Mathbox for Stefan O'Rear < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  aomclem8 Structured version   Visualization version   GIF version

Theorem aomclem8 40378
 Description: Lemma for dfac11 40379. Perform variable substitutions. This is the most we can say without invoking regularity. (Contributed by Stefan O'Rear, 20-Jan-2015.)
Hypotheses
Ref Expression
aomclem8.a (𝜑𝐴 ∈ On)
aomclem8.y (𝜑 → ∀𝑎 ∈ 𝒫 (𝑅1𝐴)(𝑎 ≠ ∅ → (𝑦𝑎) ∈ ((𝒫 𝑎 ∩ Fin) ∖ {∅})))
Assertion
Ref Expression
aomclem8 (𝜑 → ∃𝑏 𝑏 We (𝑅1𝐴))
Distinct variable groups:   𝜑,𝑏   𝐴,𝑎,𝑏   𝑦,𝑎,𝑏
Allowed substitution hints:   𝜑(𝑦,𝑎)   𝐴(𝑦)

Proof of Theorem aomclem8
Dummy variables 𝑐 𝑑 𝑒 𝑓 𝑔 𝑖 𝑗 𝑙 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elequ2 2126 . . . . . . 7 ( = 𝑏 → (𝑖𝑖𝑏))
2 elequ2 2126 . . . . . . . 8 (𝑔 = 𝑐 → (𝑖𝑔𝑖𝑐))
32notbid 321 . . . . . . 7 (𝑔 = 𝑐 → (¬ 𝑖𝑔 ↔ ¬ 𝑖𝑐))
41, 3bi2anan9r 639 . . . . . 6 ((𝑔 = 𝑐 = 𝑏) → ((𝑖 ∧ ¬ 𝑖𝑔) ↔ (𝑖𝑏 ∧ ¬ 𝑖𝑐)))
5 elequ2 2126 . . . . . . . . 9 (𝑔 = 𝑐 → (𝑗𝑔𝑗𝑐))
6 elequ2 2126 . . . . . . . . 9 ( = 𝑏 → (𝑗𝑗𝑏))
75, 6bi2bian9 640 . . . . . . . 8 ((𝑔 = 𝑐 = 𝑏) → ((𝑗𝑔𝑗) ↔ (𝑗𝑐𝑗𝑏)))
87imbi2d 344 . . . . . . 7 ((𝑔 = 𝑐 = 𝑏) → ((𝑗(𝑒 dom 𝑒)𝑖 → (𝑗𝑔𝑗)) ↔ (𝑗(𝑒 dom 𝑒)𝑖 → (𝑗𝑐𝑗𝑏))))
98ralbidv 3126 . . . . . 6 ((𝑔 = 𝑐 = 𝑏) → (∀𝑗 ∈ (𝑅1 dom 𝑒)(𝑗(𝑒 dom 𝑒)𝑖 → (𝑗𝑔𝑗)) ↔ ∀𝑗 ∈ (𝑅1 dom 𝑒)(𝑗(𝑒 dom 𝑒)𝑖 → (𝑗𝑐𝑗𝑏))))
104, 9anbi12d 633 . . . . 5 ((𝑔 = 𝑐 = 𝑏) → (((𝑖 ∧ ¬ 𝑖𝑔) ∧ ∀𝑗 ∈ (𝑅1 dom 𝑒)(𝑗(𝑒 dom 𝑒)𝑖 → (𝑗𝑔𝑗))) ↔ ((𝑖𝑏 ∧ ¬ 𝑖𝑐) ∧ ∀𝑗 ∈ (𝑅1 dom 𝑒)(𝑗(𝑒 dom 𝑒)𝑖 → (𝑗𝑐𝑗𝑏)))))
1110rexbidv 3221 . . . 4 ((𝑔 = 𝑐 = 𝑏) → (∃𝑖 ∈ (𝑅1 dom 𝑒)((𝑖 ∧ ¬ 𝑖𝑔) ∧ ∀𝑗 ∈ (𝑅1 dom 𝑒)(𝑗(𝑒 dom 𝑒)𝑖 → (𝑗𝑔𝑗))) ↔ ∃𝑖 ∈ (𝑅1 dom 𝑒)((𝑖𝑏 ∧ ¬ 𝑖𝑐) ∧ ∀𝑗 ∈ (𝑅1 dom 𝑒)(𝑗(𝑒 dom 𝑒)𝑖 → (𝑗𝑐𝑗𝑏)))))
12 elequ1 2118 . . . . . . 7 (𝑖 = 𝑑 → (𝑖𝑏𝑑𝑏))
13 elequ1 2118 . . . . . . . 8 (𝑖 = 𝑑 → (𝑖𝑐𝑑𝑐))
1413notbid 321 . . . . . . 7 (𝑖 = 𝑑 → (¬ 𝑖𝑐 ↔ ¬ 𝑑𝑐))
1512, 14anbi12d 633 . . . . . 6 (𝑖 = 𝑑 → ((𝑖𝑏 ∧ ¬ 𝑖𝑐) ↔ (𝑑𝑏 ∧ ¬ 𝑑𝑐)))
16 breq2 5036 . . . . . . . . 9 (𝑖 = 𝑑 → (𝑗(𝑒 dom 𝑒)𝑖𝑗(𝑒 dom 𝑒)𝑑))
1716imbi1d 345 . . . . . . . 8 (𝑖 = 𝑑 → ((𝑗(𝑒 dom 𝑒)𝑖 → (𝑗𝑐𝑗𝑏)) ↔ (𝑗(𝑒 dom 𝑒)𝑑 → (𝑗𝑐𝑗𝑏))))
1817ralbidv 3126 . . . . . . 7 (𝑖 = 𝑑 → (∀𝑗 ∈ (𝑅1 dom 𝑒)(𝑗(𝑒 dom 𝑒)𝑖 → (𝑗𝑐𝑗𝑏)) ↔ ∀𝑗 ∈ (𝑅1 dom 𝑒)(𝑗(𝑒 dom 𝑒)𝑑 → (𝑗𝑐𝑗𝑏))))
19 breq1 5035 . . . . . . . . 9 (𝑗 = 𝑓 → (𝑗(𝑒 dom 𝑒)𝑑𝑓(𝑒 dom 𝑒)𝑑))
20 elequ1 2118 . . . . . . . . . 10 (𝑗 = 𝑓 → (𝑗𝑐𝑓𝑐))
21 elequ1 2118 . . . . . . . . . 10 (𝑗 = 𝑓 → (𝑗𝑏𝑓𝑏))
2220, 21bibi12d 349 . . . . . . . . 9 (𝑗 = 𝑓 → ((𝑗𝑐𝑗𝑏) ↔ (𝑓𝑐𝑓𝑏)))
2319, 22imbi12d 348 . . . . . . . 8 (𝑗 = 𝑓 → ((𝑗(𝑒 dom 𝑒)𝑑 → (𝑗𝑐𝑗𝑏)) ↔ (𝑓(𝑒 dom 𝑒)𝑑 → (𝑓𝑐𝑓𝑏))))
2423cbvralvw 3361 . . . . . . 7 (∀𝑗 ∈ (𝑅1 dom 𝑒)(𝑗(𝑒 dom 𝑒)𝑑 → (𝑗𝑐𝑗𝑏)) ↔ ∀𝑓 ∈ (𝑅1 dom 𝑒)(𝑓(𝑒 dom 𝑒)𝑑 → (𝑓𝑐𝑓𝑏)))
2518, 24bitrdi 290 . . . . . 6 (𝑖 = 𝑑 → (∀𝑗 ∈ (𝑅1 dom 𝑒)(𝑗(𝑒 dom 𝑒)𝑖 → (𝑗𝑐𝑗𝑏)) ↔ ∀𝑓 ∈ (𝑅1 dom 𝑒)(𝑓(𝑒 dom 𝑒)𝑑 → (𝑓𝑐𝑓𝑏))))
2615, 25anbi12d 633 . . . . 5 (𝑖 = 𝑑 → (((𝑖𝑏 ∧ ¬ 𝑖𝑐) ∧ ∀𝑗 ∈ (𝑅1 dom 𝑒)(𝑗(𝑒 dom 𝑒)𝑖 → (𝑗𝑐𝑗𝑏))) ↔ ((𝑑𝑏 ∧ ¬ 𝑑𝑐) ∧ ∀𝑓 ∈ (𝑅1 dom 𝑒)(𝑓(𝑒 dom 𝑒)𝑑 → (𝑓𝑐𝑓𝑏)))))
2726cbvrexvw 3362 . . . 4 (∃𝑖 ∈ (𝑅1 dom 𝑒)((𝑖𝑏 ∧ ¬ 𝑖𝑐) ∧ ∀𝑗 ∈ (𝑅1 dom 𝑒)(𝑗(𝑒 dom 𝑒)𝑖 → (𝑗𝑐𝑗𝑏))) ↔ ∃𝑑 ∈ (𝑅1 dom 𝑒)((𝑑𝑏 ∧ ¬ 𝑑𝑐) ∧ ∀𝑓 ∈ (𝑅1 dom 𝑒)(𝑓(𝑒 dom 𝑒)𝑑 → (𝑓𝑐𝑓𝑏))))
2811, 27bitrdi 290 . . 3 ((𝑔 = 𝑐 = 𝑏) → (∃𝑖 ∈ (𝑅1 dom 𝑒)((𝑖 ∧ ¬ 𝑖𝑔) ∧ ∀𝑗 ∈ (𝑅1 dom 𝑒)(𝑗(𝑒 dom 𝑒)𝑖 → (𝑗𝑔𝑗))) ↔ ∃𝑑 ∈ (𝑅1 dom 𝑒)((𝑑𝑏 ∧ ¬ 𝑑𝑐) ∧ ∀𝑓 ∈ (𝑅1 dom 𝑒)(𝑓(𝑒 dom 𝑒)𝑑 → (𝑓𝑐𝑓𝑏)))))
2928cbvopabv 5104 . 2 {⟨𝑔, ⟩ ∣ ∃𝑖 ∈ (𝑅1 dom 𝑒)((𝑖 ∧ ¬ 𝑖𝑔) ∧ ∀𝑗 ∈ (𝑅1 dom 𝑒)(𝑗(𝑒 dom 𝑒)𝑖 → (𝑗𝑔𝑗)))} = {⟨𝑐, 𝑏⟩ ∣ ∃𝑑 ∈ (𝑅1 dom 𝑒)((𝑑𝑏 ∧ ¬ 𝑑𝑐) ∧ ∀𝑓 ∈ (𝑅1 dom 𝑒)(𝑓(𝑒 dom 𝑒)𝑑 → (𝑓𝑐𝑓𝑏)))}
30 nfcv 2919 . . 3 𝑐sup((𝑦𝑔), (𝑅1‘dom 𝑒), {⟨𝑔, ⟩ ∣ ∃𝑖 ∈ (𝑅1 dom 𝑒)((𝑖 ∧ ¬ 𝑖𝑔) ∧ ∀𝑗 ∈ (𝑅1 dom 𝑒)(𝑗(𝑒 dom 𝑒)𝑖 → (𝑗𝑔𝑗)))})
31 nfcv 2919 . . . 4 𝑔(𝑦𝑐)
32 nfcv 2919 . . . 4 𝑔(𝑅1‘dom 𝑒)
33 nfopab1 5101 . . . 4 𝑔{⟨𝑔, ⟩ ∣ ∃𝑖 ∈ (𝑅1 dom 𝑒)((𝑖 ∧ ¬ 𝑖𝑔) ∧ ∀𝑗 ∈ (𝑅1 dom 𝑒)(𝑗(𝑒 dom 𝑒)𝑖 → (𝑗𝑔𝑗)))}
3431, 32, 33nfsup 8948 . . 3 𝑔sup((𝑦𝑐), (𝑅1‘dom 𝑒), {⟨𝑔, ⟩ ∣ ∃𝑖 ∈ (𝑅1 dom 𝑒)((𝑖 ∧ ¬ 𝑖𝑔) ∧ ∀𝑗 ∈ (𝑅1 dom 𝑒)(𝑗(𝑒 dom 𝑒)𝑖 → (𝑗𝑔𝑗)))})
35 fveq2 6658 . . . 4 (𝑔 = 𝑐 → (𝑦𝑔) = (𝑦𝑐))
3635supeq1d 8943 . . 3 (𝑔 = 𝑐 → sup((𝑦𝑔), (𝑅1‘dom 𝑒), {⟨𝑔, ⟩ ∣ ∃𝑖 ∈ (𝑅1 dom 𝑒)((𝑖 ∧ ¬ 𝑖𝑔) ∧ ∀𝑗 ∈ (𝑅1 dom 𝑒)(𝑗(𝑒 dom 𝑒)𝑖 → (𝑗𝑔𝑗)))}) = sup((𝑦𝑐), (𝑅1‘dom 𝑒), {⟨𝑔, ⟩ ∣ ∃𝑖 ∈ (𝑅1 dom 𝑒)((𝑖 ∧ ¬ 𝑖𝑔) ∧ ∀𝑗 ∈ (𝑅1 dom 𝑒)(𝑗(𝑒 dom 𝑒)𝑖 → (𝑗𝑔𝑗)))}))
3730, 34, 36cbvmpt 5133 . 2 (𝑔 ∈ V ↦ sup((𝑦𝑔), (𝑅1‘dom 𝑒), {⟨𝑔, ⟩ ∣ ∃𝑖 ∈ (𝑅1 dom 𝑒)((𝑖 ∧ ¬ 𝑖𝑔) ∧ ∀𝑗 ∈ (𝑅1 dom 𝑒)(𝑗(𝑒 dom 𝑒)𝑖 → (𝑗𝑔𝑗)))})) = (𝑐 ∈ V ↦ sup((𝑦𝑐), (𝑅1‘dom 𝑒), {⟨𝑔, ⟩ ∣ ∃𝑖 ∈ (𝑅1 dom 𝑒)((𝑖 ∧ ¬ 𝑖𝑔) ∧ ∀𝑗 ∈ (𝑅1 dom 𝑒)(𝑗(𝑒 dom 𝑒)𝑖 → (𝑗𝑔𝑗)))}))
