MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  bi2anan9r Structured version   Visualization version   GIF version

Theorem bi2anan9r 639
Description: Deduction joining two equivalences to form equivalence of conjunctions. (Contributed by NM, 19-Feb-1996.)
Hypotheses
Ref Expression
bi2an9.1 (𝜑 → (𝜓𝜒))
bi2an9.2 (𝜃 → (𝜏𝜂))
Assertion
Ref Expression
bi2anan9r ((𝜃𝜑) → ((𝜓𝜏) ↔ (𝜒𝜂)))

Proof of Theorem bi2anan9r
StepHypRef Expression
1 bi2an9.1 . . 3 (𝜑 → (𝜓𝜒))
2 bi2an9.2 . . 3 (𝜃 → (𝜏𝜂))
31, 2bi2anan9 638 . 2 ((𝜑𝜃) → ((𝜓𝜏) ↔ (𝜒𝜂)))
43ancoms 458 1 ((𝜃𝜑) → ((𝜓𝜏) ↔ (𝜒𝜂)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 207  df-an 396
This theorem is referenced by:  efrn2lp  5612  ltsosr  11023  seqf1olem2  13983  seqf1o  13984  pcval  16791  sltlpss  27795  uspgr2wlkeq  29549  satf0op  35337  fmlafvel  35345  fneval  36313  prtlem5  38826  prjspval  42564  rmydioph  42976  wepwsolem  43004  aomclem8  43023  sprsymrelfolem2  47467  pgnbgreunbgrlem1  48076  pgnbgreunbgrlem4  48082
  Copyright terms: Public domain W3C validator