Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  releccnveq Structured version   Visualization version   GIF version

Theorem releccnveq 37429
Description: Equality of converse 𝑅-coset and converse 𝑆-coset when 𝑅 and 𝑆 are relations. (Contributed by Peter Mazsa, 27-Jul-2019.)
Assertion
Ref Expression
releccnveq ((Rel 𝑅 ∧ Rel 𝑆) → ([𝐴]𝑅 = [𝐵]𝑆 ↔ ∀𝑥(𝑥𝑅𝐴𝑥𝑆𝐵)))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝑥,𝑅   𝑥,𝑆

Proof of Theorem releccnveq
StepHypRef Expression
1 dfcleq 2723 . 2 ([𝐴]𝑅 = [𝐵]𝑆 ↔ ∀𝑥(𝑥 ∈ [𝐴]𝑅𝑥 ∈ [𝐵]𝑆))
2 releleccnv 37428 . . . 4 (Rel 𝑅 → (𝑥 ∈ [𝐴]𝑅𝑥𝑅𝐴))
3 releleccnv 37428 . . . 4 (Rel 𝑆 → (𝑥 ∈ [𝐵]𝑆𝑥𝑆𝐵))
42, 3bi2bian9 637 . . 3 ((Rel 𝑅 ∧ Rel 𝑆) → ((𝑥 ∈ [𝐴]𝑅𝑥 ∈ [𝐵]𝑆) ↔ (𝑥𝑅𝐴𝑥𝑆𝐵)))
54albidv 1921 . 2 ((Rel 𝑅 ∧ Rel 𝑆) → (∀𝑥(𝑥 ∈ [𝐴]𝑅𝑥 ∈ [𝐵]𝑆) ↔ ∀𝑥(𝑥𝑅𝐴𝑥𝑆𝐵)))
61, 5bitrid 282 1 ((Rel 𝑅 ∧ Rel 𝑆) → ([𝐴]𝑅 = [𝐵]𝑆 ↔ ∀𝑥(𝑥𝑅𝐴𝑥𝑆𝐵)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 394  wal 1537   = wceq 1539  wcel 2104   class class class wbr 5147  ccnv 5674  Rel wrel 5680  [cec 8703
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1911  ax-6 1969  ax-7 2009  ax-8 2106  ax-9 2114  ax-10 2135  ax-11 2152  ax-12 2169  ax-ext 2701  ax-sep 5298  ax-nul 5305  ax-pr 5426
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1780  df-nf 1784  df-sb 2066  df-clab 2708  df-cleq 2722  df-clel 2808  df-ral 3060  df-rex 3069  df-rab 3431  df-v 3474  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-nul 4322  df-if 4528  df-sn 4628  df-pr 4630  df-op 4634  df-br 5148  df-opab 5210  df-xp 5681  df-rel 5682  df-cnv 5683  df-dm 5685  df-rn 5686  df-res 5687  df-ima 5688  df-ec 8707
This theorem is referenced by:  extssr  37682
  Copyright terms: Public domain W3C validator