (𝑅1 dom 𝑒)(𝑗(𝑒 dom 𝑒)𝑖 → (𝑗𝑔𝑗))))
116115anbi2d 631 . . . . . . . . . . . . . . . . . 18 (𝑙 = 𝑒 → (((𝑖 ∧ ¬ 𝑖𝑔) ∧ ∀𝑗 ∈ (𝑅1 dom 𝑙)(𝑗(𝑙 dom 𝑙)𝑖 → (𝑗𝑔𝑗))) ↔ ((𝑖 ∧ ¬ 𝑖𝑔) ∧ ∀𝑗 ∈ (𝑅1 dom 𝑒)(𝑗(𝑒 dom 𝑒)𝑖 → (𝑗𝑔𝑗)))))
117110, 116rexeqbidv 3355 . . . . . . . . . . . . . . . . 17 (𝑙 = 𝑒 → (∃𝑖 ∈ (𝑅1 dom 𝑙)((𝑖 ∧ ¬ 𝑖𝑔) ∧ ∀𝑗 ∈ (𝑅1 dom 𝑙)(𝑗(𝑙 dom 𝑙)𝑖 → (𝑗𝑔𝑗))) ↔ ∃𝑖 ∈ (𝑅1 dom 𝑒)((𝑖 ∧ ¬ 𝑖𝑔) ∧ ∀𝑗 ∈ (𝑅1 dom 𝑒)(𝑗(𝑒 dom 𝑒)𝑖 → (𝑗𝑔𝑗)))))
118117opabbidv 5096 . . . . . . . . . . . . . . . 16 (𝑙 = 𝑒 → {⟨𝑔, ⟩ ∣ ∃𝑖 ∈ (𝑅1 dom 𝑙)((𝑖 ∧ ¬ 𝑖𝑔) ∧ ∀𝑗 ∈ (𝑅1 dom 𝑙)(𝑗(𝑙 dom 𝑙)𝑖 → (𝑗𝑔𝑗)))} = {⟨𝑔, ⟩ ∣ ∃𝑖 ∈ (𝑅1 dom 𝑒)((𝑖 ∧ ¬ 𝑖𝑔) ∧ ∀𝑗 ∈ (𝑅1 dom 𝑒)(𝑗(𝑒 dom 𝑒)𝑖 → (𝑗𝑔𝑗)))})
119108, 109, 118supeq123d 8898 . . . . . . . . . . . . . . 15 (𝑙 = 𝑒 → sup((𝑦𝑔), (𝑅1‘dom 𝑙), {⟨𝑔, ⟩ ∣ ∃𝑖 ∈ (𝑅1 dom 𝑙)((𝑖 ∧ ¬ 𝑖𝑔) ∧ ∀𝑗 ∈ (𝑅1 dom 𝑙)(𝑗(𝑙 dom 𝑙)𝑖 → (𝑗𝑔𝑗)))}) = sup((𝑦𝑔), (𝑅1‘dom 𝑒), {⟨𝑔, ⟩ ∣ ∃𝑖 ∈ (𝑅1 dom 𝑒)((𝑖 ∧ ¬ 𝑖𝑔) ∧ ∀𝑗 ∈ (𝑅1 dom 𝑒)(𝑗(𝑒 dom 𝑒)𝑖 → (𝑗𝑔𝑗)))}))
120119mpteq2dv 5126 . . . . . . . . . . . . . 14 (𝑙 = 𝑒 → (𝑔 ∈ V ↦ sup((𝑦𝑔), (𝑅1‘dom 𝑙), {⟨𝑔, ⟩ ∣ ∃𝑖 ∈ (𝑅1 dom 𝑙)((𝑖 ∧ ¬ 𝑖𝑔) ∧ ∀𝑗 ∈ (𝑅1 dom 𝑙)(𝑗(𝑙 dom 𝑙)𝑖 → (𝑗𝑔𝑗)))})) = (𝑔 ∈ V ↦ sup((𝑦𝑔), (𝑅1‘dom 𝑒), {⟨𝑔, ⟩ ∣ ∃𝑖 ∈ (𝑅1 dom 𝑒)((𝑖 ∧ ¬ 𝑖𝑔) ∧ ∀𝑗 ∈ (𝑅1 dom 𝑒)(𝑗(𝑒 dom 𝑒)𝑖 → (𝑗𝑔𝑗)))})))
121109difeq1d 4049 . . . . . . . . . . . . . 14 (𝑙 = 𝑒 → ((𝑅1‘dom 𝑙) ∖ ran 𝑔) = ((𝑅1‘dom 𝑒) ∖ ran 𝑔))
122120, 121fveq12d 6652 . . . . . . . . . . . . 13 (𝑙 = 𝑒 → ((𝑔 ∈ V ↦ sup((𝑦𝑔), (𝑅1‘dom 𝑙), {⟨𝑔, ⟩ ∣ ∃𝑖 ∈ (𝑅1 dom 𝑙)((𝑖 ∧ ¬ 𝑖𝑔) ∧ ∀𝑗 ∈ (𝑅1 dom 𝑙)(𝑗(𝑙 dom 𝑙)𝑖 → (𝑗𝑔𝑗)))}))‘((𝑅1‘dom 𝑙) ∖ ran 𝑔)) = ((𝑔 ∈ V ↦ sup((𝑦𝑔), (𝑅1‘dom 𝑒), {⟨𝑔, ⟩ ∣ ∃𝑖 ∈ (𝑅1 dom 𝑒)((𝑖 ∧ ¬ 𝑖𝑔) ∧ ∀𝑗 ∈ (𝑅1 dom 𝑒)(𝑗(𝑒 dom 𝑒)𝑖 → (𝑗𝑔𝑗)))}))‘((𝑅1‘dom 𝑒) ∖ ran 𝑔)))
