| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > bianassc | Structured version Visualization version GIF version | ||
| Description: An inference to merge two lists of conjuncts. (Contributed by Peter Mazsa, 24-Sep-2022.) |
| Ref | Expression |
|---|---|
| bianass.1 | ⊢ (𝜑 ↔ (𝜓 ∧ 𝜒)) |
| Ref | Expression |
|---|---|
| bianassc | ⊢ ((𝜂 ∧ 𝜑) ↔ ((𝜓 ∧ 𝜂) ∧ 𝜒)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | bianass.1 | . . 3 ⊢ (𝜑 ↔ (𝜓 ∧ 𝜒)) | |
| 2 | 1 | bianass 642 | . 2 ⊢ ((𝜂 ∧ 𝜑) ↔ ((𝜂 ∧ 𝜓) ∧ 𝜒)) |
| 3 | ancom 460 | . 2 ⊢ ((𝜂 ∧ 𝜓) ↔ (𝜓 ∧ 𝜂)) | |
| 4 | 2, 3 | bianbi 627 | 1 ⊢ ((𝜂 ∧ 𝜑) ↔ ((𝜓 ∧ 𝜂) ∧ 𝜒)) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 |
| This theorem is referenced by: an21 644 ssrnres 6180 fvmptnn04if 22822 bj-restuni 37039 |
| Copyright terms: Public domain | W3C validator |