38 nfcv 2919 . . . 4 𝑐((𝑔 ∈ V ↦ sup((𝑦𝑔), (𝑅1‘dom 𝑒), {⟨𝑔, ⟩ ∣ ∃𝑖 ∈ (𝑅1 dom 𝑒)((𝑖 ∧ ¬ 𝑖𝑔) ∧ ∀𝑗 ∈ (𝑅1 dom 𝑒)(𝑗(𝑒 dom 𝑒)𝑖 → (𝑗𝑔𝑗)))}))‘((𝑅1‘dom 𝑒) ∖ ran 𝑔))
39 nffvmpt1 6669 . . . 4 𝑔((𝑔 ∈ V ↦ sup((𝑦𝑔), (𝑅1‘dom 𝑒), {⟨𝑔, ⟩ ∣ ∃𝑖 ∈ (𝑅1 dom 𝑒)((𝑖 ∧ ¬ 𝑖𝑔) ∧ ∀𝑗 ∈ (𝑅1 dom 𝑒)(𝑗(𝑒 dom 𝑒)𝑖 → (𝑗𝑔𝑗)))}))‘((𝑅1‘dom 𝑒) ∖ ran 𝑐))
40 rneq 5777 . . . . . 6 (𝑔 = 𝑐 → ran 𝑔 = ran 𝑐)
4140difeq2d 4028 . . . . 5 (𝑔 = 𝑐 → ((𝑅1‘dom 𝑒) ∖ ran 𝑔) = ((𝑅1‘dom 𝑒) ∖ ran 𝑐))
4241fveq2d 6662 . . . 4 (𝑔 = 𝑐 → ((𝑔 ∈ V ↦ sup((𝑦𝑔), (𝑅1‘dom 𝑒), {⟨𝑔, ⟩ ∣ ∃𝑖 ∈ (𝑅1 dom 𝑒)((𝑖 ∧ ¬ 𝑖𝑔) ∧ ∀𝑗 ∈ (𝑅1 dom 𝑒)(𝑗(𝑒 dom 𝑒)𝑖 → (𝑗𝑔𝑗)))}))‘((𝑅1‘dom 𝑒) ∖ ran 𝑔)) = ((𝑔 ∈ V ↦ sup((𝑦𝑔), (𝑅1‘dom 𝑒), {⟨𝑔, ⟩ ∣ ∃𝑖 ∈ (𝑅1 dom 𝑒)((𝑖 ∧ ¬ 𝑖𝑔) ∧ ∀𝑗 ∈ (𝑅1 dom 𝑒)(𝑗(𝑒 dom 𝑒)𝑖 → (𝑗𝑔𝑗)))}))‘((𝑅1‘dom 𝑒) ∖ ran 𝑐)))
4338, 39, 42cbvmpt 5133 . . 3 (𝑔 ∈ V ↦ ((𝑔 ∈ V ↦ sup((𝑦𝑔), (𝑅1‘dom 𝑒), {⟨𝑔, ⟩ ∣ ∃𝑖 ∈ (𝑅1 dom 𝑒)((𝑖 ∧ ¬ 𝑖𝑔) ∧ ∀𝑗 ∈ (𝑅1 dom 𝑒)(𝑗(𝑒 dom 𝑒)𝑖 → (𝑗𝑔𝑗)))}))‘((𝑅1‘dom 𝑒) ∖ ran 𝑔))) = (𝑐 ∈ V ↦ ((𝑔 ∈ V ↦ sup((𝑦𝑔), (𝑅1‘dom 𝑒), {⟨𝑔, ⟩ ∣ ∃𝑖 ∈ (𝑅1 dom 𝑒)((𝑖 ∧ ¬ 𝑖𝑔) ∧ ∀𝑗 ∈ (𝑅1 dom 𝑒)(𝑗(𝑒 dom 𝑒)𝑖 → (𝑗𝑔𝑗)))}))‘((𝑅1‘dom 𝑒) ∖ ran 𝑐)))
44 recseq 8020 . . 3 ((𝑔 ∈ V ↦ ((𝑔 ∈ V ↦ sup((𝑦𝑔), (𝑅1‘dom 𝑒), {⟨𝑔, ⟩ ∣ ∃𝑖 ∈ (𝑅1 dom 𝑒)((𝑖 ∧ ¬ 𝑖𝑔) ∧ ∀𝑗 ∈ (𝑅1 dom 𝑒)(𝑗(𝑒 dom 𝑒)𝑖 → (𝑗𝑔𝑗)))}))‘((𝑅1‘dom 𝑒) ∖ ran 𝑔))) = (𝑐 ∈ V ↦ ((𝑔 ∈ V ↦ sup((𝑦𝑔), (𝑅1‘dom 𝑒), {⟨𝑔, ⟩ ∣ ∃𝑖 ∈ (𝑅1 dom 𝑒)((𝑖 ∧ ¬ 𝑖𝑔) ∧ ∀𝑗 ∈ (𝑅1 dom 𝑒)(𝑗(𝑒 dom 𝑒)𝑖 → (𝑗𝑔𝑗)))}))‘((𝑅1‘dom 𝑒) ∖ ran 𝑐))) → recs((𝑔 ∈ V ↦ ((𝑔 ∈ V ↦ sup((𝑦𝑔), (𝑅1‘dom 𝑒), {⟨𝑔, ⟩ ∣ ∃𝑖 ∈ (𝑅1 dom 𝑒)((𝑖 ∧ ¬ 𝑖𝑔) ∧ ∀𝑗 ∈ (𝑅1 dom 𝑒)(𝑗(𝑒 dom 𝑒)𝑖 → (𝑗𝑔𝑗)))}))‘((𝑅1‘dom 𝑒) ∖ ran 𝑔)))) = recs((𝑐 ∈ V ↦ ((𝑔 ∈ V ↦ sup((𝑦𝑔), (𝑅1‘dom 𝑒), {⟨𝑔, ⟩ ∣ ∃𝑖 ∈ (𝑅1 dom 𝑒)((𝑖 ∧ ¬ 𝑖𝑔) ∧ ∀𝑗 ∈ (𝑅1 dom 𝑒)(𝑗(𝑒 dom 𝑒)𝑖 → (𝑗𝑔𝑗)))}))‘((𝑅1‘dom 𝑒) ∖ ran 𝑐)))))
4543, 44ax-mp 5 . 2 recs((𝑔 ∈ V ↦ ((𝑔 ∈ V ↦ sup((𝑦𝑔), (𝑅1‘dom 𝑒), {⟨𝑔, ⟩ ∣ ∃𝑖 ∈ (𝑅1 dom 𝑒)((𝑖 ∧ ¬ 𝑖𝑔) ∧ ∀𝑗 ∈ (𝑅1 dom 𝑒)(𝑗(𝑒 dom 𝑒)𝑖 → (𝑗𝑔𝑗)))}))‘((𝑅1‘dom 𝑒) ∖ ran 𝑔)))) = recs((𝑐 ∈ V ↦ ((𝑔 ∈ V ↦ sup((𝑦𝑔), (𝑅1‘dom 𝑒), {⟨𝑔, ⟩ ∣ ∃𝑖 ∈ (𝑅1 dom 𝑒)((𝑖 ∧ ¬ 𝑖𝑔) ∧ ∀𝑗 ∈ (𝑅1 dom 𝑒)(𝑗(𝑒 dom 𝑒)𝑖 → (𝑗𝑔𝑗)))}))‘((𝑅1‘dom 𝑒) ∖ ran 𝑐))))
46 nfv 1915 . . 3 𝑐 (recs((𝑔 ∈ V ↦ ((𝑔 ∈ V ↦ sup((𝑦𝑔), (𝑅1‘dom 𝑒), {⟨𝑔, ⟩ ∣ ∃𝑖 ∈ (𝑅1 dom 𝑒)((𝑖 ∧ ¬ 𝑖𝑔) ∧ ∀𝑗 ∈ (𝑅1 dom 𝑒)(𝑗(𝑒 dom 𝑒)𝑖 → (𝑗𝑔𝑗)))}))‘((𝑅1‘dom 𝑒) ∖ ran 𝑔)))) “ {𝑔}) ∈ (recs((𝑔 ∈ V ↦ ((𝑔 ∈ V ↦ sup((𝑦𝑔), (𝑅1‘dom 𝑒), {⟨𝑔, ⟩ ∣ ∃𝑖 ∈ (𝑅1 dom 𝑒)((𝑖 ∧ ¬ 𝑖𝑔) ∧ ∀𝑗 ∈ (𝑅1 dom 𝑒)(𝑗(𝑒 dom 𝑒)𝑖 → (𝑗𝑔𝑗)))}))‘((𝑅1‘dom 𝑒) ∖ ran 𝑔)))) “ {})
47 nfv 1915 . . 3 𝑏 (recs((𝑔 ∈ V ↦ ((𝑔 ∈ V ↦ sup((𝑦𝑔), (𝑅1‘dom 𝑒), {⟨𝑔, ⟩ ∣ ∃𝑖 ∈ (𝑅1 dom 𝑒)((𝑖 ∧ ¬ 𝑖𝑔) ∧ ∀𝑗 ∈ (𝑅1 dom 𝑒)(𝑗(𝑒 dom 𝑒)𝑖 → (𝑗𝑔𝑗)))}))‘((𝑅1‘dom 𝑒) ∖ ran 𝑔)))) “ {𝑔}) ∈ (recs((𝑔 ∈ V ↦ ((𝑔 ∈ V ↦ sup((𝑦𝑔), (𝑅1‘dom 𝑒), {⟨𝑔, ⟩ ∣ ∃𝑖 ∈ (𝑅1 dom 𝑒)((𝑖 ∧ ¬ 𝑖𝑔) ∧ ∀𝑗 ∈ (𝑅1 dom 𝑒)(𝑗(𝑒 dom 𝑒)𝑖 → (𝑗𝑔𝑗)))}))‘((𝑅1‘dom 𝑒) ∖ ran 𝑔)))) “ {})
48 nfmpt1 5130 . . . . . . . 8 𝑔(𝑔 ∈ V ↦ ((𝑔 ∈ V ↦ sup((𝑦𝑔), (𝑅1‘dom 𝑒), {⟨𝑔, ⟩ ∣ ∃𝑖 ∈ (𝑅1 dom 𝑒)((𝑖 ∧ ¬ 𝑖𝑔) ∧ ∀𝑗 ∈ (𝑅1 dom 𝑒)(𝑗(𝑒 dom 𝑒)𝑖 → (𝑗𝑔𝑗)))}))‘((𝑅1‘dom 𝑒) ∖ ran 𝑔)))
4948nfrecs 8021 . . . . . . 7 𝑔recs((𝑔 ∈ V ↦ ((𝑔 ∈ V ↦ sup((𝑦𝑔), (𝑅1‘dom 𝑒), {⟨𝑔, ⟩ ∣ ∃𝑖 ∈ (𝑅1 dom 𝑒)((𝑖 ∧ ¬ 𝑖𝑔) ∧ ∀𝑗 ∈ (𝑅1 dom 𝑒)(𝑗(𝑒 dom 𝑒)𝑖 → (𝑗𝑔𝑗)))}))‘((𝑅1‘dom 𝑒) ∖ ran 𝑔))))
5049nfcnv 5718 . . . . . 6 𝑔recs((𝑔 ∈ V ↦ ((𝑔 ∈ V ↦ sup((𝑦𝑔), (𝑅1‘dom 𝑒), {⟨𝑔, ⟩ ∣ ∃𝑖 ∈ (𝑅1 dom 𝑒)((𝑖 ∧ ¬ 𝑖𝑔) ∧ ∀𝑗 ∈ (𝑅1 dom 𝑒)(𝑗(𝑒 dom 𝑒)𝑖 → (𝑗𝑔𝑗)))}))‘((𝑅1‘dom 𝑒) ∖ ran 𝑔))))
51 nfcv 2919 . . . . . 6 𝑔{𝑐}
5250, 51nfima 5909 . . . . 5 𝑔(recs((𝑔 ∈ V ↦ ((𝑔 ∈ V ↦ sup((𝑦𝑔), (𝑅1‘dom 𝑒), {⟨𝑔, ⟩ ∣ ∃𝑖 ∈ (𝑅1 dom 𝑒)((𝑖 ∧ ¬ 𝑖𝑔) ∧ ∀𝑗 ∈ (𝑅1 dom 𝑒)(𝑗(𝑒 dom 𝑒)𝑖 → (𝑗𝑔𝑗)))}))‘((𝑅1‘dom 𝑒) ∖ ran 𝑔)))) “ {𝑐})
5352nfint 4848 . . . 4 𝑔 (recs((𝑔 ∈ V ↦ ((𝑔 ∈ V ↦ sup((𝑦𝑔), (𝑅1‘dom 𝑒), {⟨𝑔, ⟩ ∣ ∃𝑖 ∈ (𝑅1 dom 𝑒)((𝑖 ∧ ¬ 𝑖𝑔) ∧ ∀𝑗 ∈ (𝑅1 dom 𝑒)(𝑗(𝑒 dom 𝑒)𝑖 → (𝑗𝑔𝑗)))}))‘((𝑅1‘dom 𝑒) ∖ ran 𝑔)))) “ {𝑐})
54 nfcv 2919 . . . . . 6 𝑔{𝑏}
5550, 54nfima 5909 . . . . 5 𝑔(recs((𝑔 ∈ V ↦ ((𝑔 ∈ V ↦ sup((𝑦𝑔), (𝑅1‘dom 𝑒), {⟨𝑔, ⟩ ∣ ∃𝑖 ∈ (𝑅1 dom 𝑒)((𝑖 ∧ ¬ 𝑖𝑔) ∧ ∀𝑗 ∈ (𝑅1 dom 𝑒)(𝑗(𝑒 dom 𝑒)𝑖 → (𝑗𝑔𝑗)))}))‘((𝑅1‘dom 𝑒) ∖ ran 𝑔)))) “ {𝑏})
5655nfint 4848 . . . 4 𝑔 (recs((𝑔 ∈ V ↦ ((𝑔 ∈ V ↦ sup((𝑦𝑔), (𝑅1‘dom 𝑒), {⟨𝑔, ⟩ ∣ ∃𝑖 ∈ (𝑅1 dom 𝑒)((𝑖 ∧ ¬ 𝑖𝑔) ∧ ∀𝑗 ∈ (𝑅1 dom 𝑒)(𝑗(𝑒 dom 𝑒)𝑖 → (𝑗𝑔𝑗)))}))‘((𝑅1‘dom 𝑒) ∖ ran 𝑔)))) “ {𝑏})