123122mpteq2dv 5126 . . . . . . . . . . . 12 (𝑙 = 𝑒 → (𝑔 ∈ V ↦ ((𝑔 ∈ V ↦ sup((𝑦𝑔), (𝑅1‘dom 𝑙), {⟨𝑔, ⟩ ∣ ∃𝑖 ∈ (𝑅1 dom 𝑙)((𝑖 ∧ ¬ 𝑖𝑔) ∧ ∀𝑗 ∈ (𝑅1 dom 𝑙)(𝑗(𝑙 dom 𝑙)𝑖 → (𝑗𝑔𝑗)))}))‘((𝑅1‘dom 𝑙) ∖ ran 𝑔))) = (𝑔 ∈ V ↦ ((𝑔 ∈ V ↦ sup((𝑦𝑔), (𝑅1‘dom 𝑒), {⟨𝑔, ⟩ ∣ ∃𝑖 ∈ (𝑅1 dom 𝑒)((𝑖 ∧ ¬ 𝑖𝑔) ∧ ∀𝑗 ∈ (𝑅1 dom 𝑒)(𝑗(𝑒 dom 𝑒)𝑖 → (𝑗𝑔𝑗)))}))‘((𝑅1‘dom 𝑒) ∖ ran 𝑔))))
124 recseq 7993 . . . . . . . . . . . 12 ((𝑔 ∈ V ↦ ((𝑔 ∈ V ↦ sup((𝑦𝑔), (𝑅1‘dom 𝑙), {⟨𝑔, ⟩ ∣ ∃𝑖 ∈ (𝑅1 dom 𝑙)((𝑖 ∧ ¬ 𝑖𝑔) ∧ ∀𝑗 ∈ (𝑅1 dom 𝑙)(𝑗(𝑙 dom 𝑙)𝑖 → (𝑗𝑔𝑗)))}))‘((𝑅1‘dom 𝑙) ∖ ran 𝑔))) = (𝑔 ∈ V ↦ ((𝑔 ∈ V ↦ sup((𝑦𝑔), (𝑅1‘dom 𝑒), {⟨𝑔, ⟩ ∣ ∃𝑖 ∈ (𝑅1 dom 𝑒)((𝑖 ∧ ¬ 𝑖𝑔) ∧ ∀𝑗 ∈ (𝑅1 dom 𝑒)(𝑗(𝑒 dom 𝑒)𝑖 → (𝑗𝑔𝑗)))}))‘((𝑅1‘dom 𝑒) ∖ ran 𝑔))) → recs((𝑔 ∈ V ↦ ((𝑔 ∈ V ↦ sup((𝑦𝑔), (𝑅1‘dom 𝑙), {⟨𝑔, ⟩ ∣ ∃𝑖 ∈ (𝑅1 dom 𝑙)((𝑖 ∧ ¬ 𝑖𝑔) ∧ ∀𝑗 ∈ (𝑅1 dom 𝑙)(𝑗(𝑙 dom 𝑙)𝑖 → (𝑗𝑔𝑗)))}))‘((𝑅1‘dom 𝑙) ∖ ran 𝑔)))) = recs((𝑔 ∈ V ↦ ((𝑔 ∈ V ↦ sup((𝑦𝑔), (𝑅1‘dom 𝑒), {⟨𝑔, ⟩ ∣ ∃𝑖 ∈ (𝑅1 dom 𝑒)((𝑖 ∧ ¬ 𝑖𝑔) ∧ ∀𝑗 ∈ (𝑅1 dom 𝑒)(𝑗(𝑒 dom 𝑒)𝑖 → (𝑗𝑔𝑗)))}))‘((𝑅1‘dom 𝑒) ∖ ran 𝑔)))))
125123, 124syl 17 . . . . . . . . . . 11 (𝑙 = 𝑒 → recs((𝑔 ∈ V ↦ ((𝑔 ∈ V ↦ sup((𝑦𝑔), (𝑅1‘dom 𝑙), {⟨𝑔, ⟩ ∣ ∃𝑖 ∈ (𝑅1 dom 𝑙)((𝑖 ∧ ¬ 𝑖𝑔) ∧ ∀𝑗 ∈ (𝑅1 dom 𝑙)(𝑗(𝑙 dom 𝑙)𝑖 → (𝑗𝑔𝑗)))}))‘((𝑅1‘dom 𝑙) ∖ ran 𝑔)))) = recs((𝑔 ∈ V ↦ ((𝑔 ∈ V ↦ sup((𝑦𝑔), (𝑅1‘dom 𝑒), {⟨𝑔, ⟩ ∣ ∃𝑖 ∈ (𝑅1 dom 𝑒)((𝑖 ∧ ¬ 𝑖𝑔) ∧ ∀𝑗 ∈ (𝑅1 dom 𝑒)(𝑗(𝑒 dom 𝑒)𝑖 → (𝑗𝑔𝑗)))}))‘((𝑅1‘dom 𝑒) ∖ ran 𝑔)))))
126125cnveqd 5710 . . . . . . . . . 10 (𝑙 = 𝑒recs((𝑔 ∈ V ↦ ((𝑔 ∈ V ↦ sup((𝑦𝑔), (𝑅1‘dom 𝑙), {⟨𝑔, ⟩ ∣ ∃𝑖 ∈ (𝑅1 dom 𝑙)((𝑖 ∧ ¬ 𝑖𝑔) ∧ ∀𝑗 ∈ (𝑅1 dom 𝑙)(𝑗(𝑙 dom 𝑙)𝑖 → (𝑗𝑔𝑗)))}))‘((𝑅1‘dom 𝑙) ∖ ran 𝑔)))) = recs((𝑔 ∈ V ↦ ((𝑔 ∈ V ↦ sup((𝑦𝑔), (𝑅1‘dom 𝑒), {⟨𝑔, ⟩ ∣ ∃𝑖 ∈ (𝑅1 dom 𝑒)((𝑖 ∧ ¬ 𝑖𝑔) ∧ ∀𝑗 ∈ (𝑅1 dom 𝑒)(𝑗(𝑒 dom 𝑒)𝑖 → (𝑗𝑔𝑗)))}))‘((𝑅1‘dom 𝑒) ∖ ran 𝑔)))))
127126imaeq1d 5895 . . . . . . . . 9 (𝑙 = 𝑒 → (recs((𝑔 ∈ V ↦ ((𝑔 ∈ V ↦ sup((𝑦𝑔), (𝑅1‘dom 𝑙), {⟨𝑔, ⟩ ∣ ∃𝑖 ∈ (𝑅1 dom 𝑙)((𝑖 ∧ ¬ 𝑖𝑔) ∧ ∀𝑗 ∈ (𝑅1 dom 𝑙)(𝑗(𝑙 dom 𝑙)𝑖 → (𝑗𝑔𝑗)))}))‘((𝑅1‘dom 𝑙) ∖ ran 𝑔)))) “ {𝑔}) = (recs((𝑔 ∈ V ↦ ((𝑔 ∈ V ↦ sup((𝑦𝑔), (𝑅1‘dom 𝑒), {⟨𝑔, ⟩ ∣ ∃𝑖 ∈ (𝑅1 dom 𝑒)((𝑖 ∧ ¬ 𝑖𝑔) ∧ ∀𝑗 ∈ (𝑅1 dom 𝑒)(𝑗(𝑒 dom 𝑒)𝑖 → (𝑗𝑔𝑗)))}))‘((𝑅1‘dom 𝑒) ∖ ran 𝑔)))) “ {𝑔}))
