MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  bi2anan9r Structured version   Visualization version   GIF version

Theorem bi2anan9r 639
Description: Deduction joining two equivalences to form equivalence of conjunctions. (Contributed by NM, 19-Feb-1996.)
Hypotheses
Ref Expression
bi2an9.1 (𝜑 → (𝜓𝜒))
bi2an9.2 (𝜃 → (𝜏𝜂))
Assertion
Ref Expression
bi2anan9r ((𝜃𝜑) → ((𝜓𝜏) ↔ (𝜒𝜂)))

Proof of Theorem bi2anan9r
StepHypRef Expression
1 bi2an9.1 . . 3 (𝜑 → (𝜓𝜒))
2 bi2an9.2 . . 3 (𝜃 → (𝜏𝜂))
31, 2bi2anan9 638 . 2 ((𝜑𝜃) → ((𝜓𝜏) ↔ (𝜒𝜂)))
43ancoms 458 1 ((𝜃𝜑) → ((𝜓𝜏) ↔ (𝜒𝜂)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 207  df-an 396
This theorem is referenced by:  efrn2lp  5619  ltsosr  11047  seqf1olem2  14007  seqf1o  14008  pcval  16815  sltlpss  27819  uspgr2wlkeq  29574  satf0op  35364  fmlafvel  35372  fneval  36340  prtlem5  38853  prjspval  42591  rmydioph  43003  wepwsolem  43031  aomclem8  43050  sprsymrelfolem2  47494  pgnbgreunbgrlem1  48103  pgnbgreunbgrlem4  48109
  Copyright terms: Public domain W3C validator