5753, 56nfel 2933 . . 3 𝑔 (recs((𝑔 ∈ V ↦ ((𝑔 ∈ V ↦ sup((𝑦𝑔), (𝑅1‘dom 𝑒), {⟨𝑔, ⟩ ∣ ∃𝑖 ∈ (𝑅1 dom 𝑒)((𝑖 ∧ ¬ 𝑖𝑔) ∧ ∀𝑗 ∈ (𝑅1 dom 𝑒)(𝑗(𝑒 dom 𝑒)𝑖 → (𝑗𝑔𝑗)))}))‘((𝑅1‘dom 𝑒) ∖ ran 𝑔)))) “ {𝑐}) ∈ (recs((𝑔 ∈ V ↦ ((𝑔 ∈ V ↦ sup((𝑦𝑔), (𝑅1‘dom 𝑒), {⟨𝑔, ⟩ ∣ ∃𝑖 ∈ (𝑅1 dom 𝑒)((𝑖 ∧ ¬ 𝑖𝑔) ∧ ∀𝑗 ∈ (𝑅1 dom 𝑒)(𝑗(𝑒 dom 𝑒)𝑖 → (𝑗𝑔𝑗)))}))‘((𝑅1‘dom 𝑒) ∖ ran 𝑔)))) “ {𝑏})
58 nfcv 2919 . . . . . . . . 9 V
59 nfcv 2919 . . . . . . . . . . . 12 (𝑦𝑔)
60 nfcv 2919 . . . . . . . . . . . 12 (𝑅1‘dom 𝑒)
61 nfopab2 5102 . . . . . . . . . . . 12 {⟨𝑔, ⟩ ∣ ∃𝑖 ∈ (𝑅1 dom 𝑒)((𝑖 ∧ ¬ 𝑖𝑔) ∧ ∀𝑗 ∈ (𝑅1 dom 𝑒)(𝑗(𝑒 dom 𝑒)𝑖 → (𝑗𝑔𝑗)))}
6259, 60, 61nfsup 8948 . . . . . . . . . . 11 sup((𝑦𝑔), (𝑅1‘dom 𝑒), {⟨𝑔, ⟩ ∣ ∃𝑖 ∈ (𝑅1 dom 𝑒)((𝑖 ∧ ¬ 𝑖𝑔) ∧ ∀𝑗 ∈ (𝑅1 dom 𝑒)(𝑗(𝑒 dom 𝑒)𝑖 → (𝑗𝑔𝑗)))})
6358, 62nfmpt 5129 . . . . . . . . . 10 (𝑔 ∈ V ↦ sup((𝑦𝑔), (𝑅1‘dom 𝑒), {⟨𝑔, ⟩ ∣ ∃𝑖 ∈ (𝑅1 dom 𝑒)((𝑖 ∧ ¬ 𝑖𝑔) ∧ ∀𝑗 ∈ (𝑅1 dom 𝑒)(𝑗(𝑒 dom 𝑒)𝑖 → (𝑗𝑔𝑗)))}))
64 nfcv 2919 . . . . . . . . . 10 ((𝑅1‘dom 𝑒) ∖ ran 𝑔)
6563, 64nffv 6668 . . . . . . . . 9 ((𝑔 ∈ V ↦ sup((𝑦𝑔), (𝑅1‘dom 𝑒), {⟨𝑔, ⟩ ∣ ∃𝑖 ∈ (𝑅1 dom 𝑒)((𝑖 ∧ ¬ 𝑖𝑔) ∧ ∀𝑗 ∈ (𝑅1 dom 𝑒)(𝑗(𝑒 dom 𝑒)𝑖 → (𝑗𝑔𝑗)))}))‘((𝑅1‘dom 𝑒) ∖ ran 𝑔))
6658, 65nfmpt 5129 . . . . . . . 8 (𝑔 ∈ V ↦ ((𝑔 ∈ V ↦ sup((𝑦𝑔), (𝑅1‘dom 𝑒), {⟨𝑔, ⟩ ∣ ∃𝑖 ∈ (𝑅1 dom 𝑒)((𝑖 ∧ ¬ 𝑖𝑔) ∧ ∀𝑗 ∈ (𝑅1 dom 𝑒)(𝑗(𝑒 dom 𝑒)𝑖 → (𝑗𝑔𝑗)))}))‘((𝑅1‘dom 𝑒) ∖ ran 𝑔)))
6766nfrecs 8021 . . . . . . 7 recs((𝑔 ∈ V ↦ ((𝑔 ∈ V ↦ sup((𝑦𝑔), (𝑅1‘dom 𝑒), {⟨𝑔, ⟩ ∣ ∃𝑖 ∈ (𝑅1 dom 𝑒)((𝑖 ∧ ¬ 𝑖𝑔) ∧ ∀𝑗 ∈ (𝑅1 dom 𝑒)(𝑗(𝑒 dom 𝑒)𝑖 → (𝑗𝑔𝑗)))}))‘((𝑅1‘dom 𝑒) ∖ ran 𝑔))))
6867nfcnv 5718 . . . . . 6 recs((𝑔 ∈ V ↦ ((𝑔 ∈ V ↦ sup((𝑦𝑔), (𝑅1‘dom 𝑒), {⟨𝑔, ⟩ ∣ ∃𝑖 ∈ (𝑅1 dom 𝑒)((𝑖 ∧ ¬ 𝑖𝑔) ∧ ∀𝑗 ∈ (𝑅1 dom 𝑒)(𝑗(𝑒 dom 𝑒)𝑖 → (𝑗𝑔𝑗)))}))‘((𝑅1‘dom 𝑒) ∖ ran 𝑔))))
69 nfcv 2919 . . . . . 6 {𝑐}
7068, 69nfima 5909 . . . . 5 (recs((𝑔 ∈ V ↦ ((𝑔 ∈ V ↦ sup((𝑦𝑔), (𝑅1‘dom 𝑒), {⟨𝑔, ⟩ ∣ ∃𝑖 ∈ (𝑅1 dom 𝑒)((𝑖 ∧ ¬ 𝑖𝑔) ∧ ∀𝑗 ∈ (𝑅1 dom 𝑒)(𝑗(𝑒 dom 𝑒)𝑖 → (𝑗𝑔𝑗)))}))‘((𝑅1‘dom 𝑒) ∖ ran 𝑔)))) “ {𝑐})
7170nfint 4848 . . . 4 (recs((𝑔 ∈ V ↦ ((𝑔 ∈ V ↦ sup((𝑦𝑔), (𝑅1‘dom 𝑒), {⟨𝑔, ⟩ ∣ ∃𝑖 ∈ (𝑅1 dom 𝑒)((𝑖 ∧ ¬ 𝑖𝑔) ∧ ∀𝑗 ∈ (𝑅1 dom 𝑒)(𝑗(𝑒 dom 𝑒)𝑖 → (𝑗𝑔𝑗)))}))‘((𝑅1‘dom 𝑒) ∖ ran 𝑔)))) “ {𝑐})
72 nfcv 2919 . . . . . 6 {𝑏}
7368, 72nfima 5909 . . . . 5 (recs((𝑔 ∈ V ↦ ((𝑔 ∈ V ↦ sup((𝑦𝑔), (𝑅1‘dom 𝑒), {⟨𝑔, ⟩ ∣ ∃𝑖 ∈ (𝑅1 dom 𝑒)((𝑖 ∧ ¬ 𝑖𝑔) ∧ ∀𝑗 ∈ (𝑅1 dom 𝑒)(𝑗(𝑒 dom 𝑒)𝑖 → (𝑗𝑔𝑗)))}))‘((𝑅1‘dom 𝑒) ∖ ran 𝑔)))) “ {𝑏})
7473nfint 4848 . . . 4 (recs((𝑔 ∈ V ↦ ((𝑔 ∈ V ↦ sup((𝑦𝑔), (𝑅1‘dom 𝑒), {⟨𝑔, ⟩ ∣ ∃𝑖 ∈ (𝑅1 dom 𝑒)((𝑖 ∧ ¬ 𝑖𝑔) ∧ ∀𝑗 ∈ (𝑅1 dom 𝑒)(𝑗(𝑒 dom 𝑒)𝑖 → (𝑗𝑔𝑗)))}))‘((𝑅1‘dom 𝑒) ∖ ran 𝑔)))) “ {𝑏})
7571, 74nfel 2933 . . 3 (recs((𝑔 ∈ V ↦ ((𝑔 ∈ V ↦ sup((𝑦𝑔), (𝑅1‘dom 𝑒), {⟨𝑔, ⟩ ∣ ∃𝑖 ∈ (𝑅1 dom 𝑒)((𝑖 ∧ ¬ 𝑖𝑔) ∧ ∀𝑗 ∈ (𝑅1 dom 𝑒)(𝑗(𝑒 dom 𝑒)𝑖 → (𝑗𝑔𝑗)))}))‘((𝑅1‘dom 𝑒) ∖ ran 𝑔)))) “ {𝑐}) ∈ (recs((𝑔 ∈ V ↦ ((𝑔 ∈ V ↦ sup((𝑦𝑔), (𝑅1‘dom 𝑒), {⟨𝑔, ⟩ ∣ ∃𝑖 ∈ (𝑅1 dom 𝑒)((𝑖 ∧ ¬ 𝑖𝑔) ∧ ∀𝑗 ∈ (𝑅1 dom 𝑒)(𝑗(𝑒 dom 𝑒)𝑖 → (𝑗𝑔𝑗)))}))‘((𝑅1‘dom 𝑒) ∖ ran 𝑔)))) “ {𝑏})
76 sneq 4532 . . . . . 6 (𝑔 = 𝑐 → {𝑔} = {𝑐})
7776imaeq2d 5901 . . . . 5 (𝑔 = 𝑐 → (recs((𝑔 ∈ V ↦ ((𝑔 ∈ V ↦ sup((𝑦𝑔), (𝑅1‘dom 𝑒), {⟨𝑔, ⟩ ∣ ∃𝑖 ∈ (𝑅1 dom 𝑒)((𝑖 ∧ ¬ 𝑖𝑔) ∧ ∀𝑗 ∈ (𝑅1 dom 𝑒)(𝑗(𝑒 dom 𝑒)𝑖 → (𝑗𝑔𝑗)))}))‘((𝑅1‘dom 𝑒) ∖ ran 𝑔)))) “ {𝑔}) = (recs((𝑔 ∈ V ↦ ((𝑔 ∈ V ↦ sup((𝑦𝑔), (𝑅1‘dom 𝑒), {⟨𝑔, ⟩ ∣ ∃𝑖 ∈ (𝑅1 dom 𝑒)((𝑖 ∧ ¬ 𝑖𝑔) ∧ ∀𝑗 ∈ (𝑅1 dom 𝑒)(𝑗(𝑒 dom 𝑒)𝑖 → (𝑗𝑔𝑗)))}))‘((𝑅1‘dom 𝑒) ∖ ran 𝑔)))) “ {𝑐}))
7877inteqd 4843 . . . 4 (𝑔 = 𝑐 (recs((𝑔 ∈ V ↦ ((𝑔 ∈ V ↦ sup((𝑦𝑔), (𝑅1‘dom 𝑒), {⟨𝑔, ⟩ ∣ ∃𝑖 ∈ (𝑅1 dom 𝑒)((𝑖 ∧ ¬ 𝑖𝑔) ∧ ∀𝑗 ∈ (𝑅1 dom 𝑒)(𝑗(𝑒 dom 𝑒)𝑖 → (𝑗𝑔𝑗)))}))‘((𝑅1‘dom 𝑒) ∖ ran 𝑔)))) “ {𝑔}) = (recs((𝑔 ∈ V ↦ ((𝑔 ∈ V ↦ sup((𝑦𝑔), (𝑅1‘dom 𝑒), {⟨𝑔, ⟩ ∣ ∃𝑖 ∈ (𝑅1 dom 𝑒)((𝑖 ∧ ¬ 𝑖𝑔) ∧ ∀𝑗 ∈ (𝑅1 dom 𝑒)(𝑗(𝑒 dom 𝑒)𝑖 → (𝑗𝑔𝑗)))}))‘((𝑅1‘dom 𝑒) ∖ ran 𝑔)))) “ {𝑐}))
79 sneq 4532 . . . . . 6 ( = 𝑏 → {} = {𝑏})
8079imaeq2d 5901 . . . . 5 ( = 𝑏 → (recs((𝑔 ∈ V ↦ ((𝑔 ∈ V ↦ sup((𝑦𝑔), (𝑅1‘dom 𝑒), {⟨𝑔, ⟩ ∣ ∃𝑖 ∈ (𝑅1 dom 𝑒)((𝑖 ∧ ¬ 𝑖𝑔) ∧ ∀𝑗 ∈ (𝑅1 dom 𝑒)(𝑗(𝑒 dom 𝑒)𝑖 → (𝑗𝑔𝑗)))}))‘((𝑅1‘dom 𝑒) ∖ ran 𝑔)))) “ {}) = (recs((𝑔 ∈ V ↦ ((𝑔 ∈ V ↦ sup((𝑦𝑔), (𝑅1‘dom 𝑒), {⟨𝑔, ⟩ ∣ ∃𝑖 ∈ (𝑅1 dom 𝑒)((𝑖 ∧ ¬ 𝑖𝑔) ∧ ∀𝑗 ∈ (𝑅1 dom 𝑒)(𝑗(𝑒 dom 𝑒)𝑖 → (𝑗𝑔𝑗)))}))‘((𝑅1‘dom 𝑒) ∖ ran 𝑔)))) “ {𝑏}))
8180inteqd 4843 . . . 4 ( = 𝑏 (recs((𝑔 ∈ V ↦ ((𝑔 ∈ V ↦ sup((𝑦𝑔), (𝑅1‘dom 𝑒), {⟨𝑔, ⟩ ∣ ∃𝑖 ∈ (𝑅1 dom 𝑒)((𝑖 ∧ ¬ 𝑖𝑔) ∧ ∀𝑗 ∈ (𝑅1 dom 𝑒)(𝑗(𝑒 dom 𝑒)𝑖 → (𝑗𝑔𝑗)))}))‘((𝑅1‘dom 𝑒) ∖ ran 𝑔)))) “ {}) = (recs((𝑔 ∈ V ↦ ((𝑔 ∈ V ↦ sup((𝑦𝑔), (𝑅1‘dom 𝑒), {⟨𝑔, ⟩ ∣ ∃𝑖 ∈ (𝑅1 dom 𝑒)((𝑖 ∧ ¬ 𝑖𝑔) ∧ ∀𝑗 ∈ (𝑅1 dom 𝑒)(𝑗(𝑒 dom 𝑒)𝑖 → (𝑗𝑔𝑗)))}))‘((𝑅1‘dom 𝑒) ∖ ran 𝑔)))) “ {𝑏}))
