Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > bianassc | Structured version Visualization version GIF version |
Description: An inference to merge two lists of conjuncts. (Contributed by Peter Mazsa, 24-Sep-2022.) |
Ref | Expression |
---|---|
bianass.1 | ⊢ (𝜑 ↔ (𝜓 ∧ 𝜒)) |
Ref | Expression |
---|---|
bianassc | ⊢ ((𝜂 ∧ 𝜑) ↔ ((𝜓 ∧ 𝜂) ∧ 𝜒)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bianass.1 | . . 3 ⊢ (𝜑 ↔ (𝜓 ∧ 𝜒)) | |
2 | 1 | bianass 639 | . 2 ⊢ ((𝜂 ∧ 𝜑) ↔ ((𝜂 ∧ 𝜓) ∧ 𝜒)) |
3 | ancom 461 | . . 3 ⊢ ((𝜂 ∧ 𝜓) ↔ (𝜓 ∧ 𝜂)) | |
4 | 3 | anbi1i 624 | . 2 ⊢ (((𝜂 ∧ 𝜓) ∧ 𝜒) ↔ ((𝜓 ∧ 𝜂) ∧ 𝜒)) |
5 | 2, 4 | bitri 274 | 1 ⊢ ((𝜂 ∧ 𝜑) ↔ ((𝜓 ∧ 𝜂) ∧ 𝜒)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∧ wa 396 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 397 |
This theorem is referenced by: an21 641 ssrnres 6081 fvmptnn04if 21998 bj-restuni 35268 |
Copyright terms: Public domain | W3C validator |