![]() |
Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > releccnveq | Structured version Visualization version GIF version |
Description: Equality of converse 𝑅-coset and converse 𝑆-coset when 𝑅 and 𝑆 are relations. (Contributed by Peter Mazsa, 27-Jul-2019.) |
Ref | Expression |
---|---|
releccnveq | ⊢ ((Rel 𝑅 ∧ Rel 𝑆) → ([𝐴]◡𝑅 = [𝐵]◡𝑆 ↔ ∀𝑥(𝑥𝑅𝐴 ↔ 𝑥𝑆𝐵))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dfcleq 2723 | . 2 ⊢ ([𝐴]◡𝑅 = [𝐵]◡𝑆 ↔ ∀𝑥(𝑥 ∈ [𝐴]◡𝑅 ↔ 𝑥 ∈ [𝐵]◡𝑆)) | |
2 | releleccnv 37428 | . . . 4 ⊢ (Rel 𝑅 → (𝑥 ∈ [𝐴]◡𝑅 ↔ 𝑥𝑅𝐴)) | |
3 | releleccnv 37428 | . . . 4 ⊢ (Rel 𝑆 → (𝑥 ∈ [𝐵]◡𝑆 ↔ 𝑥𝑆𝐵)) | |
4 | 2, 3 | bi2bian9 637 | . . 3 ⊢ ((Rel 𝑅 ∧ Rel 𝑆) → ((𝑥 ∈ [𝐴]◡𝑅 ↔ 𝑥 ∈ [𝐵]◡𝑆) ↔ (𝑥𝑅𝐴 ↔ 𝑥𝑆𝐵))) |
5 | 4 | albidv 1921 | . 2 ⊢ ((Rel 𝑅 ∧ Rel 𝑆) → (∀𝑥(𝑥 ∈ [𝐴]◡𝑅 ↔ 𝑥 ∈ [𝐵]◡𝑆) ↔ ∀𝑥(𝑥𝑅𝐴 ↔ 𝑥𝑆𝐵))) |
6 | 1, 5 | bitrid 282 | 1 ⊢ ((Rel 𝑅 ∧ Rel 𝑆) → ([𝐴]◡𝑅 = [𝐵]◡𝑆 ↔ ∀𝑥(𝑥𝑅𝐴 ↔ 𝑥𝑆𝐵))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 394 ∀wal 1537 = wceq 1539 ∈ wcel 2104 class class class wbr 5147 ◡ccnv 5674 Rel wrel 5680 [cec 8703 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-10 2135 ax-11 2152 ax-12 2169 ax-ext 2701 ax-sep 5298 ax-nul 5305 ax-pr 5426 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1780 df-nf 1784 df-sb 2066 df-clab 2708 df-cleq 2722 df-clel 2808 df-ral 3060 df-rex 3069 df-rab 3431 df-v 3474 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4322 df-if 4528 df-sn 4628 df-pr 4630 df-op 4634 df-br 5148 df-opab 5210 df-xp 5681 df-rel 5682 df-cnv 5683 df-dm 5685 df-rn 5686 df-res 5687 df-ima 5688 df-ec 8707 |
This theorem is referenced by: extssr 37682 |
Copyright terms: Public domain | W3C validator |