82 eleq12 2841 . . . 4 (( (recs((𝑔 ∈ V ↦ ((𝑔 ∈ V ↦ sup((𝑦𝑔), (𝑅1‘dom 𝑒), {⟨𝑔, ⟩ ∣ ∃𝑖 ∈ (𝑅1 dom 𝑒)((𝑖 ∧ ¬ 𝑖𝑔) ∧ ∀𝑗 ∈ (𝑅1 dom 𝑒)(𝑗(𝑒 dom 𝑒)𝑖 → (𝑗𝑔𝑗)))}))‘((𝑅1‘dom 𝑒) ∖ ran 𝑔)))) “ {𝑔}) = (recs((𝑔 ∈ V ↦ ((𝑔 ∈ V ↦ sup((𝑦𝑔), (𝑅1‘dom 𝑒), {⟨𝑔, ⟩ ∣ ∃𝑖 ∈ (𝑅1 dom 𝑒)((𝑖 ∧ ¬ 𝑖𝑔) ∧ ∀𝑗 ∈ (𝑅1 dom 𝑒)(𝑗(𝑒 dom 𝑒)𝑖 → (𝑗𝑔𝑗)))}))‘((𝑅1‘dom 𝑒) ∖ ran 𝑔)))) “ {𝑐}) ∧ (recs((𝑔 ∈ V ↦ ((𝑔 ∈ V ↦ sup((𝑦𝑔), (𝑅1‘dom 𝑒), {⟨𝑔, ⟩ ∣ ∃𝑖 ∈ (𝑅1 dom 𝑒)((𝑖 ∧ ¬ 𝑖𝑔) ∧ ∀𝑗 ∈ (𝑅1 dom 𝑒)(𝑗(𝑒 dom 𝑒)𝑖 → (𝑗𝑔𝑗)))}))‘((𝑅1‘dom 𝑒) ∖ ran 𝑔)))) “ {}) = (recs((𝑔 ∈ V ↦ ((𝑔 ∈ V ↦ sup((𝑦𝑔), (𝑅1‘dom 𝑒), {⟨𝑔, ⟩ ∣ ∃𝑖 ∈ (𝑅1 dom 𝑒)((𝑖 ∧ ¬ 𝑖𝑔) ∧ ∀𝑗 ∈ (𝑅1 dom 𝑒)(𝑗(𝑒 dom 𝑒)𝑖 → (𝑗𝑔𝑗)))}))‘((𝑅1‘dom 𝑒) ∖ ran 𝑔)))) “ {𝑏})) → ( (recs((𝑔 ∈ V ↦ ((𝑔 ∈ V ↦ sup((𝑦𝑔), (𝑅1‘dom 𝑒), {⟨𝑔, ⟩ ∣ ∃𝑖 ∈ (𝑅1 dom 𝑒)((𝑖 ∧ ¬ 𝑖𝑔) ∧ ∀𝑗 ∈ (𝑅1 dom 𝑒)(𝑗(𝑒 dom 𝑒)𝑖 → (𝑗𝑔𝑗)))}))‘((𝑅1‘dom 𝑒) ∖ ran 𝑔)))) “ {𝑔}) ∈ (recs((𝑔 ∈ V ↦ ((𝑔 ∈ V ↦ sup((𝑦𝑔), (𝑅1‘dom 𝑒), {⟨𝑔, ⟩ ∣ ∃𝑖 ∈ (𝑅1 dom 𝑒)((𝑖 ∧ ¬ 𝑖𝑔) ∧ ∀𝑗 ∈ (𝑅1 dom 𝑒)(𝑗(𝑒 dom 𝑒)𝑖 → (𝑗𝑔𝑗)))}))‘((𝑅1‘dom 𝑒) ∖ ran 𝑔)))) “ {}) ↔ (recs((𝑔 ∈ V ↦ ((𝑔 ∈ V ↦ sup((𝑦𝑔), (𝑅1‘dom 𝑒), {⟨𝑔, ⟩ ∣ ∃𝑖 ∈ (𝑅1 dom 𝑒)((𝑖 ∧ ¬ 𝑖𝑔) ∧ ∀𝑗 ∈ (𝑅1 dom 𝑒)(𝑗(𝑒 dom 𝑒)𝑖 → (𝑗𝑔𝑗)))}))‘((𝑅1‘dom 𝑒) ∖ ran 𝑔)))) “ {𝑐}) ∈ (recs((𝑔 ∈ V ↦ ((𝑔 ∈ V ↦ sup((𝑦𝑔), (𝑅1‘dom 𝑒), {⟨𝑔, ⟩ ∣ ∃𝑖 ∈ (𝑅1 dom 𝑒)((𝑖 ∧ ¬ 𝑖𝑔) ∧ ∀𝑗 ∈ (𝑅1 dom 𝑒)(𝑗(𝑒 dom 𝑒)𝑖 → (𝑗𝑔𝑗)))}))‘((𝑅1‘dom 𝑒) ∖ ran 𝑔)))) “ {𝑏})))
8378, 81, 82syl2an 598 . . 3 ((𝑔 = 𝑐 = 𝑏) → ( (recs((𝑔 ∈ V ↦ ((𝑔 ∈ V ↦ sup((𝑦𝑔), (𝑅1‘dom 𝑒), {⟨𝑔, ⟩ ∣ ∃𝑖 ∈ (𝑅1 dom 𝑒)((𝑖 ∧ ¬ 𝑖𝑔) ∧ ∀𝑗 ∈ (𝑅1 dom 𝑒)(𝑗(𝑒 dom 𝑒)𝑖 → (𝑗𝑔𝑗)))}))‘((𝑅1‘dom 𝑒) ∖ ran 𝑔)))) “ {𝑔}) ∈ (recs((𝑔 ∈ V ↦ ((𝑔 ∈ V ↦ sup((𝑦𝑔), (𝑅1‘dom 𝑒), {⟨𝑔, ⟩ ∣ ∃𝑖 ∈ (𝑅1 dom 𝑒)((𝑖 ∧ ¬ 𝑖𝑔) ∧ ∀𝑗 ∈ (𝑅1 dom 𝑒)(𝑗(𝑒 dom 𝑒)𝑖 → (𝑗𝑔𝑗)))}))‘((𝑅1‘dom 𝑒) ∖ ran 𝑔)))) “ {}) ↔ (recs((𝑔 ∈ V ↦ ((𝑔 ∈ V ↦ sup((𝑦𝑔), (𝑅1‘dom 𝑒), {⟨𝑔, ⟩ ∣ ∃𝑖 ∈ (𝑅1 dom 𝑒)((𝑖 ∧ ¬ 𝑖𝑔) ∧ ∀𝑗 ∈ (𝑅1 dom 𝑒)(𝑗(𝑒 dom 𝑒)𝑖 → (𝑗𝑔𝑗)))}))‘((𝑅1‘dom 𝑒) ∖ ran 𝑔)))) “ {𝑐}) ∈ (recs((𝑔 ∈ V ↦ ((𝑔 ∈ V ↦ sup((𝑦𝑔), (𝑅1‘dom 𝑒), {⟨𝑔, ⟩ ∣ ∃𝑖 ∈ (𝑅1 dom 𝑒)((𝑖 ∧ ¬ 𝑖𝑔) ∧ ∀𝑗 ∈ (𝑅1 dom 𝑒)(𝑗(𝑒 dom 𝑒)𝑖 → (𝑗𝑔𝑗)))}))‘((𝑅1‘dom 𝑒) ∖ ran 𝑔)))) “ {𝑏})))
8446, 47, 57, 75, 83cbvopab 5103 . 2 {⟨𝑔, ⟩ ∣ (recs((𝑔 ∈ V ↦ ((𝑔 ∈ V ↦ sup((𝑦𝑔), (𝑅1‘dom 𝑒), {⟨𝑔, ⟩ ∣ ∃𝑖 ∈ (𝑅1 dom 𝑒)((𝑖 ∧ ¬ 𝑖𝑔) ∧ ∀𝑗 ∈ (𝑅1 dom 𝑒)(𝑗(𝑒 dom 𝑒)𝑖 → (𝑗𝑔𝑗)))}))‘((𝑅1‘dom 𝑒) ∖ ran 𝑔)))) “ {𝑔}) ∈ (recs((𝑔 ∈ V ↦ ((𝑔 ∈ V ↦ sup((𝑦𝑔), (𝑅1‘dom 𝑒), {⟨𝑔, ⟩ ∣ ∃𝑖 ∈ (𝑅1 dom 𝑒)((𝑖 ∧ ¬ 𝑖𝑔) ∧ ∀𝑗 ∈ (𝑅1 dom 𝑒)(𝑗(𝑒 dom 𝑒)𝑖 → (𝑗𝑔𝑗)))}))‘((𝑅1‘dom 𝑒) ∖ ran 𝑔)))) “ {})} = {⟨𝑐, 𝑏⟩ ∣ (recs((𝑔 ∈ V ↦ ((𝑔 ∈ V ↦ sup((𝑦𝑔), (𝑅1‘dom 𝑒), {⟨𝑔, ⟩ ∣ ∃𝑖 ∈ (𝑅1 dom 𝑒)((𝑖 ∧ ¬ 𝑖𝑔) ∧ ∀𝑗 ∈ (𝑅1 dom 𝑒)(𝑗(𝑒 dom 𝑒)𝑖 → (𝑗𝑔𝑗)))}))‘((𝑅1‘dom 𝑒) ∖ ran 𝑔)))) “ {𝑐}) ∈ (recs((𝑔 ∈ V ↦ ((𝑔 ∈ V ↦ sup((𝑦𝑔), (𝑅1‘dom 𝑒), {⟨𝑔, ⟩ ∣ ∃𝑖 ∈ (𝑅1 dom 𝑒)((𝑖 ∧ ¬ 𝑖𝑔) ∧ ∀𝑗 ∈ (𝑅1 dom 𝑒)(𝑗(𝑒 dom 𝑒)𝑖 → (𝑗𝑔𝑗)))}))‘((𝑅1‘dom 𝑒) ∖ ran 𝑔)))) “ {𝑏})}
85 fveq2 6658 . . . . 5 (𝑔 = 𝑐 → (rank‘𝑔) = (rank‘𝑐))
86 fveq2 6658 . . . . 5 ( = 𝑏 → (rank‘) = (rank‘𝑏))
8785, 86breqan12d 5048 . . . 4 ((𝑔 = 𝑐 = 𝑏) → ((rank‘𝑔) E (rank‘) ↔ (rank‘𝑐) E (rank‘𝑏)))
8885, 86eqeqan12d 2775 . . . . 5 ((𝑔 = 𝑐 = 𝑏) → ((rank‘𝑔) = (rank‘) ↔ (rank‘𝑐) = (rank‘𝑏)))
89 simpl 486 . . . . . 6 ((𝑔 = 𝑐 = 𝑏) → 𝑔 = 𝑐)
90 suceq 6234 . . . . . . . . 9 ((rank‘𝑔) = (rank‘𝑐) → suc (rank‘𝑔) = suc (rank‘𝑐))
9185, 90syl 17 . . . . . . . 8 (𝑔 = 𝑐 → suc (rank‘𝑔) = suc (rank‘𝑐))
9291adantr 484 . . . . . . 7 ((𝑔 = 𝑐 = 𝑏) → suc (rank‘𝑔) = suc (rank‘𝑐))
9392fveq2d 6662 . . . . . 6 ((𝑔 = 𝑐 = 𝑏) → (𝑒‘suc (rank‘𝑔)) = (𝑒‘suc (rank‘𝑐)))
94 simpr 488 . . . . . 6 ((𝑔 = 𝑐 = 𝑏) → = 𝑏)
9589, 93, 94breq123d 5046 . . . . 5 ((𝑔 = 𝑐 = 𝑏) → (𝑔(𝑒‘suc (rank‘𝑔))𝑐(𝑒‘suc (rank‘𝑐))𝑏))
9688, 95anbi12d 633 . . . 4 ((𝑔 = 𝑐 = 𝑏) → (((rank‘𝑔) = (rank‘) ∧ 𝑔(𝑒‘suc (rank‘𝑔))) ↔ ((rank‘𝑐) = (rank‘𝑏) ∧ 𝑐(𝑒‘suc (rank‘𝑐))𝑏)))
9787, 96orbi12d 916 . . 3 ((𝑔 = 𝑐 = 𝑏) → (((rank‘𝑔) E (rank‘) ∨ ((rank‘𝑔) = (rank‘) ∧ 𝑔(𝑒‘suc (rank‘𝑔)))) ↔ ((rank‘𝑐) E (rank‘𝑏) ∨ ((rank‘𝑐) = (rank‘𝑏) ∧ 𝑐(𝑒‘suc (rank‘𝑐))𝑏))))
9897cbvopabv 5104 . 2 {⟨𝑔, ⟩ ∣ ((rank‘𝑔) E (rank‘) ∨ ((rank‘𝑔) = (rank‘) ∧ 𝑔(𝑒‘suc (rank‘𝑔))))} = {⟨𝑐, 𝑏⟩ ∣ ((rank‘𝑐) E (rank‘𝑏) ∨ ((rank‘𝑐) = (rank‘𝑏) ∧ 𝑐(𝑒‘suc (rank‘𝑐))𝑏))}
