| Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > releccnveq | Structured version Visualization version GIF version | ||
| Description: Equality of converse 𝑅-coset and converse 𝑆-coset when 𝑅 and 𝑆 are relations. (Contributed by Peter Mazsa, 27-Jul-2019.) |
| Ref | Expression |
|---|---|
| releccnveq | ⊢ ((Rel 𝑅 ∧ Rel 𝑆) → ([𝐴]◡𝑅 = [𝐵]◡𝑆 ↔ ∀𝑥(𝑥𝑅𝐴 ↔ 𝑥𝑆𝐵))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dfcleq 2723 | . 2 ⊢ ([𝐴]◡𝑅 = [𝐵]◡𝑆 ↔ ∀𝑥(𝑥 ∈ [𝐴]◡𝑅 ↔ 𝑥 ∈ [𝐵]◡𝑆)) | |
| 2 | releleccnv 38241 | . . . 4 ⊢ (Rel 𝑅 → (𝑥 ∈ [𝐴]◡𝑅 ↔ 𝑥𝑅𝐴)) | |
| 3 | releleccnv 38241 | . . . 4 ⊢ (Rel 𝑆 → (𝑥 ∈ [𝐵]◡𝑆 ↔ 𝑥𝑆𝐵)) | |
| 4 | 2, 3 | bi2bian9 640 | . . 3 ⊢ ((Rel 𝑅 ∧ Rel 𝑆) → ((𝑥 ∈ [𝐴]◡𝑅 ↔ 𝑥 ∈ [𝐵]◡𝑆) ↔ (𝑥𝑅𝐴 ↔ 𝑥𝑆𝐵))) |
| 5 | 4 | albidv 1920 | . 2 ⊢ ((Rel 𝑅 ∧ Rel 𝑆) → (∀𝑥(𝑥 ∈ [𝐴]◡𝑅 ↔ 𝑥 ∈ [𝐵]◡𝑆) ↔ ∀𝑥(𝑥𝑅𝐴 ↔ 𝑥𝑆𝐵))) |
| 6 | 1, 5 | bitrid 283 | 1 ⊢ ((Rel 𝑅 ∧ Rel 𝑆) → ([𝐴]◡𝑅 = [𝐵]◡𝑆 ↔ ∀𝑥(𝑥𝑅𝐴 ↔ 𝑥𝑆𝐵))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∀wal 1538 = wceq 1540 ∈ wcel 2109 class class class wbr 5109 ◡ccnv 5639 Rel wrel 5645 [cec 8671 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5253 ax-nul 5263 ax-pr 5389 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-ral 3046 df-rex 3055 df-rab 3409 df-v 3452 df-dif 3919 df-un 3921 df-in 3923 df-ss 3933 df-nul 4299 df-if 4491 df-sn 4592 df-pr 4594 df-op 4598 df-br 5110 df-opab 5172 df-xp 5646 df-rel 5647 df-cnv 5648 df-dm 5650 df-rn 5651 df-res 5652 df-ima 5653 df-ec 8675 |
| This theorem is referenced by: extssr 38495 |
| Copyright terms: Public domain | W3C validator |