MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fvmptnn04if Structured version   Visualization version   GIF version

Theorem fvmptnn04if 22795
Description: The function values of a mapping from the nonnegative integers with four distinct cases. (Contributed by AV, 10-Nov-2019.)
Hypotheses
Ref Expression
fvmptnn04if.g 𝐺 = (𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, 𝐴, if(𝑛 = 𝑆, 𝐶, if(𝑆 < 𝑛, 𝐷, 𝐵))))
fvmptnn04if.s (𝜑𝑆 ∈ ℕ)
fvmptnn04if.n (𝜑𝑁 ∈ ℕ0)
fvmptnn04if.y (𝜑𝑌𝑉)
fvmptnn04if.a ((𝜑𝑁 = 0) → 𝑌 = 𝑁 / 𝑛𝐴)
fvmptnn04if.b ((𝜑 ∧ 0 < 𝑁𝑁 < 𝑆) → 𝑌 = 𝑁 / 𝑛𝐵)
fvmptnn04if.c ((𝜑𝑁 = 𝑆) → 𝑌 = 𝑁 / 𝑛𝐶)
fvmptnn04if.d ((𝜑𝑆 < 𝑁) → 𝑌 = 𝑁 / 𝑛𝐷)
Assertion
Ref Expression
fvmptnn04if (𝜑 → (𝐺𝑁) = 𝑌)
Distinct variable groups:   𝑛,𝑁   𝑆,𝑛
Allowed substitution hints:   𝜑(𝑛)   𝐴(𝑛)   𝐵(𝑛)   𝐶(𝑛)   𝐷(𝑛)   𝐺(𝑛)   𝑉(𝑛)   𝑌(𝑛)

Proof of Theorem fvmptnn04if
StepHypRef Expression
1 fvmptnn04if.n . . 3 (𝜑𝑁 ∈ ℕ0)
2 csbif 4587 . . . . 5 𝑁 / 𝑛if(𝑛 = 0, 𝐴, if(𝑛 = 𝑆, 𝐶, if(𝑆 < 𝑛, 𝐷, 𝐵))) = if([𝑁 / 𝑛]𝑛 = 0, 𝑁 / 𝑛𝐴, 𝑁 / 𝑛if(𝑛 = 𝑆, 𝐶, if(𝑆 < 𝑛, 𝐷, 𝐵)))
3 eqsbc1 3823 . . . . . . 7 (𝑁 ∈ ℕ0 → ([𝑁 / 𝑛]𝑛 = 0 ↔ 𝑁 = 0))
41, 3syl 17 . . . . . 6 (𝜑 → ([𝑁 / 𝑛]𝑛 = 0 ↔ 𝑁 = 0))
5 csbif 4587 . . . . . . 7 𝑁 / 𝑛if(𝑛 = 𝑆, 𝐶, if(𝑆 < 𝑛, 𝐷, 𝐵)) = if([𝑁 / 𝑛]𝑛 = 𝑆, 𝑁 / 𝑛𝐶, 𝑁 / 𝑛if(𝑆 < 𝑛, 𝐷, 𝐵))
6 eqsbc1 3823 . . . . . . . . 9 (𝑁 ∈ ℕ0 → ([𝑁 / 𝑛]𝑛 = 𝑆𝑁 = 𝑆))
71, 6syl 17 . . . . . . . 8 (𝜑 → ([𝑁 / 𝑛]𝑛 = 𝑆𝑁 = 𝑆))
8 csbif 4587 . . . . . . . . 9 𝑁 / 𝑛if(𝑆 < 𝑛, 𝐷, 𝐵) = if([𝑁 / 𝑛]𝑆 < 𝑛, 𝑁 / 𝑛𝐷, 𝑁 / 𝑛𝐵)
9 sbcbr2g 5207 . . . . . . . . . . . 12 (𝑁 ∈ ℕ0 → ([𝑁 / 𝑛]𝑆 < 𝑛𝑆 < 𝑁 / 𝑛𝑛))
101, 9syl 17 . . . . . . . . . . 11 (𝜑 → ([𝑁 / 𝑛]𝑆 < 𝑛𝑆 < 𝑁 / 𝑛𝑛))