128127inteqd 4843 . . . . . . . 8 (𝑙 = 𝑒 (recs((𝑔 ∈ V ↦ ((𝑔 ∈ V ↦ sup((𝑦𝑔), (𝑅1‘dom 𝑙), {⟨𝑔, ⟩ ∣ ∃𝑖 ∈ (𝑅1 dom 𝑙)((𝑖 ∧ ¬ 𝑖𝑔) ∧ ∀𝑗 ∈ (𝑅1 dom 𝑙)(𝑗(𝑙 dom 𝑙)𝑖 → (𝑗𝑔𝑗)))}))‘((𝑅1‘dom 𝑙) ∖ ran 𝑔)))) “ {𝑔}) = (recs((𝑔 ∈ V ↦ ((𝑔 ∈ V ↦ sup((𝑦𝑔), (𝑅1‘dom 𝑒), {⟨𝑔, ⟩ ∣ ∃𝑖 ∈ (𝑅1 dom 𝑒)((𝑖 ∧ ¬ 𝑖𝑔) ∧ ∀𝑗 ∈ (𝑅1 dom 𝑒)(𝑗(𝑒 dom 𝑒)𝑖 → (𝑗𝑔𝑗)))}))‘((𝑅1‘dom 𝑒) ∖ ran 𝑔)))) “ {𝑔}))
129126imaeq1d 5895 . . . . . . . . 9 (𝑙 = 𝑒 → (recs((𝑔 ∈ V ↦ ((𝑔 ∈ V ↦ sup((𝑦𝑔), (𝑅1‘dom 𝑙), {⟨𝑔, ⟩ ∣ ∃𝑖 ∈ (𝑅1 dom 𝑙)((𝑖 ∧ ¬ 𝑖𝑔) ∧ ∀𝑗 ∈ (𝑅1 dom 𝑙)(𝑗(𝑙 dom 𝑙)𝑖 → (𝑗𝑔𝑗)))}))‘((𝑅1‘dom 𝑙) ∖ ran 𝑔)))) “ {}) = (recs((𝑔 ∈ V ↦ ((𝑔 ∈ V ↦ sup((𝑦𝑔), (𝑅1‘dom 𝑒), {⟨𝑔, ⟩ ∣ ∃𝑖 ∈ (𝑅1 dom 𝑒)((𝑖 ∧ ¬ 𝑖𝑔) ∧ ∀𝑗 ∈ (𝑅1 dom 𝑒)(𝑗(𝑒 dom 𝑒)𝑖 → (𝑗𝑔𝑗)))}))‘((𝑅1‘dom 𝑒) ∖ ran 𝑔)))) “ {}))
130129inteqd 4843 . . . . . . . 8 (𝑙 = 𝑒 (recs((𝑔 ∈ V ↦ ((𝑔 ∈ V ↦ sup((𝑦𝑔), (𝑅1‘dom 𝑙), {⟨𝑔, ⟩ ∣ ∃𝑖 ∈ (𝑅1 dom 𝑙)((𝑖 ∧ ¬ 𝑖𝑔) ∧ ∀𝑗 ∈ (𝑅1 dom 𝑙)(𝑗(𝑙 dom 𝑙)𝑖 → (𝑗𝑔𝑗)))}))‘((𝑅1‘dom 𝑙) ∖ ran 𝑔)))) “ {}) = (recs((𝑔 ∈ V ↦ ((𝑔 ∈ V ↦ sup((𝑦𝑔), (𝑅1‘dom 𝑒), {⟨𝑔, ⟩ ∣ ∃𝑖 ∈ (𝑅1 dom 𝑒)((𝑖 ∧ ¬ 𝑖𝑔) ∧ ∀𝑗 ∈ (𝑅1 dom 𝑒)(𝑗(𝑒 dom 𝑒)𝑖 → (𝑗𝑔𝑗)))}))‘((𝑅1‘dom 𝑒) ∖ ran 𝑔)))) “ {}))
131128, 130eleq12d 2884 . . . . . . 7 (𝑙 = 𝑒 → ( (recs((𝑔 ∈ V ↦ ((𝑔 ∈ V ↦ sup((𝑦𝑔), (𝑅1‘dom 𝑙), {⟨𝑔, ⟩ ∣ ∃𝑖 ∈ (𝑅1 dom 𝑙)((𝑖 ∧ ¬ 𝑖𝑔) ∧ ∀𝑗 ∈ (𝑅1 dom 𝑙)(𝑗(𝑙 dom 𝑙)𝑖 → (𝑗𝑔𝑗)))}))‘((𝑅1‘dom 𝑙) ∖ ran 𝑔)))) “ {𝑔}) ∈ (recs((𝑔 ∈ V ↦ ((𝑔 ∈ V ↦ sup((𝑦𝑔), (𝑅1‘dom 𝑙), {⟨𝑔, ⟩ ∣ ∃𝑖 ∈ (𝑅1 dom 𝑙)((𝑖 ∧ ¬ 𝑖𝑔) ∧ ∀𝑗 ∈ (𝑅1 dom 𝑙)(𝑗(𝑙 dom 𝑙)𝑖 → (𝑗𝑔𝑗)))}))‘((𝑅1‘dom 𝑙) ∖ ran 𝑔)))) “ {}) ↔ (recs((𝑔 ∈ V ↦ ((𝑔 ∈ V ↦ sup((𝑦𝑔), (𝑅1‘dom 𝑒), {⟨𝑔, ⟩ ∣ ∃𝑖 ∈ (𝑅1 dom 𝑒)((𝑖 ∧ ¬ 𝑖𝑔) ∧ ∀𝑗 ∈ (𝑅1 dom 𝑒)(𝑗(𝑒 dom 𝑒)𝑖 → (𝑗𝑔𝑗)))}))‘((𝑅1‘dom 𝑒) ∖ ran 𝑔)))) “ {𝑔}) ∈ (recs((𝑔 ∈ V ↦ ((𝑔 ∈ V ↦ sup((𝑦𝑔), (𝑅1‘dom 𝑒), {⟨𝑔, ⟩ ∣ ∃𝑖 ∈ (𝑅1 dom 𝑒)((𝑖 ∧ ¬ 𝑖𝑔) ∧ ∀𝑗 ∈ (𝑅1 dom 𝑒)(𝑗(𝑒 dom 𝑒)𝑖 → (𝑗𝑔𝑗)))}))‘((𝑅1‘dom 𝑒) ∖ ran 𝑔)))) “ {})))
