![]() |
Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > releccnveq | Structured version Visualization version GIF version |
Description: Equality of converse 𝑅-coset and converse 𝑆-coset when 𝑅 and 𝑆 are relations. (Contributed by Peter Mazsa, 27-Jul-2019.) |
Ref | Expression |
---|---|
releccnveq | ⊢ ((Rel 𝑅 ∧ Rel 𝑆) → ([𝐴]◡𝑅 = [𝐵]◡𝑆 ↔ ∀𝑥(𝑥𝑅𝐴 ↔ 𝑥𝑆𝐵))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dfcleq 2727 | . 2 ⊢ ([𝐴]◡𝑅 = [𝐵]◡𝑆 ↔ ∀𝑥(𝑥 ∈ [𝐴]◡𝑅 ↔ 𝑥 ∈ [𝐵]◡𝑆)) | |
2 | releleccnv 38161 | . . . 4 ⊢ (Rel 𝑅 → (𝑥 ∈ [𝐴]◡𝑅 ↔ 𝑥𝑅𝐴)) | |
3 | releleccnv 38161 | . . . 4 ⊢ (Rel 𝑆 → (𝑥 ∈ [𝐵]◡𝑆 ↔ 𝑥𝑆𝐵)) | |
4 | 2, 3 | bi2bian9 639 | . . 3 ⊢ ((Rel 𝑅 ∧ Rel 𝑆) → ((𝑥 ∈ [𝐴]◡𝑅 ↔ 𝑥 ∈ [𝐵]◡𝑆) ↔ (𝑥𝑅𝐴 ↔ 𝑥𝑆𝐵))) |
5 | 4 | albidv 1919 | . 2 ⊢ ((Rel 𝑅 ∧ Rel 𝑆) → (∀𝑥(𝑥 ∈ [𝐴]◡𝑅 ↔ 𝑥 ∈ [𝐵]◡𝑆) ↔ ∀𝑥(𝑥𝑅𝐴 ↔ 𝑥𝑆𝐵))) |
6 | 1, 5 | bitrid 283 | 1 ⊢ ((Rel 𝑅 ∧ Rel 𝑆) → ([𝐴]◡𝑅 = [𝐵]◡𝑆 ↔ ∀𝑥(𝑥𝑅𝐴 ↔ 𝑥𝑆𝐵))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∀wal 1535 = wceq 1537 ∈ wcel 2103 class class class wbr 5169 ◡ccnv 5698 Rel wrel 5704 [cec 8757 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2105 ax-9 2113 ax-10 2136 ax-11 2153 ax-12 2173 ax-ext 2705 ax-sep 5320 ax-nul 5327 ax-pr 5450 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-clab 2712 df-cleq 2726 df-clel 2813 df-ral 3064 df-rex 3073 df-rab 3439 df-v 3484 df-dif 3973 df-un 3975 df-in 3977 df-ss 3987 df-nul 4348 df-if 4549 df-sn 4649 df-pr 4651 df-op 4655 df-br 5170 df-opab 5232 df-xp 5705 df-rel 5706 df-cnv 5707 df-dm 5709 df-rn 5710 df-res 5711 df-ima 5712 df-ec 8761 |
This theorem is referenced by: extssr 38413 |
Copyright terms: Public domain | W3C validator |