11 csbvarg 4433 . . . . . . . . . . . . 13 (𝑁 ∈ ℕ0𝑁 / 𝑛𝑛 = 𝑁)
121, 11syl 17 . . . . . . . . . . . 12 (𝜑𝑁 / 𝑛𝑛 = 𝑁)
1312breq2d 5161 . . . . . . . . . . 11 (𝜑 → (𝑆 < 𝑁 / 𝑛𝑛𝑆 < 𝑁))
1410, 13bitrd 278 . . . . . . . . . 10 (𝜑 → ([𝑁 / 𝑛]𝑆 < 𝑛𝑆 < 𝑁))
1514ifbid 4553 . . . . . . . . 9 (𝜑 → if([𝑁 / 𝑛]𝑆 < 𝑛, 𝑁 / 𝑛𝐷, 𝑁 / 𝑛𝐵) = if(𝑆 < 𝑁, 𝑁 / 𝑛𝐷, 𝑁 / 𝑛𝐵))
168, 15eqtrid 2777 . . . . . . . 8 (𝜑𝑁 / 𝑛if(𝑆 < 𝑛, 𝐷, 𝐵) = if(𝑆 < 𝑁, 𝑁 / 𝑛𝐷, 𝑁 / 𝑛𝐵))
177, 16ifbieq2d 4556 . . . . . . 7 (𝜑 → if([𝑁 / 𝑛]𝑛 = 𝑆, 𝑁 / 𝑛𝐶, 𝑁 / 𝑛if(𝑆 < 𝑛, 𝐷, 𝐵)) = if(𝑁 = 𝑆, 𝑁 / 𝑛𝐶, if(𝑆 < 𝑁, 𝑁 / 𝑛𝐷, 𝑁 / 𝑛𝐵)))
185, 17eqtrid 2777 . . . . . 6 (𝜑𝑁 / 𝑛if(𝑛 = 𝑆, 𝐶, if(𝑆 < 𝑛, 𝐷, 𝐵)) = if(𝑁 = 𝑆, 𝑁 / 𝑛𝐶, if(𝑆 < 𝑁, 𝑁 / 𝑛𝐷, 𝑁 / 𝑛𝐵)))
194, 18ifbieq2d 4556 . . . . 5 (𝜑 → if([𝑁 / 𝑛]𝑛 = 0, 𝑁 / 𝑛𝐴, 𝑁 / 𝑛if(𝑛 = 𝑆, 𝐶, if(𝑆 < 𝑛, 𝐷, 𝐵))) = if(𝑁 = 0, 𝑁 / 𝑛𝐴, if(𝑁 = 𝑆, 𝑁 / 𝑛𝐶, if(𝑆 < 𝑁, 𝑁 / 𝑛𝐷, 𝑁 / 𝑛𝐵))))
202, 19eqtrid 2777 . . . 4 (𝜑𝑁 / 𝑛if(𝑛 = 0, 𝐴, if(𝑛 = 𝑆, 𝐶, if(𝑆 < 𝑛, 𝐷, 𝐵))) = if(𝑁 = 0, 𝑁 / 𝑛𝐴, if(𝑁 = 𝑆, 𝑁 / 𝑛𝐶, if(𝑆 < 𝑁, 𝑁 / 𝑛𝐷, 𝑁 / 𝑛𝐵))))
21 fvmptnn04if.a . . . . . 6 ((𝜑𝑁 = 0) → 𝑌 = 𝑁 / 𝑛𝐴)
22 fvmptnn04if.y . . . . . . 7 (𝜑𝑌𝑉)
2322adantr 479 . . . . . 6 ((𝜑𝑁 = 0) → 𝑌𝑉)
2421, 23eqeltrrd 2826 . . . . 5 ((𝜑𝑁 = 0) → 𝑁 / 𝑛𝐴𝑉)
25 fvmptnn04if.c . . . . . . . . 9 ((𝜑𝑁 = 𝑆) → 𝑌 = 𝑁 / 𝑛𝐶)
2625eqcomd 2731 . . . . . . . 8 ((𝜑𝑁 = 𝑆) → 𝑁 / 𝑛𝐶 = 𝑌)
2726adantlr 713 . . . . . . 7 (((𝜑 ∧ ¬ 𝑁 = 0) ∧ 𝑁 = 𝑆) → 𝑁 / 𝑛𝐶 = 𝑌)
2822ad2antrr 724 . . . . . . 7 (((𝜑 ∧ ¬ 𝑁 = 0) ∧ 𝑁 = 𝑆) → 𝑌𝑉)
2927, 28eqeltrd 2825 . . . . . 6 (((𝜑 ∧ ¬ 𝑁 = 0) ∧ 𝑁 = 𝑆) → 𝑁 / 𝑛𝐶𝑉)
30 fvmptnn04if.d . . . . . . . . . 10 ((𝜑𝑆 < 𝑁) → 𝑌 = 𝑁 / 𝑛𝐷)
3130eqcomd 2731 . . . . . . . . 9 ((𝜑𝑆 < 𝑁) → 𝑁 / 𝑛𝐷 = 𝑌)
