Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  releccnveq Structured version   Visualization version   GIF version

Theorem releccnveq 36324
Description: Equality of converse 𝑅-coset and converse 𝑆-coset when 𝑅 and 𝑆 are relations. (Contributed by Peter Mazsa, 27-Jul-2019.)
Assertion
Ref Expression
releccnveq ((Rel 𝑅 ∧ Rel 𝑆) → ([𝐴]𝑅 = [𝐵]𝑆 ↔ ∀𝑥(𝑥𝑅𝐴𝑥𝑆𝐵)))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝑥,𝑅   𝑥,𝑆

Proof of Theorem releccnveq
StepHypRef Expression
1 dfcleq 2731 . 2 ([𝐴]𝑅 = [𝐵]𝑆 ↔ ∀𝑥(𝑥 ∈ [𝐴]𝑅𝑥 ∈ [𝐵]𝑆))
2 releleccnv 36323 . . . 4 (Rel 𝑅 → (𝑥 ∈ [𝐴]𝑅𝑥𝑅𝐴))
3 releleccnv 36323 . . . 4 (Rel 𝑆 → (𝑥 ∈ [𝐵]𝑆𝑥𝑆𝐵))
42, 3bi2bian9 637 . . 3 ((Rel 𝑅 ∧ Rel 𝑆) → ((𝑥 ∈ [𝐴]𝑅𝑥 ∈ [𝐵]𝑆) ↔ (𝑥𝑅𝐴𝑥𝑆𝐵)))
54albidv 1924 . 2 ((Rel 𝑅 ∧ Rel 𝑆) → (∀𝑥(𝑥 ∈ [𝐴]𝑅𝑥 ∈ [𝐵]𝑆) ↔ ∀𝑥(𝑥𝑅𝐴𝑥𝑆𝐵)))
61, 5syl5bb 282 1 ((Rel 𝑅 ∧ Rel 𝑆) → ([𝐴]𝑅 = [𝐵]𝑆 ↔ ∀𝑥(𝑥𝑅𝐴𝑥𝑆𝐵)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395  wal 1537   = wceq 1539  wcel 2108   class class class wbr 5070  ccnv 5579  Rel wrel 5585  [cec 8454
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pr 5347
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-clab 2716  df-cleq 2730  df-clel 2817  df-ral 3068  df-rex 3069  df-rab 3072  df-v 3424  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-sn 4559  df-pr 4561  df-op 4565  df-br 5071  df-opab 5133  df-xp 5586  df-rel 5587  df-cnv 5588  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-ec 8458
This theorem is referenced by:  extssr  36554
  Copyright terms: Public domain W3C validator