132131opabbidv 5096 . . . . . 6 (𝑙 = 𝑒 → {⟨𝑔, ⟩ ∣ (recs((𝑔 ∈ V ↦ ((𝑔 ∈ V ↦ sup((𝑦𝑔), (𝑅1‘dom 𝑙), {⟨𝑔, ⟩ ∣ ∃𝑖 ∈ (𝑅1 dom 𝑙)((𝑖 ∧ ¬ 𝑖𝑔) ∧ ∀𝑗 ∈ (𝑅1 dom 𝑙)(𝑗(𝑙 dom 𝑙)𝑖 → (𝑗𝑔𝑗)))}))‘((𝑅1‘dom 𝑙) ∖ ran 𝑔)))) “ {𝑔}) ∈ (recs((𝑔 ∈ V ↦ ((𝑔 ∈ V ↦ sup((𝑦𝑔), (𝑅1‘dom 𝑙), {⟨𝑔, ⟩ ∣ ∃𝑖 ∈ (𝑅1 dom 𝑙)((𝑖 ∧ ¬ 𝑖𝑔) ∧ ∀𝑗 ∈ (𝑅1 dom 𝑙)(𝑗(𝑙 dom 𝑙)𝑖 → (𝑗𝑔𝑗)))}))‘((𝑅1‘dom 𝑙) ∖ ran 𝑔)))) “ {})} = {⟨𝑔, ⟩ ∣ (recs((𝑔 ∈ V ↦ ((𝑔 ∈ V ↦ sup((𝑦𝑔), (𝑅1‘dom 𝑒), {⟨𝑔, ⟩ ∣ ∃𝑖 ∈ (𝑅1 dom 𝑒)((𝑖 ∧ ¬ 𝑖𝑔) ∧ ∀𝑗 ∈ (𝑅1 dom 𝑒)(𝑗(𝑒 dom 𝑒)𝑖 → (𝑗𝑔𝑗)))}))‘((𝑅1‘dom 𝑒) ∖ ran 𝑔)))) “ {𝑔}) ∈ (recs((𝑔 ∈ V ↦ ((𝑔 ∈ V ↦ sup((𝑦𝑔), (𝑅1‘dom 𝑒), {⟨𝑔, ⟩ ∣ ∃𝑖 ∈ (𝑅1 dom 𝑒)((𝑖 ∧ ¬ 𝑖𝑔) ∧ ∀𝑗 ∈ (𝑅1 dom 𝑒)(𝑗(𝑒 dom 𝑒)𝑖 → (𝑗𝑔𝑗)))}))‘((𝑅1‘dom 𝑒) ∖ ran 𝑔)))) “ {})})
133102, 107, 132ifbieq12d 4452 . . . . 5 (𝑙 = 𝑒 → if(dom 𝑙 = dom 𝑙, {⟨𝑔, ⟩ ∣ ((rank‘𝑔) E (rank‘) ∨ ((rank‘𝑔) = (rank‘) ∧ 𝑔(𝑙‘suc (rank‘𝑔))))}, {⟨𝑔, ⟩ ∣ (recs((𝑔 ∈ V ↦ ((𝑔 ∈ V ↦ sup((𝑦𝑔), (𝑅1‘dom 𝑙), {⟨𝑔, ⟩ ∣ ∃𝑖 ∈ (𝑅1 dom 𝑙)((𝑖 ∧ ¬ 𝑖𝑔) ∧ ∀𝑗 ∈ (𝑅1 dom 𝑙)(𝑗(𝑙 dom 𝑙)𝑖 → (𝑗𝑔𝑗)))}))‘((𝑅1‘dom 𝑙) ∖ ran 𝑔)))) “ {𝑔}) ∈ (recs((𝑔 ∈ V ↦ ((𝑔 ∈ V ↦ sup((𝑦𝑔), (𝑅1‘dom 𝑙), {⟨𝑔, ⟩ ∣ ∃𝑖 ∈ (𝑅1 dom 𝑙)((𝑖 ∧ ¬ 𝑖𝑔) ∧ ∀𝑗 ∈ (𝑅1 dom 𝑙)(𝑗(𝑙 dom 𝑙)𝑖 → (𝑗𝑔𝑗)))}))‘((𝑅1‘dom 𝑙) ∖ ran 𝑔)))) “ {})}) = if(dom 𝑒 = dom 𝑒, {⟨𝑔, ⟩ ∣ ((rank‘𝑔) E (rank‘) ∨ ((rank‘𝑔) = (rank‘) ∧ 𝑔(𝑒‘suc (rank‘𝑔))))}, {⟨𝑔, ⟩ ∣ (recs((𝑔 ∈ V ↦ ((𝑔 ∈ V ↦ sup((𝑦𝑔), (𝑅1‘dom 𝑒), {⟨𝑔, ⟩ ∣ ∃𝑖 ∈ (𝑅1 dom 𝑒)((𝑖 ∧ ¬ 𝑖𝑔) ∧ ∀𝑗 ∈ (𝑅1 dom 𝑒)(𝑗(𝑒 dom 𝑒)𝑖 → (𝑗𝑔𝑗)))}))‘((𝑅1‘dom 𝑒) ∖ ran 𝑔)))) “ {𝑔}) ∈ (recs((𝑔 ∈ V ↦ ((𝑔 ∈ V ↦ sup((𝑦𝑔), (𝑅1‘dom 𝑒), {⟨𝑔, ⟩ ∣ ∃𝑖 ∈ (𝑅1 dom 𝑒)((𝑖 ∧ ¬ 𝑖𝑔) ∧ ∀𝑗 ∈ (𝑅1 dom 𝑒)(𝑗(𝑒 dom 𝑒)𝑖 → (𝑗𝑔𝑗)))}))‘((𝑅1‘dom 𝑒) ∖ ran 𝑔)))) “ {})}))
134109sqxpeqd 5551 . . . . 5 (𝑙 = 𝑒 → ((𝑅1‘dom 𝑙) × (𝑅1‘dom 𝑙)) = ((𝑅1‘dom 𝑒) × (𝑅1‘dom 𝑒)))
