MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  bi2anan9r Structured version   Visualization version   GIF version

Theorem bi2anan9r 637
Description: Deduction joining two equivalences to form equivalence of conjunctions. (Contributed by NM, 19-Feb-1996.)
Hypotheses
Ref Expression
bi2an9.1 (𝜑 → (𝜓𝜒))
bi2an9.2 (𝜃 → (𝜏𝜂))
Assertion
Ref Expression
bi2anan9r ((𝜃𝜑) → ((𝜓𝜏) ↔ (𝜒𝜂)))

Proof of Theorem bi2anan9r
StepHypRef Expression
1 bi2an9.1 . . 3 (𝜑 → (𝜓𝜒))
2 bi2an9.2 . . 3 (𝜃 → (𝜏𝜂))
31, 2bi2anan9 636 . 2 ((𝜑𝜃) → ((𝜓𝜏) ↔ (𝜒𝜂)))
43ancoms 458 1 ((𝜃𝜑) → ((𝜓𝜏) ↔ (𝜒𝜂)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 206  df-an 396
This theorem is referenced by:  efrn2lp  5659  ltsosr  11092  seqf1olem2  14013  seqf1o  14014  pcval  16782  sltlpss  27635  uspgr2wlkeq  29167  satf0op  34663  fmlafvel  34671  fneval  35541  prtlem5  38034  prjspval  41648  rmydioph  42056  wepwsolem  42087  aomclem8  42106  sprsymrelfolem2  46461
  Copyright terms: Public domain W3C validator