99 eqid 2758 . 2 (if(dom 𝑒 = dom 𝑒, {⟨𝑔, ⟩ ∣ ((rank‘𝑔) E (rank‘) ∨ ((rank‘𝑔) = (rank‘) ∧ 𝑔(𝑒‘suc (rank‘𝑔))))}, {⟨𝑔, ⟩ ∣ (recs((𝑔 ∈ V ↦ ((𝑔 ∈ V ↦ sup((𝑦𝑔), (𝑅1‘dom 𝑒), {⟨𝑔, ⟩ ∣ ∃𝑖 ∈ (𝑅1 dom 𝑒)((𝑖 ∧ ¬ 𝑖𝑔) ∧ ∀𝑗 ∈ (𝑅1 dom 𝑒)(𝑗(𝑒 dom 𝑒)𝑖 → (𝑗𝑔𝑗)))}))‘((𝑅1‘dom 𝑒) ∖ ran 𝑔)))) “ {𝑔}) ∈ (recs((𝑔 ∈ V ↦ ((𝑔 ∈ V ↦ sup((𝑦𝑔), (𝑅1‘dom 𝑒), {⟨𝑔, ⟩ ∣ ∃𝑖 ∈ (𝑅1 dom 𝑒)((𝑖 ∧ ¬ 𝑖𝑔) ∧ ∀𝑗 ∈ (𝑅1 dom 𝑒)(𝑗(𝑒 dom 𝑒)𝑖 → (𝑗𝑔𝑗)))}))‘((𝑅1‘dom 𝑒) ∖ ran 𝑔)))) “ {})}) ∩ ((𝑅1‘dom 𝑒) × (𝑅1‘dom 𝑒))) = (if(dom 𝑒 = dom 𝑒, {⟨𝑔, ⟩ ∣ ((rank‘𝑔) E (rank‘) ∨ ((rank‘𝑔) = (rank‘) ∧ 𝑔(𝑒‘suc (rank‘𝑔))))}, {⟨𝑔, ⟩ ∣ (recs((𝑔 ∈ V ↦ ((𝑔 ∈ V ↦ sup((𝑦𝑔), (𝑅1‘dom 𝑒), {⟨𝑔, ⟩ ∣ ∃𝑖 ∈ (𝑅1 dom 𝑒)((𝑖 ∧ ¬ 𝑖𝑔) ∧ ∀𝑗 ∈ (𝑅1 dom 𝑒)(𝑗(𝑒 dom 𝑒)𝑖 → (𝑗𝑔𝑗)))}))‘((𝑅1‘dom 𝑒) ∖ ran 𝑔)))) “ {𝑔}) ∈ (recs((𝑔 ∈ V ↦ ((𝑔 ∈ V ↦ sup((𝑦𝑔), (𝑅1‘dom 𝑒), {⟨𝑔, ⟩ ∣ ∃𝑖 ∈ (𝑅1 dom 𝑒)((𝑖 ∧ ¬ 𝑖𝑔) ∧ ∀𝑗 ∈ (𝑅1 dom 𝑒)(𝑗(𝑒 dom 𝑒)𝑖 → (𝑗𝑔𝑗)))}))‘((𝑅1‘dom 𝑒) ∖ ran 𝑔)))) “ {})}) ∩ ((𝑅1‘dom 𝑒) × (𝑅1‘dom 𝑒)))
100 dmeq 5743 . . . . . . 7 (𝑙 = 𝑒 → dom 𝑙 = dom 𝑒)
101100unieqd 4812 . . . . . . 7 (𝑙 = 𝑒 dom 𝑙 = dom 𝑒)
102100, 101eqeq12d 2774 . . . . . 6 (𝑙 = 𝑒 → (dom 𝑙 = dom 𝑙 ↔ dom 𝑒 = dom 𝑒))
103 fveq1 6657 . . . . . . . . . 10 (𝑙 = 𝑒 → (𝑙‘suc (rank‘𝑔)) = (𝑒‘suc (rank‘𝑔)))
104103breqd 5043 . . . . . . . . 9 (𝑙 = 𝑒 → (𝑔(𝑙‘suc (rank‘𝑔))𝑔(𝑒‘suc (rank‘𝑔))))
105104anbi2d 631 . . . . . . . 8 (𝑙 = 𝑒 → (((rank‘𝑔) = (rank‘) ∧ 𝑔(𝑙‘suc (rank‘𝑔))) ↔ ((rank‘𝑔) = (rank‘) ∧ 𝑔(𝑒‘suc (rank‘𝑔)))))
106105orbi2d 913 . . . . . . 7 (𝑙 = 𝑒 → (((rank‘𝑔) E (rank‘) ∨ ((rank‘𝑔) = (rank‘) ∧ 𝑔(𝑙‘suc (rank‘𝑔)))) ↔ ((rank‘𝑔) E (rank‘) ∨ ((rank‘𝑔) = (rank‘) ∧ 𝑔(𝑒‘suc (rank‘𝑔))))))
107106opabbidv 5098 . . . . . 6 (𝑙 = 𝑒 → {⟨𝑔, ⟩ ∣ ((rank‘𝑔) E (rank‘) ∨ ((rank‘𝑔) = (rank‘) ∧ 𝑔(𝑙‘suc (rank‘𝑔))))} = {⟨𝑔, ⟩ ∣ ((rank‘𝑔) E (rank‘) ∨ ((rank‘𝑔) = (rank‘) ∧ 𝑔(𝑒‘suc (rank‘𝑔))))})
108 eqidd 2759 . . . . . . . . . . . . . . . 16 (𝑙 = 𝑒 → (𝑦𝑔) = (𝑦𝑔))
109100fveq2d 6662 . . . . . . . . . . . . . . . 16 (𝑙 = 𝑒 → (𝑅1‘dom 𝑙) = (𝑅1‘dom 𝑒))
110101fveq2d 6662 . . . . . . . . . . . . . . . . . 18 (𝑙 = 𝑒 → (𝑅1 dom 𝑙) = (𝑅1 dom 𝑒))
111 id 22 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑙 = 𝑒𝑙 = 𝑒)
112111, 101fveq12d 6665 . . . . . . . . . . . . . . . . . . . . . 22 (𝑙 = 𝑒 → (𝑙 dom 𝑙) = (𝑒 dom 𝑒))
113112breqd 5043 . . . . . . . . . . . . . . . . . . . . 21 (𝑙 = 𝑒 → (𝑗(𝑙 dom 𝑙)𝑖𝑗(𝑒 dom 𝑒)𝑖))
114113imbi1d 345 . . . . . . . . . . . . . . . . . . . 20 (𝑙 = 𝑒 → ((𝑗(𝑙 dom 𝑙)𝑖 → (𝑗𝑔𝑗)) ↔ (𝑗(𝑒 dom 𝑒)𝑖 → (𝑗𝑔𝑗))))
115110, 114raleqbidv 3319 . . . . . . . . . . . . . . . . . . 19 (𝑙 = 𝑒 → (∀𝑗 ∈ (𝑅1 dom 𝑙)(𝑗(𝑙 dom 𝑙)𝑖 → (𝑗𝑔𝑗)) ↔ ∀𝑗 ∈ (𝑅1 dom 𝑒)(𝑗(𝑒 dom 𝑒)𝑖 → (𝑗𝑔𝑗))))
116115anbi2d 631 . . . . . . . . . . . . . . . . . 18 (𝑙 = 𝑒 → (((𝑖 ∧ ¬ 𝑖𝑔) ∧ ∀𝑗 ∈ (𝑅1 dom 𝑙)(𝑗(𝑙 dom 𝑙)𝑖 → (𝑗𝑔𝑗))) ↔ ((𝑖 ∧ ¬ 𝑖𝑔) ∧ ∀𝑗 ∈ (𝑅1 dom 𝑒)(𝑗(𝑒 dom 𝑒)𝑖 → (𝑗𝑔𝑗)))))
117110, 116rexeqbidv 3320 . . . . . . . . . . . . . . . . 17 (𝑙 = 𝑒 → (∃𝑖 ∈ (𝑅1 dom 𝑙)((𝑖 ∧ ¬ 𝑖𝑔) ∧ ∀𝑗 ∈ (𝑅1 dom 𝑙)(𝑗(𝑙 dom 𝑙)𝑖 → (𝑗𝑔𝑗))) ↔ ∃𝑖 ∈ (𝑅1 dom 𝑒)((𝑖 ∧ ¬ 𝑖𝑔) ∧ ∀𝑗 ∈ (𝑅1 dom 𝑒)(𝑗(𝑒 dom 𝑒)𝑖 → (𝑗𝑔𝑗)))))
118117opabbidv 5098 . . . . . . . . . . . . . . . 16 (𝑙 = 𝑒 → {⟨𝑔, ⟩ ∣ ∃𝑖 ∈ (𝑅1 dom 𝑙)((𝑖 ∧ ¬ 𝑖𝑔) ∧ ∀𝑗 ∈ (𝑅1 dom 𝑙)(𝑗(𝑙 dom 𝑙)𝑖 → (𝑗𝑔𝑗)))} = {⟨𝑔, ⟩ ∣ ∃𝑖 ∈ (𝑅1 dom 𝑒)((𝑖 ∧ ¬ 𝑖𝑔) ∧ ∀𝑗 ∈ (𝑅1 dom 𝑒)(𝑗(𝑒 dom 𝑒)𝑖 → (𝑗𝑔𝑗)))})
119108, 109, 118supeq123d 8947 . . . . . . . . . . . . . . 15 (𝑙 = 𝑒 → sup((𝑦𝑔), (𝑅1‘dom 𝑙), {⟨𝑔, ⟩ ∣ ∃𝑖 ∈ (𝑅1 dom 𝑙)((𝑖 ∧ ¬ 𝑖𝑔) ∧ ∀𝑗 ∈ (𝑅1 dom 𝑙)(𝑗(𝑙 dom 𝑙)𝑖 → (𝑗𝑔𝑗)))}) = sup((𝑦𝑔), (𝑅1‘dom 𝑒), {⟨𝑔, ⟩ ∣ ∃𝑖 ∈ (𝑅1 dom 𝑒)((𝑖 ∧ ¬ 𝑖𝑔) ∧ ∀𝑗 ∈ (𝑅1 dom 𝑒)(𝑗(𝑒 dom 𝑒)𝑖 → (𝑗𝑔𝑗)))}))
120119mpteq2dv 5128 . . . . . . . . . . . . . 14 (𝑙 = 𝑒 → (𝑔 ∈ V ↦ sup((𝑦𝑔), (𝑅1‘dom 𝑙), {⟨𝑔, ⟩ ∣ ∃𝑖 ∈ (𝑅1 dom 𝑙)((𝑖 ∧ ¬ 𝑖𝑔) ∧ ∀𝑗 ∈ (𝑅1 dom 𝑙)(𝑗(𝑙 dom 𝑙)𝑖 → (𝑗𝑔𝑗)))})) = (𝑔 ∈ V ↦ sup((𝑦𝑔), (𝑅1‘dom 𝑒), {⟨𝑔, ⟩ ∣ ∃𝑖 ∈ (𝑅1 dom 𝑒)((𝑖 ∧ ¬ 𝑖𝑔) ∧ ∀𝑗 ∈ (𝑅1 dom 𝑒)(𝑗(𝑒 dom 𝑒)𝑖 → (𝑗𝑔𝑗)))})))
121109difeq1d 4027 . . . . . . . . . . . . . 14 (𝑙 = 𝑒 → ((𝑅1‘dom 𝑙) ∖ ran 𝑔) = ((𝑅1‘dom 𝑒) ∖ ran 𝑔))
122120, 121fveq12d 6665 . . . . . . . . . . . . 13 (𝑙 = 𝑒 → ((𝑔 ∈ V ↦ sup((𝑦𝑔), (𝑅1‘dom 𝑙), {⟨𝑔, ⟩ ∣ ∃𝑖 ∈ (𝑅1 dom 𝑙)((𝑖 ∧ ¬ 𝑖𝑔) ∧ ∀𝑗 ∈ (𝑅1 dom 𝑙)(𝑗(𝑙 dom 𝑙)𝑖 → (𝑗𝑔𝑗)))}))‘((𝑅1‘dom 𝑙) ∖ ran 𝑔)) = ((𝑔 ∈ V ↦ sup((𝑦𝑔), (𝑅1‘dom 𝑒), {⟨𝑔, ⟩ ∣ ∃𝑖 ∈ (𝑅1 dom 𝑒)((𝑖 ∧ ¬ 𝑖𝑔) ∧ ∀𝑗 ∈ (𝑅1 dom 𝑒)(𝑗(𝑒 dom 𝑒)𝑖 → (𝑗𝑔𝑗)))}))‘((𝑅1‘dom 𝑒) ∖ ran 𝑔)))
123122mpteq2dv 5128 . . . . . . . . . . . 12 (𝑙 = 𝑒 → (𝑔 ∈ V ↦ ((𝑔 ∈ V ↦ sup((𝑦𝑔), (𝑅1‘dom 𝑙), {⟨𝑔, ⟩ ∣ ∃𝑖 ∈ (𝑅1 dom 𝑙)((𝑖 ∧ ¬ 𝑖𝑔) ∧ ∀𝑗 ∈ (𝑅1 dom 𝑙)(𝑗(𝑙 dom 𝑙)𝑖 → (𝑗𝑔𝑗)))}))‘((𝑅1‘dom 𝑙) ∖ ran 𝑔))) = (𝑔 ∈ V ↦ ((𝑔 ∈ V ↦ sup((𝑦𝑔), (𝑅1‘dom 𝑒), {⟨𝑔, ⟩ ∣ ∃𝑖 ∈ (𝑅1 dom 𝑒)((𝑖 ∧ ¬ 𝑖𝑔) ∧ ∀𝑗 ∈ (𝑅1 dom 𝑒)(𝑗(𝑒 dom 𝑒)𝑖 → (𝑗𝑔𝑗)))}))‘((𝑅1‘dom 𝑒) ∖ ran 𝑔))))
