![]() |
Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > releccnveq | Structured version Visualization version GIF version |
Description: Equality of converse 𝑅-coset and converse 𝑆-coset when 𝑅 and 𝑆 are relations. (Contributed by Peter Mazsa, 27-Jul-2019.) |
Ref | Expression |
---|---|
releccnveq | ⊢ ((Rel 𝑅 ∧ Rel 𝑆) → ([𝐴]◡𝑅 = [𝐵]◡𝑆 ↔ ∀𝑥(𝑥𝑅𝐴 ↔ 𝑥𝑆𝐵))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dfcleq 2730 | . 2 ⊢ ([𝐴]◡𝑅 = [𝐵]◡𝑆 ↔ ∀𝑥(𝑥 ∈ [𝐴]◡𝑅 ↔ 𝑥 ∈ [𝐵]◡𝑆)) | |
2 | releleccnv 38253 | . . . 4 ⊢ (Rel 𝑅 → (𝑥 ∈ [𝐴]◡𝑅 ↔ 𝑥𝑅𝐴)) | |
3 | releleccnv 38253 | . . . 4 ⊢ (Rel 𝑆 → (𝑥 ∈ [𝐵]◡𝑆 ↔ 𝑥𝑆𝐵)) | |
4 | 2, 3 | bi2bian9 640 | . . 3 ⊢ ((Rel 𝑅 ∧ Rel 𝑆) → ((𝑥 ∈ [𝐴]◡𝑅 ↔ 𝑥 ∈ [𝐵]◡𝑆) ↔ (𝑥𝑅𝐴 ↔ 𝑥𝑆𝐵))) |
5 | 4 | albidv 1920 | . 2 ⊢ ((Rel 𝑅 ∧ Rel 𝑆) → (∀𝑥(𝑥 ∈ [𝐴]◡𝑅 ↔ 𝑥 ∈ [𝐵]◡𝑆) ↔ ∀𝑥(𝑥𝑅𝐴 ↔ 𝑥𝑆𝐵))) |
6 | 1, 5 | bitrid 283 | 1 ⊢ ((Rel 𝑅 ∧ Rel 𝑆) → ([𝐴]◡𝑅 = [𝐵]◡𝑆 ↔ ∀𝑥(𝑥𝑅𝐴 ↔ 𝑥𝑆𝐵))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∀wal 1537 = wceq 1539 ∈ wcel 2108 class class class wbr 5151 ◡ccnv 5692 Rel wrel 5698 [cec 8751 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2708 ax-sep 5305 ax-nul 5315 ax-pr 5441 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3an 1089 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2065 df-clab 2715 df-cleq 2729 df-clel 2816 df-ral 3062 df-rex 3071 df-rab 3437 df-v 3483 df-dif 3969 df-un 3971 df-in 3973 df-ss 3983 df-nul 4343 df-if 4535 df-sn 4635 df-pr 4637 df-op 4641 df-br 5152 df-opab 5214 df-xp 5699 df-rel 5700 df-cnv 5701 df-dm 5703 df-rn 5704 df-res 5705 df-ima 5706 df-ec 8755 |
This theorem is referenced by: extssr 38505 |
Copyright terms: Public domain | W3C validator |