135133, 134ineq12d 4140 . . . 4 (𝑙 = 𝑒 → (if(dom 𝑙 = dom 𝑙, {⟨𝑔, ⟩ ∣ ((rank‘𝑔) E (rank‘) ∨ ((rank‘𝑔) = (rank‘) ∧ 𝑔(𝑙‘suc (rank‘𝑔))))}, {⟨𝑔, ⟩ ∣ (recs((𝑔 ∈ V ↦ ((𝑔 ∈ V ↦ sup((𝑦𝑔), (𝑅1‘dom 𝑙), {⟨𝑔, ⟩ ∣ ∃𝑖 ∈ (𝑅1 dom 𝑙)((𝑖 ∧ ¬ 𝑖𝑔) ∧ ∀𝑗 ∈ (𝑅1 dom 𝑙)(𝑗(𝑙 dom 𝑙)𝑖 → (𝑗𝑔𝑗)))}))‘((𝑅1‘dom 𝑙) ∖ ran 𝑔)))) “ {𝑔}) ∈ (recs((𝑔 ∈ V ↦ ((𝑔 ∈ V ↦ sup((𝑦𝑔), (𝑅1‘dom 𝑙), {⟨𝑔, ⟩ ∣ ∃𝑖 ∈ (𝑅1 dom 𝑙)((𝑖 ∧ ¬ 𝑖𝑔) ∧ ∀𝑗 ∈ (𝑅1 dom 𝑙)(𝑗(𝑙 dom 𝑙)𝑖 → (𝑗𝑔𝑗)))}))‘((𝑅1‘dom 𝑙) ∖ ran 𝑔)))) “ {})}) ∩ ((𝑅1‘dom 𝑙) × (𝑅1‘dom 𝑙))) = (if(dom 𝑒 = dom 𝑒, {⟨𝑔, ⟩ ∣ ((rank‘𝑔) E (rank‘) ∨ ((rank‘𝑔) = (rank‘) ∧ 𝑔(𝑒‘suc (rank‘𝑔))))}, {⟨𝑔, ⟩ ∣ (recs((𝑔 ∈ V ↦ ((𝑔 ∈ V ↦ sup((𝑦𝑔), (𝑅1‘dom 𝑒), {⟨𝑔, ⟩ ∣ ∃𝑖 ∈ (𝑅1 dom 𝑒)((𝑖 ∧ ¬ 𝑖𝑔) ∧ ∀𝑗 ∈ (𝑅1 dom 𝑒)(𝑗(𝑒 dom 𝑒)𝑖 → (𝑗𝑔𝑗)))}))‘((𝑅1‘dom 𝑒) ∖ ran 𝑔)))) “ {𝑔}) ∈ (recs((𝑔 ∈ V ↦ ((𝑔 ∈ V ↦ sup((𝑦𝑔), (𝑅1‘dom 𝑒), {⟨𝑔, ⟩ ∣ ∃𝑖 ∈ (𝑅1 dom 𝑒)((𝑖 ∧ ¬ 𝑖𝑔) ∧ ∀𝑗 ∈ (𝑅1 dom 𝑒)(𝑗(𝑒 dom 𝑒)𝑖 → (𝑗𝑔𝑗)))}))‘((𝑅1‘dom 𝑒) ∖ ran 𝑔)))) “ {})}) ∩ ((𝑅1‘dom 𝑒) × (𝑅1‘dom 𝑒))))
136135cbvmptv 5133 . . 3 (𝑙 ∈ V ↦ (if(dom 𝑙 = dom 𝑙, {⟨𝑔, ⟩ ∣ ((rank‘𝑔) E (rank‘) ∨ ((rank‘𝑔) = (rank‘) ∧ 𝑔(𝑙‘suc (rank‘𝑔))))}, {⟨𝑔, ⟩ ∣ (recs((𝑔 ∈ V ↦ ((𝑔 ∈ V ↦ sup((𝑦𝑔), (𝑅1‘dom 𝑙), {⟨𝑔, ⟩ ∣ ∃𝑖 ∈ (𝑅1 dom 𝑙)((𝑖 ∧ ¬ 𝑖𝑔) ∧ ∀𝑗 ∈ (𝑅1 dom 𝑙)(𝑗(𝑙 dom 𝑙)𝑖 → (𝑗𝑔𝑗)))}))‘((𝑅1‘dom 𝑙) ∖ ran 𝑔)))) “ {𝑔}) ∈ (recs((𝑔 ∈ V ↦ ((𝑔 ∈ V ↦ sup((𝑦𝑔), (𝑅1‘dom 𝑙), {⟨𝑔, ⟩ ∣ ∃𝑖 ∈ (𝑅1 dom 𝑙)((𝑖 ∧ ¬ 𝑖𝑔) ∧ ∀𝑗 ∈ (𝑅1 dom 𝑙)(𝑗(𝑙 dom 𝑙)𝑖 → (𝑗𝑔𝑗)))}))‘((𝑅1‘dom 𝑙) ∖ ran 𝑔)))) “ {})}) ∩ ((𝑅1‘dom 𝑙) × (𝑅1‘dom 𝑙)))) = (𝑒 ∈ V ↦ (if(dom 𝑒 = dom 𝑒, {⟨𝑔, ⟩ ∣ ((rank‘𝑔) E (rank‘) ∨ ((rank‘𝑔) = (rank‘) ∧ 𝑔(𝑒‘suc (rank‘𝑔))))}, {⟨𝑔, ⟩ ∣ (recs((𝑔 ∈ V ↦ ((𝑔 ∈ V ↦ sup((𝑦𝑔), (𝑅1‘dom 𝑒), {⟨𝑔, ⟩ ∣ ∃𝑖 ∈ (𝑅1 dom 𝑒)((𝑖 ∧ ¬ 𝑖𝑔) ∧ ∀𝑗 ∈ (𝑅1 dom 𝑒)(𝑗(𝑒 dom 𝑒)𝑖 → (𝑗𝑔𝑗)))}))‘((𝑅1‘dom 𝑒) ∖ ran 𝑔)))) “ {𝑔}) ∈ (recs((𝑔 ∈ V ↦ ((𝑔 ∈ V ↦ sup((𝑦𝑔), (𝑅1‘dom 𝑒), {⟨𝑔, ⟩ ∣ ∃𝑖 ∈ (𝑅1 dom 𝑒)((𝑖 ∧ ¬ 𝑖𝑔) ∧ ∀𝑗 ∈ (𝑅1 dom 𝑒)(𝑗(𝑒 dom 𝑒)𝑖 → (𝑗𝑔𝑗)))}))‘((𝑅1‘dom 𝑒) ∖ ran 𝑔)))) “ {})}) ∩ ((𝑅1‘dom 𝑒) × (𝑅1‘dom 𝑒))))