124 recseq 8020 . . . . . . . . . . . 12 ((𝑔 ∈ V ↦ ((𝑔 ∈ V ↦ sup((𝑦𝑔), (𝑅1‘dom 𝑙), {⟨𝑔, ⟩ ∣ ∃𝑖 ∈ (𝑅1 dom 𝑙)((𝑖 ∧ ¬ 𝑖𝑔) ∧ ∀𝑗 ∈ (𝑅1 dom 𝑙)(𝑗(𝑙 dom 𝑙)𝑖 → (𝑗𝑔𝑗)))}))‘((𝑅1‘dom 𝑙) ∖ ran 𝑔))) = (𝑔 ∈ V ↦ ((𝑔 ∈ V ↦ sup((𝑦𝑔), (𝑅1‘dom 𝑒), {⟨𝑔, ⟩ ∣ ∃𝑖 ∈ (𝑅1 dom 𝑒)((𝑖 ∧ ¬ 𝑖𝑔) ∧ ∀𝑗 ∈ (𝑅1 dom 𝑒)(𝑗(𝑒 dom 𝑒)𝑖 → (𝑗𝑔𝑗)))}))‘((𝑅1‘dom 𝑒) ∖ ran 𝑔))) → recs((𝑔 ∈ V ↦ ((𝑔 ∈ V ↦ sup((𝑦𝑔), (𝑅1‘dom 𝑙), {⟨𝑔, ⟩ ∣ ∃𝑖 ∈ (𝑅1 dom 𝑙)((𝑖 ∧ ¬ 𝑖𝑔) ∧ ∀𝑗 ∈ (𝑅1 dom 𝑙)(𝑗(𝑙 dom 𝑙)𝑖 → (𝑗𝑔𝑗)))}))‘((𝑅1‘dom 𝑙) ∖ ran 𝑔)))) = recs((𝑔 ∈ V ↦ ((𝑔 ∈ V ↦ sup((𝑦𝑔), (𝑅1‘dom 𝑒), {⟨𝑔, ⟩ ∣ ∃𝑖 ∈ (𝑅1 dom 𝑒)((𝑖 ∧ ¬ 𝑖𝑔) ∧ ∀𝑗 ∈ (𝑅1 dom 𝑒)(𝑗(𝑒 dom 𝑒)𝑖 → (𝑗𝑔𝑗)))}))‘((𝑅1‘dom 𝑒) ∖ ran 𝑔)))))
125123, 124syl 17 . . . . . . . . . . 11 (𝑙 = 𝑒 → recs((𝑔 ∈ V ↦ ((𝑔 ∈ V ↦ sup((𝑦𝑔), (𝑅1‘dom 𝑙), {⟨𝑔, ⟩ ∣ ∃𝑖 ∈ (𝑅1 dom 𝑙)((𝑖 ∧ ¬ 𝑖𝑔) ∧ ∀𝑗 ∈ (𝑅1 dom 𝑙)(𝑗(𝑙 dom 𝑙)𝑖 → (𝑗𝑔𝑗)))}))‘((𝑅1‘dom 𝑙) ∖ ran 𝑔)))) = recs((𝑔 ∈ V ↦ ((𝑔 ∈ V ↦ sup((𝑦𝑔), (𝑅1‘dom 𝑒), {⟨𝑔, ⟩ ∣ ∃𝑖 ∈ (𝑅1 dom 𝑒)((𝑖 ∧ ¬ 𝑖𝑔) ∧ ∀𝑗 ∈ (𝑅1 dom 𝑒)(𝑗(𝑒 dom 𝑒)𝑖 → (𝑗𝑔𝑗)))}))‘((𝑅1‘dom 𝑒) ∖ ran 𝑔)))))
126125cnveqd 5715 . . . . . . . . . 10 (𝑙 = 𝑒recs((𝑔 ∈ V ↦ ((𝑔 ∈ V ↦ sup((𝑦𝑔), (𝑅1‘dom 𝑙), {⟨𝑔, ⟩ ∣ ∃𝑖 ∈ (𝑅1 dom 𝑙)((𝑖 ∧ ¬ 𝑖𝑔) ∧ ∀𝑗 ∈ (𝑅1 dom 𝑙)(𝑗(𝑙 dom 𝑙)𝑖 → (𝑗𝑔𝑗)))}))‘((𝑅1‘dom 𝑙) ∖ ran 𝑔)))) = recs((𝑔 ∈ V ↦ ((𝑔 ∈ V ↦ sup((𝑦𝑔), (𝑅1‘dom 𝑒), {⟨𝑔, ⟩ ∣ ∃𝑖 ∈ (𝑅1 dom 𝑒)((𝑖 ∧ ¬ 𝑖𝑔) ∧ ∀𝑗 ∈ (𝑅1 dom 𝑒)(𝑗(𝑒 dom 𝑒)𝑖 → (𝑗𝑔𝑗)))}))‘((𝑅1‘dom 𝑒) ∖ ran 𝑔)))))
127126imaeq1d 5900 . . . . . . . . 9 (𝑙 = 𝑒 → (recs((𝑔 ∈ V ↦ ((𝑔 ∈ V ↦ sup((𝑦𝑔), (𝑅1‘dom 𝑙), {⟨𝑔, ⟩ ∣ ∃𝑖 ∈ (𝑅1 dom 𝑙)((𝑖 ∧ ¬ 𝑖𝑔) ∧ ∀𝑗 ∈ (𝑅1 dom 𝑙)(𝑗(𝑙 dom 𝑙)𝑖 → (𝑗𝑔𝑗)))}))‘((𝑅1‘dom 𝑙) ∖ ran 𝑔)))) “ {𝑔}) = (recs((𝑔 ∈ V ↦ ((𝑔 ∈ V ↦ sup((𝑦𝑔), (𝑅1‘dom 𝑒), {⟨𝑔, ⟩ ∣ ∃𝑖 ∈ (𝑅1 dom 𝑒)((𝑖 ∧ ¬ 𝑖𝑔) ∧ ∀𝑗 ∈ (𝑅1 dom 𝑒)(𝑗(𝑒 dom 𝑒)𝑖 → (𝑗𝑔𝑗)))}))‘((𝑅1‘dom 𝑒) ∖ ran 𝑔)))) “ {𝑔}))
128127inteqd 4843 . . . . . . . 8 (𝑙 = 𝑒 (recs((𝑔 ∈ V ↦ ((𝑔 ∈ V ↦ sup((𝑦𝑔), (𝑅1‘dom 𝑙), {⟨𝑔, ⟩ ∣ ∃𝑖 ∈ (𝑅1 dom 𝑙)((𝑖 ∧ ¬ 𝑖𝑔) ∧ ∀𝑗 ∈ (𝑅1 dom 𝑙)(𝑗(𝑙 dom 𝑙)𝑖 → (𝑗𝑔𝑗)))}))‘((𝑅1‘dom 𝑙) ∖ ran 𝑔)))) “ {𝑔}) = (recs((𝑔 ∈ V ↦ ((𝑔 ∈ V ↦ sup((𝑦𝑔), (𝑅1‘dom 𝑒), {⟨𝑔, ⟩ ∣ ∃𝑖 ∈ (𝑅1 dom 𝑒)((𝑖 ∧ ¬ 𝑖𝑔) ∧ ∀𝑗 ∈ (𝑅1 dom 𝑒)(𝑗(𝑒 dom 𝑒)𝑖 → (𝑗𝑔𝑗)))}))‘((𝑅1‘dom 𝑒) ∖ ran 𝑔)))) “ {𝑔}))
129126imaeq1d 5900 . . . . . . . . 9 (𝑙 = 𝑒 → (recs((𝑔 ∈ V ↦ ((𝑔 ∈ V ↦ sup((𝑦𝑔), (𝑅1‘dom 𝑙), {⟨𝑔, ⟩ ∣ ∃𝑖 ∈ (𝑅1 dom 𝑙)((𝑖 ∧ ¬ 𝑖𝑔) ∧ ∀𝑗 ∈ (𝑅1 dom 𝑙)(𝑗(𝑙 dom 𝑙)𝑖 → (𝑗𝑔𝑗)))}))‘((𝑅1‘dom 𝑙) ∖ ran 𝑔)))) “ {}) = (recs((𝑔 ∈ V ↦ ((𝑔 ∈ V ↦ sup((𝑦𝑔), (𝑅1‘dom 𝑒), {⟨𝑔, ⟩ ∣ ∃𝑖 ∈ (𝑅1 dom 𝑒)((𝑖 ∧ ¬ 𝑖𝑔) ∧ ∀𝑗 ∈ (𝑅1 dom 𝑒)(𝑗(𝑒 dom 𝑒)𝑖 → (𝑗𝑔𝑗)))}))‘((𝑅1‘dom 𝑒) ∖ ran 𝑔)))) “ {}))
130129inteqd 4843 . . . . . . . 8 (𝑙 = 𝑒 (recs((𝑔 ∈ V ↦ ((𝑔 ∈ V ↦ sup((𝑦𝑔), (𝑅1‘dom 𝑙), {⟨𝑔, ⟩ ∣ ∃𝑖 ∈ (𝑅1 dom 𝑙)((𝑖 ∧ ¬ 𝑖𝑔) ∧ ∀𝑗 ∈ (𝑅1 dom 𝑙)(𝑗(𝑙 dom 𝑙)𝑖 → (𝑗𝑔𝑗)))}))‘((𝑅1‘dom 𝑙) ∖ ran 𝑔)))) “ {}) = (recs((𝑔 ∈ V ↦ ((𝑔 ∈ V ↦ sup((𝑦𝑔), (𝑅1‘dom 𝑒), {⟨𝑔, ⟩ ∣ ∃𝑖 ∈ (𝑅1 dom 𝑒)((𝑖 ∧ ¬ 𝑖𝑔) ∧ ∀𝑗 ∈ (𝑅1 dom 𝑒)(𝑗(𝑒 dom 𝑒)𝑖 → (𝑗𝑔𝑗)))}))‘((𝑅1‘dom 𝑒) ∖ ran 𝑔)))) “ {}))
131128, 130eleq12d 2846 . . . . . . 7 (𝑙 = 𝑒 → ( (recs((𝑔 ∈ V ↦ ((𝑔 ∈ V ↦ sup((𝑦𝑔), (𝑅1‘dom 𝑙), {⟨𝑔, ⟩ ∣ ∃𝑖 ∈ (𝑅1 dom 𝑙)((𝑖 ∧ ¬ 𝑖𝑔) ∧ ∀𝑗 ∈ (𝑅1 dom 𝑙)(𝑗(𝑙 dom 𝑙)𝑖 → (𝑗𝑔𝑗)))}))‘((𝑅1‘dom 𝑙) ∖ ran 𝑔)))) “ {𝑔}) ∈ (recs((𝑔 ∈ V ↦ ((𝑔 ∈ V ↦ sup((𝑦𝑔), (𝑅1‘dom 𝑙), {⟨𝑔, ⟩ ∣ ∃𝑖 ∈ (𝑅1 dom 𝑙)((𝑖 ∧ ¬ 𝑖𝑔) ∧ ∀𝑗 ∈ (𝑅1 dom 𝑙)(𝑗(𝑙 dom 𝑙)𝑖 → (𝑗𝑔𝑗)))}))‘((𝑅1‘dom 𝑙) ∖ ran 𝑔)))) “ {}) ↔ (recs((𝑔 ∈ V ↦ ((𝑔 ∈ V ↦ sup((𝑦𝑔), (𝑅1‘dom 𝑒), {⟨𝑔, ⟩ ∣ ∃𝑖 ∈ (𝑅1 dom 𝑒)((𝑖 ∧ ¬ 𝑖𝑔) ∧ ∀𝑗 ∈ (𝑅1 dom 𝑒)(𝑗(𝑒 dom 𝑒)𝑖 → (𝑗𝑔𝑗)))}))‘((𝑅1‘dom 𝑒) ∖ ran 𝑔)))) “ {𝑔}) ∈ (recs((𝑔 ∈ V ↦ ((𝑔 ∈ V ↦ sup((𝑦𝑔), (𝑅1‘dom 𝑒), {⟨𝑔, ⟩ ∣ ∃𝑖 ∈ (𝑅1 dom 𝑒)((𝑖 ∧ ¬ 𝑖𝑔) ∧ ∀𝑗 ∈ (𝑅1 dom 𝑒)(𝑗(𝑒 dom 𝑒)𝑖 → (𝑗𝑔𝑗)))}))‘((𝑅1‘dom 𝑒) ∖ ran 𝑔)))) “ {})))
132131opabbidv 5098 . . . . . 6 (𝑙 = 𝑒 → {⟨𝑔, ⟩ ∣ (recs((𝑔 ∈ V ↦ ((𝑔 ∈ V ↦ sup((𝑦𝑔), (𝑅1‘dom 𝑙), {⟨𝑔, ⟩ ∣ ∃𝑖 ∈ (𝑅1 dom 𝑙)((𝑖 ∧ ¬ 𝑖𝑔) ∧ ∀𝑗 ∈ (𝑅1 dom 𝑙)(𝑗(𝑙 dom 𝑙)𝑖 → (𝑗𝑔𝑗)))}))‘((𝑅1‘dom 𝑙) ∖ ran 𝑔)))) “ {𝑔}) ∈ (recs((𝑔 ∈ V ↦ ((𝑔 ∈ V ↦ sup((𝑦𝑔), (𝑅1‘dom 𝑙), {⟨𝑔, ⟩ ∣ ∃𝑖 ∈ (𝑅1 dom 𝑙)((𝑖 ∧ ¬ 𝑖𝑔) ∧ ∀𝑗 ∈ (𝑅1 dom 𝑙)(𝑗(𝑙 dom 𝑙)𝑖 → (𝑗𝑔𝑗)))}))‘((𝑅1‘dom 𝑙) ∖ ran 𝑔)))) “ {})} = {⟨𝑔, ⟩ ∣ (recs((𝑔 ∈ V ↦ ((𝑔 ∈ V ↦ sup((𝑦𝑔), (𝑅1‘dom 𝑒), {⟨𝑔, ⟩ ∣ ∃𝑖 ∈ (𝑅1 dom 𝑒)((𝑖 ∧ ¬ 𝑖𝑔) ∧ ∀𝑗 ∈ (𝑅1 dom 𝑒)(𝑗(𝑒 dom 𝑒)𝑖 → (𝑗𝑔𝑗)))}))‘((𝑅1‘dom 𝑒) ∖ ran 𝑔)))) “ {𝑔}) ∈ (recs((𝑔 ∈ V ↦ ((𝑔 ∈ V ↦ sup((𝑦𝑔), (𝑅1‘dom 𝑒), {⟨𝑔, ⟩ ∣ ∃𝑖 ∈ (𝑅1 dom 𝑒)((𝑖 ∧ ¬ 𝑖𝑔) ∧ ∀𝑗 ∈ (𝑅1 dom 𝑒)(𝑗(𝑒 dom 𝑒)𝑖 → (𝑗𝑔𝑗)))}))‘((𝑅1‘dom 𝑒) ∖ ran 𝑔)))) “ {})})
