MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  bianassc Structured version   Visualization version   GIF version

Theorem bianassc 639
Description: An inference to merge two lists of conjuncts. (Contributed by Peter Mazsa, 24-Sep-2022.)
Hypothesis
Ref Expression
bianass.1 (𝜑 ↔ (𝜓𝜒))
Assertion
Ref Expression
bianassc ((𝜂𝜑) ↔ ((𝜓𝜂) ∧ 𝜒))

Proof of Theorem bianassc
StepHypRef Expression
1 bianass.1 . . 3 (𝜑 ↔ (𝜓𝜒))
21bianass 638 . 2 ((𝜂𝜑) ↔ ((𝜂𝜓) ∧ 𝜒))
3 ancom 460 . . 3 ((𝜂𝜓) ↔ (𝜓𝜂))
43anbi1i 623 . 2 (((𝜂𝜓) ∧ 𝜒) ↔ ((𝜓𝜂) ∧ 𝜒))
52, 4bitri 274 1 ((𝜂𝜑) ↔ ((𝜓𝜂) ∧ 𝜒))
Colors of variables: wff setvar class
Syntax hints:  wb 205  wa 395
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 206  df-an 396
This theorem is referenced by:  an21  640  ssrnres  6070  fvmptnn04if  21906  bj-restuni  35195
  Copyright terms: Public domain W3C validator