137 recseq 7993 . . 3 ((𝑙 ∈ V ↦ (if(dom 𝑙 = dom 𝑙, {⟨𝑔, ⟩ ∣ ((rank‘𝑔) E (rank‘) ∨ ((rank‘𝑔) = (rank‘) ∧ 𝑔(𝑙‘suc (rank‘𝑔))))}, {⟨𝑔, ⟩ ∣ (recs((𝑔 ∈ V ↦ ((𝑔 ∈ V ↦ sup((𝑦𝑔), (𝑅1‘dom 𝑙), {⟨𝑔, ⟩ ∣ ∃𝑖 ∈ (𝑅1 dom 𝑙)((𝑖 ∧ ¬ 𝑖𝑔) ∧ ∀𝑗 ∈ (𝑅1 dom 𝑙)(𝑗(𝑙 dom 𝑙)𝑖 → (𝑗𝑔𝑗)))}))‘((𝑅1‘dom 𝑙) ∖ ran 𝑔)))) “ {𝑔}) ∈ (recs((𝑔 ∈ V ↦ ((𝑔 ∈ V ↦ sup((𝑦𝑔), (𝑅1‘dom 𝑙), {⟨𝑔, ⟩ ∣ ∃𝑖 ∈ (𝑅1 dom 𝑙)((𝑖 ∧ ¬ 𝑖𝑔) ∧ ∀𝑗 ∈ (𝑅1 dom 𝑙)(𝑗(𝑙 dom 𝑙)𝑖 → (𝑗𝑔𝑗)))}))‘((𝑅1‘dom 𝑙) ∖ ran 𝑔)))) “ {})}) ∩ ((𝑅1‘dom 𝑙) × (𝑅1‘dom 𝑙)))) = (𝑒 ∈ V ↦ (if(dom 𝑒 = dom 𝑒, {⟨𝑔, ⟩ ∣ ((rank‘𝑔) E (rank‘) ∨ ((rank‘𝑔) = (rank‘) ∧ 𝑔(𝑒‘suc (rank‘𝑔))))}, {⟨𝑔, ⟩ ∣ (recs((𝑔 ∈ V ↦ ((𝑔 ∈ V ↦ sup((𝑦𝑔), (𝑅1‘dom 𝑒), {⟨𝑔, ⟩ ∣ ∃𝑖 ∈ (𝑅1 dom 𝑒)((𝑖 ∧ ¬ 𝑖𝑔) ∧ ∀𝑗 ∈ (𝑅1 dom 𝑒)(𝑗(𝑒 dom 𝑒)𝑖 → (𝑗𝑔𝑗)))}))‘((𝑅1‘dom 𝑒) ∖ ran 𝑔)))) “ {𝑔}) ∈ (recs((𝑔 ∈ V ↦ ((𝑔 ∈ V ↦ sup((𝑦𝑔), (𝑅1‘dom 𝑒), {⟨𝑔, ⟩ ∣ ∃𝑖 ∈ (𝑅1 dom 𝑒)((𝑖 ∧ ¬ 𝑖𝑔) ∧ ∀𝑗 ∈ (𝑅1 dom 𝑒)(𝑗(𝑒 dom 𝑒)𝑖 → (𝑗𝑔𝑗)))}))‘((𝑅1‘dom 𝑒) ∖ ran 𝑔)))) “ {})}) ∩ ((𝑅1‘dom 𝑒) × (𝑅1‘dom 𝑒)))) → recs((𝑙 ∈ V ↦ (if(dom 𝑙 = dom 𝑙, {⟨𝑔, ⟩ ∣ ((rank‘𝑔) E (rank‘) ∨ ((rank‘𝑔) = (rank‘) ∧ 𝑔(𝑙‘suc (rank‘𝑔))))}, {⟨𝑔, ⟩ ∣ (recs((𝑔 ∈ V ↦ ((𝑔 ∈ V ↦ sup((𝑦𝑔), (𝑅1‘dom 𝑙), {⟨𝑔, ⟩ ∣ ∃𝑖 ∈ (𝑅1 dom 𝑙)((𝑖 ∧ ¬ 𝑖𝑔) ∧ ∀𝑗 ∈ (𝑅1 dom 𝑙)(𝑗(𝑙 dom 𝑙)𝑖 → (𝑗𝑔𝑗)))}))‘((𝑅1‘dom 𝑙) ∖ ran 𝑔)))) “ {𝑔}) ∈ (recs((𝑔 ∈ V ↦ ((𝑔 ∈ V ↦ sup((𝑦𝑔), (𝑅1‘dom 𝑙), {⟨𝑔, ⟩ ∣ ∃𝑖 ∈ (𝑅1 dom 𝑙)((𝑖 ∧ ¬ 𝑖𝑔) ∧ ∀𝑗 ∈ (𝑅1 dom 𝑙)(𝑗(𝑙 dom 𝑙)𝑖 → (𝑗𝑔𝑗)))}))‘((𝑅1‘dom 𝑙) ∖ ran 𝑔)))) “ {})}) ∩ ((𝑅1‘dom 𝑙) × (𝑅1‘dom 𝑙))))) = recs((𝑒 ∈ V ↦ (if(dom 𝑒 = dom 𝑒, {⟨𝑔, ⟩ ∣ ((rank‘𝑔) E (rank‘) ∨ ((rank‘𝑔) = (rank‘) ∧ 𝑔(𝑒‘suc (rank‘𝑔))))}, {⟨𝑔, ⟩ ∣ (recs((𝑔 ∈ V ↦ ((𝑔 ∈ V ↦ sup((𝑦𝑔), (𝑅1‘dom 𝑒), {⟨𝑔, ⟩ ∣ ∃𝑖 ∈ (𝑅1 dom 𝑒)((𝑖 ∧ ¬ 𝑖𝑔) ∧ ∀𝑗 ∈ (𝑅1 dom 𝑒)(𝑗(𝑒 dom 𝑒)𝑖 → (𝑗𝑔𝑗)))}))‘((𝑅1‘dom 𝑒) ∖ ran 𝑔)))) “ {𝑔}) ∈ (recs((𝑔 ∈ V ↦ ((𝑔 ∈ V ↦ sup((𝑦𝑔), (𝑅1‘dom 𝑒), {⟨𝑔, ⟩ ∣ ∃𝑖 ∈ (𝑅1 dom 𝑒)((𝑖 ∧ ¬ 𝑖𝑔) ∧ ∀𝑗 ∈ (𝑅1 dom 𝑒)(𝑗(𝑒 dom 𝑒)𝑖 → (𝑗𝑔𝑗)))}))‘((𝑅1‘dom 𝑒) ∖ ran 𝑔)))) “ {})}) ∩ ((𝑅1‘dom 𝑒) × (𝑅1‘dom 𝑒))))))