133102, 107, 132ifbieq12d 4448 . . . . 5 (𝑙 = 𝑒 → if(dom 𝑙 = dom 𝑙, {⟨𝑔, ⟩ ∣ ((rank‘𝑔) E (rank‘) ∨ ((rank‘𝑔) = (rank‘) ∧ 𝑔(𝑙‘suc (rank‘𝑔))))}, {⟨𝑔, ⟩ ∣ (recs((𝑔 ∈ V ↦ ((𝑔 ∈ V ↦ sup((𝑦𝑔), (𝑅1‘dom 𝑙), {⟨𝑔, ⟩ ∣ ∃𝑖 ∈ (𝑅1 dom 𝑙)((𝑖 ∧ ¬ 𝑖𝑔) ∧ ∀𝑗 ∈ (𝑅1 dom 𝑙)(𝑗(𝑙 dom 𝑙)𝑖 → (𝑗𝑔𝑗)))}))‘((𝑅1‘dom 𝑙) ∖ ran 𝑔)))) “ {𝑔}) ∈ (recs((𝑔 ∈ V ↦ ((𝑔 ∈ V ↦ sup((𝑦𝑔), (𝑅1‘dom 𝑙), {⟨𝑔, ⟩ ∣ ∃𝑖 ∈ (𝑅1 dom 𝑙)((𝑖 ∧ ¬ 𝑖𝑔) ∧ ∀𝑗 ∈ (𝑅1 dom 𝑙)(𝑗(𝑙 dom 𝑙)𝑖 → (𝑗𝑔𝑗)))}))‘((𝑅1‘dom 𝑙) ∖ ran 𝑔)))) “ {})}) = if(dom 𝑒 = dom 𝑒, {⟨𝑔, ⟩ ∣ ((rank‘𝑔) E (rank‘) ∨ ((rank‘𝑔) = (rank‘) ∧ 𝑔(𝑒‘suc (rank‘𝑔))))}, {⟨𝑔, ⟩ ∣ (recs((𝑔 ∈ V ↦ ((𝑔 ∈ V ↦ sup((𝑦𝑔), (𝑅1‘dom 𝑒), {⟨𝑔, ⟩ ∣ ∃𝑖 ∈ (𝑅1 dom 𝑒)((𝑖 ∧ ¬ 𝑖𝑔) ∧ ∀𝑗 ∈ (𝑅1 dom 𝑒)(𝑗(𝑒 dom 𝑒)𝑖 → (𝑗𝑔𝑗)))}))‘((𝑅1‘dom 𝑒) ∖ ran 𝑔)))) “ {𝑔}) ∈ (recs((𝑔 ∈ V ↦ ((𝑔 ∈ V ↦ sup((𝑦𝑔), (𝑅1‘dom 𝑒), {⟨𝑔, ⟩ ∣ ∃𝑖 ∈ (𝑅1 dom 𝑒)((𝑖 ∧ ¬ 𝑖𝑔) ∧ ∀𝑗 ∈ (𝑅1 dom 𝑒)(𝑗(𝑒 dom 𝑒)𝑖 → (𝑗𝑔𝑗)))}))‘((𝑅1‘dom 𝑒) ∖ ran 𝑔)))) “ {})}))
134109sqxpeqd 5556 . . . . 5 (𝑙 = 𝑒 → ((𝑅1‘dom 𝑙) × (𝑅1‘dom 𝑙)) = ((𝑅1‘dom 𝑒) × (𝑅1‘dom 𝑒)))
135133, 134ineq12d 4118 . . . 4 (𝑙 = 𝑒 → (if(dom 𝑙 = dom 𝑙, {⟨𝑔, ⟩ ∣ ((rank‘𝑔) E (rank‘) ∨ ((rank‘𝑔) = (rank‘) ∧ 𝑔(𝑙‘suc (rank‘𝑔))))}, {⟨𝑔, ⟩ ∣ (recs((𝑔 ∈ V ↦ ((𝑔 ∈ V ↦ sup((𝑦𝑔), (𝑅1‘dom 𝑙), {⟨𝑔, ⟩ ∣ ∃𝑖 ∈ (𝑅1 dom 𝑙)((𝑖 ∧ ¬ 𝑖𝑔) ∧ ∀𝑗 ∈ (𝑅1 dom 𝑙)(𝑗(𝑙 dom 𝑙)𝑖 → (𝑗𝑔𝑗)))}))‘((𝑅1‘dom 𝑙) ∖ ran 𝑔)))) “ {𝑔}) ∈ (recs((𝑔 ∈ V ↦ ((𝑔 ∈ V ↦ sup((𝑦𝑔), (𝑅1‘dom 𝑙), {⟨𝑔, ⟩ ∣ ∃𝑖 ∈ (𝑅1 dom 𝑙)((𝑖 ∧ ¬ 𝑖𝑔) ∧ ∀𝑗 ∈ (𝑅1 dom 𝑙)(𝑗(𝑙 dom 𝑙)𝑖 → (𝑗𝑔𝑗)))}))‘((𝑅1‘dom 𝑙) ∖ ran 𝑔)))) “ {})}) ∩ ((𝑅1‘dom 𝑙) × (𝑅1‘dom 𝑙))) = (if(dom 𝑒 = dom 𝑒, {⟨𝑔, ⟩ ∣ ((rank‘𝑔) E (rank‘) ∨ ((rank‘𝑔) = (rank‘) ∧ 𝑔(𝑒‘suc (rank‘𝑔))))}, {⟨𝑔, ⟩ ∣ (recs((𝑔 ∈ V ↦ ((𝑔 ∈ V ↦ sup((𝑦𝑔), (𝑅1‘dom 𝑒), {⟨𝑔, ⟩ ∣ ∃𝑖 ∈ (𝑅1 dom 𝑒)((𝑖 ∧ ¬ 𝑖𝑔) ∧ ∀𝑗 ∈ (𝑅1 dom 𝑒)(𝑗(𝑒 dom 𝑒)𝑖 → (𝑗𝑔𝑗)))}))‘((𝑅1‘dom 𝑒) ∖ ran 𝑔)))) “ {𝑔}) ∈ (recs((𝑔 ∈ V ↦ ((𝑔 ∈ V ↦ sup((𝑦𝑔), (𝑅1‘dom 𝑒), {⟨𝑔, ⟩ ∣ ∃𝑖 ∈ (𝑅1 dom 𝑒)((𝑖 ∧ ¬ 𝑖𝑔) ∧ ∀𝑗 ∈ (𝑅1 dom 𝑒)(𝑗(𝑒 dom 𝑒)𝑖 → (𝑗𝑔𝑗)))}))‘((𝑅1‘dom 𝑒) ∖ ran 𝑔)))) “ {})}) ∩ ((𝑅1‘dom 𝑒) × (𝑅1‘dom 𝑒))))
136135cbvmptv 5135 . . 3 (𝑙 ∈ V ↦ (if(dom 𝑙 = dom 𝑙, {⟨𝑔, ⟩ ∣ ((rank‘𝑔) E (rank‘) ∨ ((rank‘𝑔) = (rank‘) ∧ 𝑔(𝑙‘suc (rank‘𝑔))))}, {⟨𝑔, ⟩ ∣ (recs((𝑔 ∈ V ↦ ((𝑔 ∈ V ↦ sup((𝑦𝑔), (𝑅1‘dom 𝑙), {⟨𝑔, ⟩ ∣ ∃𝑖 ∈ (𝑅1 dom 𝑙)((𝑖 ∧ ¬ 𝑖𝑔) ∧ ∀𝑗 ∈ (𝑅1 dom 𝑙)(𝑗(𝑙 dom 𝑙)𝑖 → (𝑗𝑔𝑗)))}))‘((𝑅1‘dom 𝑙) ∖ ran 𝑔)))) “ {𝑔}) ∈ (recs((𝑔 ∈ V ↦ ((𝑔 ∈ V ↦ sup((𝑦𝑔), (𝑅1‘dom 𝑙), {⟨𝑔, ⟩ ∣ ∃𝑖 ∈ (𝑅1 dom 𝑙)((𝑖 ∧ ¬ 𝑖𝑔) ∧ ∀𝑗 ∈ (𝑅1 dom 𝑙)(𝑗(𝑙 dom 𝑙)𝑖 → (𝑗𝑔𝑗)))}))‘((𝑅1‘dom 𝑙) ∖ ran 𝑔)))) “ {})}) ∩ ((𝑅1‘dom 𝑙) × (𝑅1‘dom 𝑙)))) = (𝑒 ∈ V ↦ (if(dom 𝑒 = dom 𝑒, {⟨𝑔, ⟩ ∣ ((rank‘𝑔) E (rank‘) ∨ ((rank‘𝑔) = (rank‘) ∧ 𝑔(𝑒‘suc (rank‘𝑔))))}, {⟨𝑔, ⟩ ∣ (recs((𝑔 ∈ V ↦ ((𝑔 ∈ V ↦ sup((𝑦𝑔), (𝑅1‘dom 𝑒), {⟨𝑔, ⟩ ∣ ∃𝑖 ∈ (𝑅1 dom 𝑒)((𝑖 ∧ ¬ 𝑖𝑔) ∧ ∀𝑗 ∈ (𝑅1 dom 𝑒)(𝑗(𝑒 dom 𝑒)𝑖 → (𝑗𝑔𝑗)))}))‘((𝑅1‘dom 𝑒) ∖ ran 𝑔)))) “ {𝑔}) ∈ (recs((𝑔 ∈ V ↦ ((𝑔 ∈ V ↦ sup((𝑦𝑔), (𝑅1‘dom 𝑒), {⟨𝑔, ⟩ ∣ ∃𝑖 ∈ (𝑅1 dom 𝑒)((𝑖 ∧ ¬ 𝑖𝑔) ∧ ∀𝑗 ∈ (𝑅1 dom 𝑒)(𝑗(𝑒 dom 𝑒)𝑖 → (𝑗𝑔𝑗)))}))‘((𝑅1‘dom 𝑒) ∖ ran 𝑔)))) “ {})}) ∩ ((𝑅1‘dom 𝑒) × (𝑅1‘dom 𝑒))))
137 recseq 8020 . . 3 ((𝑙 ∈ V ↦ (if(dom 𝑙 = dom 𝑙, {⟨𝑔, ⟩ ∣ ((rank‘𝑔) E (rank‘) ∨ ((rank‘𝑔) = (rank‘) ∧ 𝑔(𝑙‘suc (rank‘𝑔))))}, {⟨𝑔, ⟩ ∣ (recs((𝑔 ∈ V ↦ ((𝑔 ∈ V ↦ sup((𝑦𝑔), (𝑅1‘dom 𝑙), {⟨𝑔, ⟩ ∣ ∃𝑖 ∈ (𝑅1 dom 𝑙)((𝑖 ∧ ¬ 𝑖𝑔) ∧ ∀𝑗 ∈ (𝑅1 dom 𝑙)(𝑗(𝑙 dom 𝑙)𝑖 → (𝑗𝑔𝑗)))}))‘((𝑅1‘dom 𝑙) ∖ ran 𝑔)))) “ {𝑔}) ∈ (recs((𝑔 ∈ V ↦ ((𝑔 ∈ V ↦ sup((𝑦𝑔), (𝑅1‘dom 𝑙), {⟨𝑔, ⟩ ∣ ∃𝑖 ∈ (𝑅1 dom 𝑙)((𝑖 ∧ ¬ 𝑖𝑔) ∧ ∀𝑗 ∈ (𝑅1 dom 𝑙)(𝑗(𝑙 dom 𝑙)𝑖 → (𝑗𝑔𝑗)))}))‘((𝑅1‘dom 𝑙) ∖ ran 𝑔)))) “ {})}) ∩ ((𝑅1‘dom 𝑙) × (𝑅1‘dom 𝑙)))) = (𝑒 ∈ V ↦ (if(dom 𝑒 = dom 𝑒, {⟨𝑔, ⟩ ∣ ((rank‘𝑔) E (rank‘) ∨ ((rank‘𝑔) = (rank‘) ∧ 𝑔(𝑒‘suc (rank‘𝑔))))}, {⟨𝑔, ⟩ ∣ (recs((𝑔 ∈ V ↦ ((𝑔 ∈ V ↦ sup((𝑦𝑔), (𝑅1‘dom 𝑒), {⟨𝑔, ⟩ ∣ ∃𝑖 ∈ (𝑅1 dom 𝑒)((𝑖 ∧ ¬ 𝑖𝑔) ∧ ∀𝑗 ∈ (𝑅1 dom 𝑒)(𝑗(𝑒 dom 𝑒)𝑖 → (𝑗𝑔𝑗)))}))‘((𝑅1‘dom 𝑒) ∖ ran 𝑔)))) “ {𝑔}) ∈ (recs((𝑔 ∈ V ↦ ((𝑔 ∈ V ↦ sup((𝑦𝑔), (𝑅1‘dom 𝑒), {⟨𝑔, ⟩ ∣ ∃𝑖 ∈ (𝑅1 dom 𝑒)((𝑖 ∧ ¬ 𝑖𝑔) ∧ ∀𝑗 ∈ (𝑅1 dom 𝑒)(𝑗(𝑒 dom 𝑒)𝑖 → (𝑗𝑔𝑗)))}))‘((𝑅1‘dom 𝑒) ∖ ran 𝑔)))) “ {})}) ∩ ((𝑅1‘dom 𝑒) × (𝑅1‘dom 𝑒)))) → recs((𝑙 ∈ V ↦ (if(dom 𝑙 = dom 𝑙, {⟨𝑔, ⟩ ∣ ((rank‘𝑔) E (rank‘) ∨ ((rank‘𝑔) = (rank‘) ∧ 𝑔(𝑙‘suc (rank‘𝑔))))}, {⟨𝑔, ⟩ ∣ (recs((𝑔 ∈ V ↦ ((𝑔 ∈ V ↦ sup((𝑦𝑔), (𝑅1‘dom 𝑙), {⟨𝑔, ⟩ ∣ ∃𝑖 ∈ (𝑅1 dom 𝑙)((𝑖 ∧ ¬ 𝑖𝑔) ∧ ∀𝑗 ∈ (𝑅1 dom 𝑙)(𝑗(𝑙 dom 𝑙)𝑖 → (𝑗𝑔𝑗)))}))‘((𝑅1‘dom 𝑙) ∖ ran 𝑔)))) “ {𝑔}) ∈ (recs((𝑔 ∈ V ↦ ((𝑔 ∈ V ↦ sup((𝑦𝑔), (𝑅1‘dom 𝑙), {⟨𝑔, ⟩ ∣ ∃𝑖 ∈ (𝑅1 dom 𝑙)((𝑖 ∧ ¬ 𝑖𝑔) ∧ ∀𝑗 ∈ (𝑅1 dom 𝑙)(𝑗(𝑙 dom 𝑙)𝑖 → (𝑗𝑔𝑗)))}))‘((𝑅1‘dom 𝑙) ∖ ran 𝑔)))) “ {})}) ∩ ((𝑅1‘dom 𝑙) × (𝑅1‘dom 𝑙))))) = recs((𝑒 ∈ V ↦ (if(dom 𝑒 = dom 𝑒, {⟨𝑔, ⟩ ∣ ((rank‘𝑔) E (rank‘) ∨ ((rank‘𝑔) = (rank‘) ∧ 𝑔(𝑒‘suc (rank‘𝑔))))}, {⟨𝑔, ⟩ ∣ (recs((𝑔 ∈ V ↦ ((𝑔 ∈ V ↦ sup((𝑦𝑔), (𝑅1‘dom 𝑒), {⟨𝑔, ⟩ ∣ ∃𝑖 ∈ (𝑅1 dom 𝑒)((𝑖 ∧ ¬ 𝑖𝑔) ∧ ∀𝑗 ∈ (𝑅1 dom 𝑒)(𝑗(𝑒 dom 𝑒)𝑖 → (𝑗𝑔𝑗)))}))‘((𝑅1‘dom 𝑒) ∖ ran 𝑔)))) “ {𝑔}) ∈ (recs((𝑔 ∈ V ↦ ((𝑔 ∈ V ↦ sup((𝑦𝑔), (𝑅1‘dom 𝑒), {⟨𝑔, ⟩ ∣ ∃𝑖 ∈ (𝑅1 dom 𝑒)((𝑖 ∧ ¬ 𝑖𝑔) ∧ ∀𝑗 ∈ (𝑅1 dom 𝑒)(𝑗(𝑒 dom 𝑒)𝑖 → (𝑗𝑔𝑗)))}))‘((𝑅1‘dom 𝑒) ∖ ran 𝑔)))) “ {})}) ∩ ((𝑅1‘dom 𝑒) × (𝑅1‘dom 𝑒))))))
