Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  releccnveq Structured version   Visualization version   GIF version

Theorem releccnveq 38254
Description: Equality of converse 𝑅-coset and converse 𝑆-coset when 𝑅 and 𝑆 are relations. (Contributed by Peter Mazsa, 27-Jul-2019.)
Assertion
Ref Expression
releccnveq ((Rel 𝑅 ∧ Rel 𝑆) → ([𝐴]𝑅 = [𝐵]𝑆 ↔ ∀𝑥(𝑥𝑅𝐴𝑥𝑆𝐵)))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝑥,𝑅   𝑥,𝑆

Proof of Theorem releccnveq
StepHypRef Expression
1 dfcleq 2730 . 2 ([𝐴]𝑅 = [𝐵]𝑆 ↔ ∀𝑥(𝑥 ∈ [𝐴]𝑅𝑥 ∈ [𝐵]𝑆))
2 releleccnv 38253 . . . 4 (Rel 𝑅 → (𝑥 ∈ [𝐴]𝑅𝑥𝑅𝐴))
3 releleccnv 38253 . . . 4 (Rel 𝑆 → (𝑥 ∈ [𝐵]𝑆𝑥𝑆𝐵))
42, 3bi2bian9 640 . . 3 ((Rel 𝑅 ∧ Rel 𝑆) → ((𝑥 ∈ [𝐴]𝑅𝑥 ∈ [𝐵]𝑆) ↔ (𝑥𝑅𝐴𝑥𝑆𝐵)))
54albidv 1920 . 2 ((Rel 𝑅 ∧ Rel 𝑆) → (∀𝑥(𝑥 ∈ [𝐴]𝑅𝑥 ∈ [𝐵]𝑆) ↔ ∀𝑥(𝑥𝑅𝐴𝑥𝑆𝐵)))
61, 5bitrid 283 1 ((Rel 𝑅 ∧ Rel 𝑆) → ([𝐴]𝑅 = [𝐵]𝑆 ↔ ∀𝑥(𝑥𝑅𝐴𝑥𝑆𝐵)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wal 1537   = wceq 1539  wcel 2108   class class class wbr 5151  ccnv 5692  Rel wrel 5698  [cec 8751
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-sep 5305  ax-nul 5315  ax-pr 5441
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3an 1089  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2065  df-clab 2715  df-cleq 2729  df-clel 2816  df-ral 3062  df-rex 3071  df-rab 3437  df-v 3483  df-dif 3969  df-un 3971  df-in 3973  df-ss 3983  df-nul 4343  df-if 4535  df-sn 4635  df-pr 4637  df-op 4641  df-br 5152  df-opab 5214  df-xp 5699  df-rel 5700  df-cnv 5701  df-dm 5703  df-rn 5704  df-res 5705  df-ima 5706  df-ec 8755
This theorem is referenced by:  extssr  38505
  Copyright terms: Public domain W3C validator