| Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > releccnveq | Structured version Visualization version GIF version | ||
| Description: Equality of converse 𝑅-coset and converse 𝑆-coset when 𝑅 and 𝑆 are relations. (Contributed by Peter Mazsa, 27-Jul-2019.) |
| Ref | Expression |
|---|---|
| releccnveq | ⊢ ((Rel 𝑅 ∧ Rel 𝑆) → ([𝐴]◡𝑅 = [𝐵]◡𝑆 ↔ ∀𝑥(𝑥𝑅𝐴 ↔ 𝑥𝑆𝐵))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dfcleq 2727 | . 2 ⊢ ([𝐴]◡𝑅 = [𝐵]◡𝑆 ↔ ∀𝑥(𝑥 ∈ [𝐴]◡𝑅 ↔ 𝑥 ∈ [𝐵]◡𝑆)) | |
| 2 | releleccnv 38217 | . . . 4 ⊢ (Rel 𝑅 → (𝑥 ∈ [𝐴]◡𝑅 ↔ 𝑥𝑅𝐴)) | |
| 3 | releleccnv 38217 | . . . 4 ⊢ (Rel 𝑆 → (𝑥 ∈ [𝐵]◡𝑆 ↔ 𝑥𝑆𝐵)) | |
| 4 | 2, 3 | bi2bian9 640 | . . 3 ⊢ ((Rel 𝑅 ∧ Rel 𝑆) → ((𝑥 ∈ [𝐴]◡𝑅 ↔ 𝑥 ∈ [𝐵]◡𝑆) ↔ (𝑥𝑅𝐴 ↔ 𝑥𝑆𝐵))) |
| 5 | 4 | albidv 1919 | . 2 ⊢ ((Rel 𝑅 ∧ Rel 𝑆) → (∀𝑥(𝑥 ∈ [𝐴]◡𝑅 ↔ 𝑥 ∈ [𝐵]◡𝑆) ↔ ∀𝑥(𝑥𝑅𝐴 ↔ 𝑥𝑆𝐵))) |
| 6 | 1, 5 | bitrid 283 | 1 ⊢ ((Rel 𝑅 ∧ Rel 𝑆) → ([𝐴]◡𝑅 = [𝐵]◡𝑆 ↔ ∀𝑥(𝑥𝑅𝐴 ↔ 𝑥𝑆𝐵))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∀wal 1537 = wceq 1539 ∈ wcel 2107 class class class wbr 5123 ◡ccnv 5664 Rel wrel 5670 [cec 8725 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-sep 5276 ax-nul 5286 ax-pr 5412 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-clab 2713 df-cleq 2726 df-clel 2808 df-ral 3051 df-rex 3060 df-rab 3420 df-v 3465 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-nul 4314 df-if 4506 df-sn 4607 df-pr 4609 df-op 4613 df-br 5124 df-opab 5186 df-xp 5671 df-rel 5672 df-cnv 5673 df-dm 5675 df-rn 5676 df-res 5677 df-ima 5678 df-ec 8729 |
| This theorem is referenced by: extssr 38469 |
| Copyright terms: Public domain | W3C validator |