138136, 137ax-mp 5 . 2 recs((𝑙 ∈ V ↦ (if(dom 𝑙 = dom 𝑙, {⟨𝑔, ⟩ ∣ ((rank‘𝑔) E (rank‘) ∨ ((rank‘𝑔) = (rank‘) ∧ 𝑔(𝑙‘suc (rank‘𝑔))))}, {⟨𝑔, ⟩ ∣ (recs((𝑔 ∈ V ↦ ((𝑔 ∈ V ↦ sup((𝑦𝑔), (𝑅1‘dom 𝑙), {⟨𝑔, ⟩ ∣ ∃𝑖 ∈ (𝑅1 dom 𝑙)((𝑖 ∧ ¬ 𝑖𝑔) ∧ ∀𝑗 ∈ (𝑅1 dom 𝑙)(𝑗(𝑙 dom 𝑙)𝑖 → (𝑗𝑔𝑗)))}))‘((𝑅1‘dom 𝑙) ∖ ran 𝑔)))) “ {𝑔}) ∈ (recs((𝑔 ∈ V ↦ ((𝑔 ∈ V ↦ sup((𝑦𝑔), (𝑅1‘dom 𝑙), {⟨𝑔, ⟩ ∣ ∃𝑖 ∈ (𝑅1 dom 𝑙)((𝑖 ∧ ¬ 𝑖𝑔) ∧ ∀𝑗 ∈ (𝑅1 dom 𝑙)(𝑗(𝑙 dom 𝑙)𝑖 → (𝑗𝑔𝑗)))}))‘((𝑅1‘dom 𝑙) ∖ ran 𝑔)))) “ {})}) ∩ ((𝑅1‘dom 𝑙) × (𝑅1‘dom 𝑙))))) = recs((𝑒 ∈ V ↦ (if(dom 𝑒 = dom 𝑒, {⟨𝑔, ⟩ ∣ ((rank‘𝑔) E (rank‘) ∨ ((rank‘𝑔) = (rank‘) ∧ 𝑔(𝑒‘suc (rank‘𝑔))))}, {⟨𝑔, ⟩ ∣ (recs((𝑔 ∈ V ↦ ((𝑔 ∈ V ↦ sup((𝑦𝑔), (𝑅1‘dom 𝑒), {⟨𝑔, ⟩ ∣ ∃𝑖 ∈ (𝑅1 dom 𝑒)((𝑖 ∧ ¬ 𝑖𝑔) ∧ ∀𝑗 ∈ (𝑅1 dom 𝑒)(𝑗(𝑒 dom 𝑒)𝑖 → (𝑗𝑔𝑗)))}))‘((𝑅1‘dom 𝑒) ∖ ran 𝑔)))) “ {𝑔}) ∈ (recs((𝑔 ∈ V ↦ ((𝑔 ∈ V ↦ sup((𝑦𝑔), (𝑅1‘dom 𝑒), {⟨𝑔, ⟩ ∣ ∃𝑖 ∈ (𝑅1 dom 𝑒)((𝑖 ∧ ¬ 𝑖𝑔) ∧ ∀𝑗 ∈ (𝑅1 dom 𝑒)(𝑗(𝑒 dom 𝑒)𝑖 → (𝑗𝑔𝑗)))}))‘((𝑅1‘dom 𝑒) ∖ ran 𝑔)))) “ {})}) ∩ ((𝑅1‘dom 𝑒) × (𝑅1‘dom 𝑒)))))
139 aomclem8.a . 2 (𝜑𝐴 ∈ On)
140 aomclem8.y . . 3 (𝜑 → ∀𝑎 ∈ 𝒫 (𝑅1𝐴)(𝑎 ≠ ∅ → (𝑦𝑎) ∈ ((𝒫 𝑎 ∩ Fin) ∖ {∅})))
141 neeq1 3049 . . . . 5 (𝑎 = 𝑐 → (𝑎 ≠ ∅ ↔ 𝑐 ≠ ∅))
142 fveq2 6645 . . . . . 6 (𝑎 = 𝑐 → (𝑦𝑎) = (𝑦𝑐))
143 pweq 4513 . . . . . . . 8 (𝑎 = 𝑐 → 𝒫 𝑎 = 𝒫 𝑐)
144143ineq1d 4138 . . . . . . 7 (𝑎 = 𝑐 → (𝒫 𝑎 ∩ Fin) = (𝒫 𝑐 ∩ Fin))
145144difeq1d 4049 . . . . . 6 (𝑎 = 𝑐 → ((𝒫 𝑎 ∩ Fin) ∖ {∅}) = ((𝒫 𝑐 ∩ Fin) ∖ {∅}))
146142, 145eleq12d 2884 . . . . 5 (𝑎 = 𝑐 → ((𝑦𝑎) ∈ ((𝒫 𝑎 ∩ Fin) ∖ {∅}) ↔ (𝑦𝑐) ∈ ((𝒫 𝑐 ∩ Fin) ∖ {∅})))
147141, 146imbi12d 348 . . . 4 (𝑎 = 𝑐 → ((𝑎 ≠ ∅ → (𝑦𝑎) ∈ ((𝒫 𝑎 ∩ Fin) ∖ {∅})) ↔ (𝑐 ≠ ∅ → (𝑦𝑐) ∈ ((𝒫 𝑐 ∩ Fin) ∖ {∅}))))