3231ad4ant14 750 . . . . . . . 8 ((((𝜑 ∧ ¬ 𝑁 = 0) ∧ ¬ 𝑁 = 𝑆) ∧ 𝑆 < 𝑁) → 𝑁 / 𝑛𝐷 = 𝑌)
3322ad3antrrr 728 . . . . . . . 8 ((((𝜑 ∧ ¬ 𝑁 = 0) ∧ ¬ 𝑁 = 𝑆) ∧ 𝑆 < 𝑁) → 𝑌𝑉)
3432, 33eqeltrd 2825 . . . . . . 7 ((((𝜑 ∧ ¬ 𝑁 = 0) ∧ ¬ 𝑁 = 𝑆) ∧ 𝑆 < 𝑁) → 𝑁 / 𝑛𝐷𝑉)
35 simplll 773 . . . . . . . . 9 ((((𝜑 ∧ ¬ 𝑁 = 0) ∧ ¬ 𝑁 = 𝑆) ∧ ¬ 𝑆 < 𝑁) → 𝜑)
36 anass 467 . . . . . . . . . . . . 13 (((¬ 𝑁 = 0 ∧ ¬ 𝑁 = 𝑆) ∧ ¬ 𝑆 < 𝑁) ↔ (¬ 𝑁 = 0 ∧ (¬ 𝑁 = 𝑆 ∧ ¬ 𝑆 < 𝑁)))
3736bicomi 223 . . . . . . . . . . . 12 ((¬ 𝑁 = 0 ∧ (¬ 𝑁 = 𝑆 ∧ ¬ 𝑆 < 𝑁)) ↔ ((¬ 𝑁 = 0 ∧ ¬ 𝑁 = 𝑆) ∧ ¬ 𝑆 < 𝑁))
3837bianassc 641 . . . . . . . . . . 11 ((𝜑 ∧ (¬ 𝑁 = 0 ∧ (¬ 𝑁 = 𝑆 ∧ ¬ 𝑆 < 𝑁))) ↔ (((¬ 𝑁 = 0 ∧ ¬ 𝑁 = 𝑆) ∧ 𝜑) ∧ ¬ 𝑆 < 𝑁))
39 an32 644 . . . . . . . . . . . . 13 (((¬ 𝑁 = 0 ∧ ¬ 𝑁 = 𝑆) ∧ 𝜑) ↔ ((¬ 𝑁 = 0 ∧ 𝜑) ∧ ¬ 𝑁 = 𝑆))
40 ancom 459 . . . . . . . . . . . . . 14 ((¬ 𝑁 = 0 ∧ 𝜑) ↔ (𝜑 ∧ ¬ 𝑁 = 0))
4140anbi1i 622 . . . . . . . . . . . . 13 (((¬ 𝑁 = 0 ∧ 𝜑) ∧ ¬ 𝑁 = 𝑆) ↔ ((𝜑 ∧ ¬ 𝑁 = 0) ∧ ¬ 𝑁 = 𝑆))
4239, 41bitri 274 . . . . . . . . . . . 12 (((¬ 𝑁 = 0 ∧ ¬ 𝑁 = 𝑆) ∧ 𝜑) ↔ ((𝜑 ∧ ¬ 𝑁 = 0) ∧ ¬ 𝑁 = 𝑆))
4342anbi1i 622 . . . . . . . . . . 11 ((((¬ 𝑁 = 0 ∧ ¬ 𝑁 = 𝑆) ∧ 𝜑) ∧ ¬ 𝑆 < 𝑁) ↔ (((𝜑 ∧ ¬ 𝑁 = 0) ∧ ¬ 𝑁 = 𝑆) ∧ ¬ 𝑆 < 𝑁))
4438, 43bitri 274 . . . . . . . . . 10 ((𝜑 ∧ (¬ 𝑁 = 0 ∧ (¬ 𝑁 = 𝑆 ∧ ¬ 𝑆 < 𝑁))) ↔ (((𝜑 ∧ ¬ 𝑁 = 0) ∧ ¬ 𝑁 = 𝑆) ∧ ¬ 𝑆 < 𝑁))
45 df-ne 2930 . . . . . . . . . . . . 13 (𝑁 ≠ 0 ↔ ¬ 𝑁 = 0)
46 elnnne0 12519 . . . . . . . . . . . . . . 15 (𝑁 ∈ ℕ ↔ (𝑁 ∈ ℕ0𝑁 ≠ 0))
47 nngt0 12276 . . . . . . . . . . . . . . 15 (𝑁 ∈ ℕ → 0 < 𝑁)
4846, 47sylbir 234 . . . . . . . . . . . . . 14 ((𝑁 ∈ ℕ0𝑁 ≠ 0) → 0 < 𝑁)
4948expcom 412 . . . . . . . . . . . . 13 (𝑁 ≠ 0 → (𝑁 ∈ ℕ0 → 0 < 𝑁))
5045, 49sylbir 234 . . . . . . . . . . . 12 𝑁 = 0 → (𝑁 ∈ ℕ0 → 0 < 𝑁))