138136, 137ax-mp 5 . 2 recs((𝑙 ∈ V ↦ (if(dom 𝑙 = dom 𝑙, {⟨𝑔, ⟩ ∣ ((rank‘𝑔) E (rank‘) ∨ ((rank‘𝑔) = (rank‘) ∧ 𝑔(𝑙‘suc (rank‘𝑔))))}, {⟨𝑔, ⟩ ∣ (recs((𝑔 ∈ V ↦ ((𝑔 ∈ V ↦ sup((𝑦𝑔), (𝑅1‘dom 𝑙), {⟨𝑔, ⟩ ∣ ∃𝑖 ∈ (𝑅1 dom 𝑙)((𝑖 ∧ ¬ 𝑖𝑔) ∧ ∀𝑗 ∈ (𝑅1 dom 𝑙)(𝑗(𝑙 dom 𝑙)𝑖 → (𝑗𝑔𝑗)))}))‘((𝑅1‘dom 𝑙) ∖ ran 𝑔)))) “ {𝑔}) ∈ (recs((𝑔 ∈ V ↦ ((𝑔 ∈ V ↦ sup((𝑦𝑔), (𝑅1‘dom 𝑙), {⟨𝑔, ⟩ ∣ ∃𝑖 ∈ (𝑅1 dom 𝑙)((𝑖 ∧ ¬ 𝑖𝑔) ∧ ∀𝑗 ∈ (𝑅1 dom 𝑙)(𝑗(𝑙 dom 𝑙)𝑖 → (𝑗𝑔𝑗)))}))‘((𝑅1‘dom 𝑙) ∖ ran 𝑔)))) “ {})}) ∩ ((𝑅1‘dom 𝑙) × (𝑅1‘dom 𝑙))))) = recs((𝑒 ∈ V ↦ (if(dom 𝑒 = dom 𝑒, {⟨𝑔, ⟩ ∣ ((rank‘𝑔) E (rank‘) ∨ ((rank‘𝑔) = (rank‘) ∧ 𝑔(𝑒‘suc (rank‘𝑔))))}, {⟨𝑔, ⟩ ∣ (recs((𝑔 ∈ V ↦ ((𝑔 ∈ V ↦ sup((𝑦𝑔), (𝑅1‘dom 𝑒), {⟨𝑔, ⟩ ∣ ∃𝑖 ∈ (𝑅1 dom 𝑒)((𝑖 ∧ ¬ 𝑖𝑔) ∧ ∀𝑗 ∈ (𝑅1 dom 𝑒)(𝑗(𝑒 dom 𝑒)𝑖 → (𝑗𝑔𝑗)))}))‘((𝑅1‘dom 𝑒) ∖ ran 𝑔)))) “ {𝑔}) ∈ (recs((𝑔 ∈ V ↦ ((𝑔 ∈ V ↦ sup((𝑦𝑔), (𝑅1‘dom 𝑒), {⟨𝑔, ⟩ ∣ ∃𝑖 ∈ (𝑅1 dom 𝑒)((𝑖 ∧ ¬ 𝑖𝑔) ∧ ∀𝑗 ∈ (𝑅1 dom 𝑒)(𝑗(𝑒 dom 𝑒)𝑖 → (𝑗𝑔𝑗)))}))‘((𝑅1‘dom 𝑒) ∖ ran 𝑔)))) “ {})}) ∩ ((𝑅1‘dom 𝑒) × (𝑅1‘dom 𝑒)))))
139 aomclem8.a . 2 (𝜑𝐴 ∈ On)
140 aomclem8.y . . 3 (𝜑 → ∀𝑎 ∈ 𝒫 (𝑅1𝐴)(𝑎 ≠ ∅ → (𝑦𝑎) ∈ ((𝒫 𝑎 ∩ Fin) ∖ {∅})))
141 neeq1 3013 . . . . 5 (𝑎 = 𝑐 → (𝑎 ≠ ∅ ↔ 𝑐 ≠ ∅))
142 fveq2 6658 . . . . . 6 (𝑎 = 𝑐 → (𝑦𝑎) = (𝑦𝑐))
143 pweq 4510 . . . . . . . 8 (𝑎 = 𝑐 → 𝒫 𝑎 = 𝒫 𝑐)
144143ineq1d 4116 . . . . . . 7 (𝑎 = 𝑐 → (𝒫 𝑎 ∩ Fin) = (𝒫 𝑐 ∩ Fin))
145144difeq1d 4027 . . . . . 6 (𝑎 = 𝑐 → ((𝒫 𝑎 ∩ Fin) ∖ {∅}) = ((𝒫 𝑐 ∩ Fin) ∖ {∅}))
146142, 145eleq12d 2846 . . . . 5 (𝑎 = 𝑐 → ((𝑦𝑎) ∈ ((𝒫 𝑎 ∩ Fin) ∖ {∅}) ↔ (𝑦𝑐) ∈ ((𝒫 𝑐 ∩ Fin) ∖ {∅})))
147141, 146imbi12d 348 . . . 4 (𝑎 = 𝑐 → ((𝑎 ≠ ∅ → (𝑦𝑎) ∈ ((𝒫 𝑎 ∩ Fin) ∖ {∅})) ↔ (𝑐 ≠ ∅ → (𝑦𝑐) ∈ ((𝒫 𝑐 ∩ Fin) ∖ {∅}))))
148147cbvralvw 3361 . . 3 (∀𝑎 ∈ 𝒫 (𝑅1𝐴)(𝑎 ≠ ∅ → (𝑦𝑎) ∈ ((𝒫 𝑎 ∩ Fin) ∖ {∅})) ↔ ∀𝑐 ∈ 𝒫 (𝑅1𝐴)(𝑐 ≠ ∅ → (𝑦𝑐) ∈ ((𝒫 𝑐 ∩ Fin) ∖ {∅})))
149140, 148sylib 221 . 2 (𝜑 → ∀𝑐 ∈ 𝒫 (𝑅1𝐴)(𝑐 ≠ ∅ → (𝑦𝑐) ∈ ((𝒫 𝑐 ∩ Fin) ∖ {∅})))
15029, 37, 45, 84, 98, 99, 138, 139, 149aomclem7 40377 1 (𝜑 → ∃𝑏 𝑏 We (𝑅1𝐴))
 Colors of variables: wff setvar class Syntax hints:  ¬ wn 3   → wi 4   ↔ wb 209   ∧ wa 399   ∨ wo 844   = wceq 1538  ∃wex 1781   ∈ wcel 2111   ≠ wne 2951  ∀wral 3070  ∃wrex 3071  Vcvv 3409   ∖ cdif 3855   ∩ cin 3857  ∅c0 4225  ifcif 4420  𝒫 cpw 4494  {csn 4522  ∪ cuni 4798  ∩ cint 4838   class class class wbr 5032  {copab 5094   ↦ cmpt 5112   E cep 5434   We wwe 5482   × cxp 5522  ◡ccnv 5523  dom cdm 5524  ran crn 5525   “ cima 5527  Oncon0 6169  suc csuc 6171  ‘cfv 6335  recscrecs 8017  Fincfn 8527  supcsup 8937  𝑅1cr1 9224  rankcrnk 9225 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2729  ax-rep 5156  ax-sep 5169  ax-nul 5176  ax-pow 5234  ax-pr 5298  ax-un 7459 This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-fal 1551  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2557  df-eu 2588  df-clab 2736  df-cleq 2750  df-clel 2830  df-nfc 2901  df-ne 2952  df-ral 3075  df-rex 3076  df-reu 3077  df-rmo 3078  df-rab 3079  df-v 3411  df-sbc 3697  df-csb 3806  df-dif 3861  df-un 3863  df-in 3865  df-ss 3875  df-pss 3877  df-nul 4226  df-if 4421  df-pw 4496  df-sn 4523  df-pr 4525  df-tp 4527  df-op 4529  df-uni 4799  df-int 4839  df-iun 4885  df-br 5033  df-opab 5095  df-mpt 5113  df-tr 5139  df-id 5430  df-eprel 5435  df-po 5443  df-so 5444  df-fr 5483  df-we 5485  df-xp 5530  df-rel 5531  df-cnv 5532  df-co 5533  df-dm 5534  df-rn 5535  df-res 5536  df-ima 5537  df-pred 6126  df-ord 6172  df-on 6173  df-lim 6174  df-suc 6175  df-iota 6294  df-fun 6337  df-fn 6338  df-f 6339  df-f1 6340  df-fo 6341  df-f1o 6342  df-fv 6343  df-isom 6344  df-riota 7108  df-ov 7153  df-oprab 7154  df-mpo 7155  df-om 7580  df-1st 7693  df-2nd 7694  df-wrecs 7957  df-recs 8018  df-rdg 8056  df-1o 8112  df-2o 8113  df-map 8418  df-en 8528  df-fin 8531  df-sup 8939  df-r1 9226  df-rank 9227 This theorem is referenced by:  dfac11  40379
 Copyright terms: Public domain W3C validator