148147cbvralvw 3396 . . 3 (∀𝑎 ∈ 𝒫 (𝑅1𝐴)(𝑎 ≠ ∅ → (𝑦𝑎) ∈ ((𝒫 𝑎 ∩ Fin) ∖ {∅})) ↔ ∀𝑐 ∈ 𝒫 (𝑅1𝐴)(𝑐 ≠ ∅ → (𝑦𝑐) ∈ ((𝒫 𝑐 ∩ Fin) ∖ {∅})))
149140, 148sylib 221 . 2 (𝜑 → ∀𝑐 ∈ 𝒫 (𝑅1𝐴)(𝑐 ≠ ∅ → (𝑦𝑐) ∈ ((𝒫 𝑐 ∩ Fin) ∖ {∅})))
15029, 37, 45, 84, 98, 99, 138, 139, 149aomclem7 40004 1 (𝜑 → ∃𝑏 𝑏 We (𝑅1𝐴))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 209  wa 399  wo 844   = wceq 1538  wex 1781  wcel 2111  wne 2987  wral 3106  wrex 3107  Vcvv 3441  cdif 3878  cin 3880  c0 4243  ifcif 4425  𝒫 cpw 4497  {csn 4525   cuni 4800   cint 4838   class class class wbr 5030  {copab 5092  cmpt 5110   E cep 5429   We wwe 5477   × cxp 5517  ccnv 5518  dom cdm 5519  ran crn 5520  cima 5522  Oncon0 6159  suc csuc 6161  cfv 6324  recscrecs 7990  Fincfn 8492  supcsup 8888  𝑅1cr1 9175  rankcrnk 9176
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-rep 5154  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-fal 1551  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-ral 3111  df-rex 3112  df-reu 3113  df-rmo 3114  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-pss 3900  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4801  df-int 4839  df-iun 4883  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5425  df-eprel 5430  df-po 5438  df-so 5439  df-fr 5478  df-we 5480  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-pred 6116  df-ord 6162  df-on 6163  df-lim 6164  df-suc 6165  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-isom 6333  df-riota 7093  df-ov 7138  df-oprab 7139  df-mpo 7140  df-om 7561  df-1st 7671  df-2nd 7672  df-wrecs 7930  df-recs 7991  df-rdg 8029  df-1o 8085  df-2o 8086  df-er 8272  df-map 8391  df-en 8493  df-fin 8496  df-sup 8890  df-r1 9177  df-rank 9178
This theorem is referenced by:  dfac11  40006
  Copyright terms: Public domain W3C validator