5150adantr 479 . . . . . . . . . . 11 ((¬ 𝑁 = 0 ∧ (¬ 𝑁 = 𝑆 ∧ ¬ 𝑆 < 𝑁)) → (𝑁 ∈ ℕ0 → 0 < 𝑁))
521, 51mpan9 505 . . . . . . . . . 10 ((𝜑 ∧ (¬ 𝑁 = 0 ∧ (¬ 𝑁 = 𝑆 ∧ ¬ 𝑆 < 𝑁))) → 0 < 𝑁)
5344, 52sylbir 234 . . . . . . . . 9 ((((𝜑 ∧ ¬ 𝑁 = 0) ∧ ¬ 𝑁 = 𝑆) ∧ ¬ 𝑆 < 𝑁) → 0 < 𝑁)
541nn0red 12566 . . . . . . . . . . . 12 (𝜑𝑁 ∈ ℝ)
5554adantr 479 . . . . . . . . . . 11 ((𝜑 ∧ (¬ 𝑁 = 0 ∧ (¬ 𝑁 = 𝑆 ∧ ¬ 𝑆 < 𝑁))) → 𝑁 ∈ ℝ)
56 fvmptnn04if.s . . . . . . . . . . . . 13 (𝜑𝑆 ∈ ℕ)
5756nnred 12260 . . . . . . . . . . . 12 (𝜑𝑆 ∈ ℝ)
5857adantr 479 . . . . . . . . . . 11 ((𝜑 ∧ (¬ 𝑁 = 0 ∧ (¬ 𝑁 = 𝑆 ∧ ¬ 𝑆 < 𝑁))) → 𝑆 ∈ ℝ)
5954, 57lenltd 11392 . . . . . . . . . . . . . . 15 (𝜑 → (𝑁𝑆 ↔ ¬ 𝑆 < 𝑁))
6059biimprd 247 . . . . . . . . . . . . . 14 (𝜑 → (¬ 𝑆 < 𝑁𝑁𝑆))
6160adantld 489 . . . . . . . . . . . . 13 (𝜑 → ((¬ 𝑁 = 𝑆 ∧ ¬ 𝑆 < 𝑁) → 𝑁𝑆))
6261adantld 489 . . . . . . . . . . . 12 (𝜑 → ((¬ 𝑁 = 0 ∧ (¬ 𝑁 = 𝑆 ∧ ¬ 𝑆 < 𝑁)) → 𝑁𝑆))
6362imp 405 . . . . . . . . . . 11 ((𝜑 ∧ (¬ 𝑁 = 0 ∧ (¬ 𝑁 = 𝑆 ∧ ¬ 𝑆 < 𝑁))) → 𝑁𝑆)
64 nesym 2986 . . . . . . . . . . . . . 14 (𝑆𝑁 ↔ ¬ 𝑁 = 𝑆)
6564biimpri 227 . . . . . . . . . . . . 13 𝑁 = 𝑆𝑆𝑁)
6665adantr 479 . . . . . . . . . . . 12 ((¬ 𝑁 = 𝑆 ∧ ¬ 𝑆 < 𝑁) → 𝑆𝑁)
6766ad2antll 727 . . . . . . . . . . 11 ((𝜑 ∧ (¬ 𝑁 = 0 ∧ (¬ 𝑁 = 𝑆 ∧ ¬ 𝑆 < 𝑁))) → 𝑆𝑁)
6855, 58, 63, 67leneltd 11400 . . . . . . . . . 10 ((𝜑 ∧ (¬ 𝑁 = 0 ∧ (¬ 𝑁 = 𝑆 ∧ ¬ 𝑆 < 𝑁))) → 𝑁 < 𝑆)
6944, 68sylbir 234 . . . . . . . . 9 ((((𝜑 ∧ ¬ 𝑁 = 0) ∧ ¬ 𝑁 = 𝑆) ∧ ¬ 𝑆 < 𝑁) → 𝑁 < 𝑆)
70 fvmptnn04if.b . . . . . . . . . 10 ((𝜑 ∧ 0 < 𝑁𝑁 < 𝑆) → 𝑌 = 𝑁 / 𝑛𝐵)
7170eqcomd 2731 . . . . . . . . 9 ((𝜑 ∧ 0 < 𝑁𝑁 < 𝑆) → 𝑁 / 𝑛𝐵 = 𝑌)
7235, 53, 69, 71syl3anc 1368 . . . . . . . 8 ((((𝜑 ∧ ¬ 𝑁 = 0) ∧ ¬ 𝑁 = 𝑆) ∧ ¬ 𝑆 < 𝑁) → 𝑁 / 𝑛𝐵 = 𝑌)
