| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > bi2anan9r | Structured version Visualization version GIF version | ||
| Description: Deduction joining two equivalences to form equivalence of conjunctions. (Contributed by NM, 19-Feb-1996.) |
| Ref | Expression |
|---|---|
| bi2an9.1 | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
| bi2an9.2 | ⊢ (𝜃 → (𝜏 ↔ 𝜂)) |
| Ref | Expression |
|---|---|
| bi2anan9r | ⊢ ((𝜃 ∧ 𝜑) → ((𝜓 ∧ 𝜏) ↔ (𝜒 ∧ 𝜂))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | bi2an9.1 | . . 3 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | |
| 2 | bi2an9.2 | . . 3 ⊢ (𝜃 → (𝜏 ↔ 𝜂)) | |
| 3 | 1, 2 | bi2anan9 638 | . 2 ⊢ ((𝜑 ∧ 𝜃) → ((𝜓 ∧ 𝜏) ↔ (𝜒 ∧ 𝜂))) |
| 4 | 3 | ancoms 458 | 1 ⊢ ((𝜃 ∧ 𝜑) → ((𝜓 ∧ 𝜏) ↔ (𝜒 ∧ 𝜂))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 |
| This theorem is referenced by: efrn2lp 5622 ltsosr 11054 seqf1olem2 14014 seqf1o 14015 pcval 16822 sltlpss 27826 uspgr2wlkeq 29581 satf0op 35371 fmlafvel 35379 fneval 36347 prtlem5 38860 prjspval 42598 rmydioph 43010 wepwsolem 43038 aomclem8 43057 sprsymrelfolem2 47498 pgnbgreunbgrlem1 48107 pgnbgreunbgrlem4 48113 |
| Copyright terms: Public domain | W3C validator |