7322ad3antrrr 728 . . . . . . . 8 ((((𝜑 ∧ ¬ 𝑁 = 0) ∧ ¬ 𝑁 = 𝑆) ∧ ¬ 𝑆 < 𝑁) → 𝑌𝑉)
7472, 73eqeltrd 2825 . . . . . . 7 ((((𝜑 ∧ ¬ 𝑁 = 0) ∧ ¬ 𝑁 = 𝑆) ∧ ¬ 𝑆 < 𝑁) → 𝑁 / 𝑛𝐵𝑉)
7534, 74ifclda 4565 . . . . . 6 (((𝜑 ∧ ¬ 𝑁 = 0) ∧ ¬ 𝑁 = 𝑆) → if(𝑆 < 𝑁, 𝑁 / 𝑛𝐷, 𝑁 / 𝑛𝐵) ∈ 𝑉)
7629, 75ifclda 4565 . . . . 5 ((𝜑 ∧ ¬ 𝑁 = 0) → if(𝑁 = 𝑆, 𝑁 / 𝑛𝐶, if(𝑆 < 𝑁, 𝑁 / 𝑛𝐷, 𝑁 / 𝑛𝐵)) ∈ 𝑉)
7724, 76ifclda 4565 . . . 4 (𝜑 → if(𝑁 = 0, 𝑁 / 𝑛𝐴, if(𝑁 = 𝑆, 𝑁 / 𝑛𝐶, if(𝑆 < 𝑁, 𝑁 / 𝑛𝐷, 𝑁 / 𝑛𝐵))) ∈ 𝑉)
7820, 77eqeltrd 2825 . . 3 (𝜑𝑁 / 𝑛if(𝑛 = 0, 𝐴, if(𝑛 = 𝑆, 𝐶, if(𝑆 < 𝑛, 𝐷, 𝐵))) ∈ 𝑉)
79 fvmptnn04if.g . . . 4 𝐺 = (𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, 𝐴, if(𝑛 = 𝑆, 𝐶, if(𝑆 < 𝑛, 𝐷, 𝐵))))
8079fvmpts 7007 . . 3 ((𝑁 ∈ ℕ0𝑁 / 𝑛if(𝑛 = 0, 𝐴, if(𝑛 = 𝑆, 𝐶, if(𝑆 < 𝑛, 𝐷, 𝐵))) ∈ 𝑉) → (𝐺𝑁) = 𝑁 / 𝑛if(𝑛 = 0, 𝐴, if(𝑛 = 𝑆, 𝐶, if(𝑆 < 𝑛, 𝐷, 𝐵))))
811, 78, 80syl2anc 582 . 2 (𝜑 → (𝐺𝑁) = 𝑁 / 𝑛if(𝑛 = 0, 𝐴, if(𝑛 = 𝑆, 𝐶, if(𝑆 < 𝑛, 𝐷, 𝐵))))
8221eqcomd 2731 . . 3 ((𝜑𝑁 = 0) → 𝑁 / 𝑛𝐴 = 𝑌)
8332, 72ifeqda 4566 . . . 4 (((𝜑 ∧ ¬ 𝑁 = 0) ∧ ¬ 𝑁 = 𝑆) → if(𝑆 < 𝑁, 𝑁 / 𝑛𝐷, 𝑁 / 𝑛𝐵) = 𝑌)
8427, 83ifeqda 4566 . . 3 ((𝜑 ∧ ¬ 𝑁 = 0) → if(𝑁 = 𝑆, 𝑁 / 𝑛𝐶, if(𝑆 < 𝑁, 𝑁 / 𝑛𝐷, 𝑁 / 𝑛𝐵)) = 𝑌)
8582, 84ifeqda 4566 . 2 (𝜑 → if(𝑁 = 0, 𝑁 / 𝑛𝐴, if(𝑁 = 𝑆, 𝑁 / 𝑛𝐶, if(𝑆 < 𝑁, 𝑁 / 𝑛𝐷, 𝑁 / 𝑛𝐵))) = 𝑌)
8681, 20, 853eqtrd 2769 1 (𝜑 → (𝐺𝑁) = 𝑌)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 394  w3a 1084   = wceq 1533  wcel 2098  wne 2929  [wsbc 3773  csb 3889  ifcif 4530   class class class wbr 5149  cmpt 5232  cfv 6549  cr 11139  0cc0 11140   < clt 11280  cle 11281  cn 12245  0cn0 12505
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2696  ax-sep 5300  ax-nul 5307  ax-pow 5365  ax-pr 5429  ax-un 7741  ax-resscn 11197  ax-1cn 11198  ax-icn 11199  ax-addcl 11200  ax-addrcl 11201  ax-mulcl 11202  ax-mulrcl 11203  ax-mulcom 11204  ax-addass 11205  ax-mulass 11206  ax-distr 11207  ax-i2m1 11208  ax-1ne0 11209  ax-1rid 11210  ax-rnegex 11211  ax-rrecex 11212  ax-cnre 11213  ax-pre-lttri 11214  ax-pre-lttrn 11215  ax-pre-ltadd 11216  ax-pre-mulgt0 11217
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2703  df-cleq 2717  df-clel 2802  df-nfc 2877  df-ne 2930  df-nel 3036  df-ral 3051  df-rex 3060  df-reu 3364  df-rab 3419  df-v 3463  df-sbc 3774  df-csb 3890  df-dif 3947  df-un 3949  df-in 3951  df-ss 3961  df-pss 3964  df-nul 4323  df-if 4531  df-pw 4606  df-sn 4631  df-pr 4633  df-op 4637  df-uni 4910  df-iun 4999  df-br 5150  df-opab 5212  df-mpt 5233  df-tr 5267  df-id 5576  df-eprel 5582  df-po 5590  df-so 5591  df-fr 5633  df-we 5635  df-xp 5684  df-rel 5685  df-cnv 5686  df-co 5687  df-dm 5688  df-rn 5689  df-res 5690  df-ima 5691  df-pred 6307  df-ord 6374  df-on 6375  df-lim 6376  df-suc 6377  df-iota 6501  df-fun 6551  df-fn 6552  df-f 6553  df-f1 6554  df-fo 6555  df-f1o 6556  df-fv 6557  df-riota 7375  df-ov 7422  df-oprab 7423  df-mpo 7424  df-om 7872  df-2nd 7995  df-frecs 8287  df-wrecs 8318  df-recs 8392  df-rdg 8431  df-er 8725  df-en 8965  df-dom 8966  df-sdom 8967  df-pnf 11282  df-mnf 11283  df-xr 11284  df-ltxr 11285  df-le 11286  df-sub 11478  df-neg 11479  df-nn 12246  df-n0 12506
This theorem is referenced by:  fvmptnn04ifa  22796  fvmptnn04ifb  22797  fvmptnn04ifc  22798  fvmptnn04ifd  22799
  Copyright terms: Public domain W3C validator