MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fvmptnn04if Structured version   Visualization version   GIF version

Theorem fvmptnn04if 22787
Description: The function values of a mapping from the nonnegative integers with four distinct cases. (Contributed by AV, 10-Nov-2019.)
Hypotheses
Ref Expression
fvmptnn04if.g 𝐺 = (𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, 𝐴, if(𝑛 = 𝑆, 𝐶, if(𝑆 < 𝑛, 𝐷, 𝐵))))
fvmptnn04if.s (𝜑𝑆 ∈ ℕ)
fvmptnn04if.n (𝜑𝑁 ∈ ℕ0)
fvmptnn04if.y (𝜑𝑌𝑉)
fvmptnn04if.a ((𝜑𝑁 = 0) → 𝑌 = 𝑁 / 𝑛𝐴)
fvmptnn04if.b ((𝜑 ∧ 0 < 𝑁𝑁 < 𝑆) → 𝑌 = 𝑁 / 𝑛𝐵)
fvmptnn04if.c ((𝜑𝑁 = 𝑆) → 𝑌 = 𝑁 / 𝑛𝐶)
fvmptnn04if.d ((𝜑𝑆 < 𝑁) → 𝑌 = 𝑁 / 𝑛𝐷)
Assertion
Ref Expression
fvmptnn04if (𝜑 → (𝐺𝑁) = 𝑌)
Distinct variable groups:   𝑛,𝑁   𝑆,𝑛
Allowed substitution hints:   𝜑(𝑛)   𝐴(𝑛)   𝐵(𝑛)   𝐶(𝑛)   𝐷(𝑛)   𝐺(𝑛)   𝑉(𝑛)   𝑌(𝑛)

Proof of Theorem fvmptnn04if
StepHypRef Expression
1 fvmptnn04if.n . . 3 (𝜑𝑁 ∈ ℕ0)
2 csbif 4558 . . . . 5 𝑁 / 𝑛if(𝑛 = 0, 𝐴, if(𝑛 = 𝑆, 𝐶, if(𝑆 < 𝑛, 𝐷, 𝐵))) = if([𝑁 / 𝑛]𝑛 = 0, 𝑁 / 𝑛𝐴, 𝑁 / 𝑛if(𝑛 = 𝑆, 𝐶, if(𝑆 < 𝑛, 𝐷, 𝐵)))
3 eqsbc1 3812 . . . . . . 7 (𝑁 ∈ ℕ0 → ([𝑁 / 𝑛]𝑛 = 0 ↔ 𝑁 = 0))
41, 3syl 17 . . . . . 6 (𝜑 → ([𝑁 / 𝑛]𝑛 = 0 ↔ 𝑁 = 0))
5 csbif 4558 . . . . . . 7 𝑁 / 𝑛if(𝑛 = 𝑆, 𝐶, if(𝑆 < 𝑛, 𝐷, 𝐵)) = if([𝑁 / 𝑛]𝑛 = 𝑆, 𝑁 / 𝑛𝐶, 𝑁 / 𝑛if(𝑆 < 𝑛, 𝐷, 𝐵))
6 eqsbc1 3812 . . . . . . . . 9 (𝑁 ∈ ℕ0 → ([𝑁 / 𝑛]𝑛 = 𝑆𝑁 = 𝑆))
71, 6syl 17 . . . . . . . 8 (𝜑 → ([𝑁 / 𝑛]𝑛 = 𝑆𝑁 = 𝑆))
8 csbif 4558 . . . . . . . . 9 𝑁 / 𝑛if(𝑆 < 𝑛, 𝐷, 𝐵) = if([𝑁 / 𝑛]𝑆 < 𝑛, 𝑁 / 𝑛𝐷, 𝑁 / 𝑛𝐵)
9 sbcbr2g 5177 . . . . . . . . . . . 12 (𝑁 ∈ ℕ0 → ([𝑁 / 𝑛]𝑆 < 𝑛𝑆 < 𝑁 / 𝑛𝑛))
101, 9syl 17 . . . . . . . . . . 11 (𝜑 → ([𝑁 / 𝑛]𝑆 < 𝑛𝑆 < 𝑁 / 𝑛𝑛))
11 csbvarg 4409 . . . . . . . . . . . . 13 (𝑁 ∈ ℕ0𝑁 / 𝑛𝑛 = 𝑁)
121, 11syl 17 . . . . . . . . . . . 12 (𝜑𝑁 / 𝑛𝑛 = 𝑁)
1312breq2d 5131 . . . . . . . . . . 11 (𝜑 → (𝑆 < 𝑁 / 𝑛𝑛𝑆 < 𝑁))
1410, 13bitrd 279 . . . . . . . . . 10 (𝜑 → ([𝑁 / 𝑛]𝑆 < 𝑛𝑆 < 𝑁))
1514ifbid 4524 . . . . . . . . 9 (𝜑 → if([𝑁 / 𝑛]𝑆 < 𝑛, 𝑁 / 𝑛𝐷, 𝑁 / 𝑛𝐵) = if(𝑆 < 𝑁, 𝑁 / 𝑛𝐷, 𝑁 / 𝑛𝐵))
168, 15eqtrid 2782 . . . . . . . 8 (𝜑𝑁 / 𝑛if(𝑆 < 𝑛, 𝐷, 𝐵) = if(𝑆 < 𝑁, 𝑁 / 𝑛𝐷, 𝑁 / 𝑛𝐵))
177, 16ifbieq2d 4527 . . . . . . 7 (𝜑 → if([𝑁 / 𝑛]𝑛 = 𝑆, 𝑁 / 𝑛𝐶, 𝑁 / 𝑛if(𝑆 < 𝑛, 𝐷, 𝐵)) = if(𝑁 = 𝑆, 𝑁 / 𝑛𝐶, if(𝑆 < 𝑁, 𝑁 / 𝑛𝐷, 𝑁 / 𝑛𝐵)))
185, 17eqtrid 2782 . . . . . 6 (𝜑𝑁 / 𝑛if(𝑛 = 𝑆, 𝐶, if(𝑆 < 𝑛, 𝐷, 𝐵)) = if(𝑁 = 𝑆, 𝑁 / 𝑛𝐶, if(𝑆 < 𝑁, 𝑁 / 𝑛𝐷, 𝑁 / 𝑛𝐵)))
194, 18ifbieq2d 4527 . . . . 5 (𝜑 → if([𝑁 / 𝑛]𝑛 = 0, 𝑁 / 𝑛𝐴, 𝑁 / 𝑛if(𝑛 = 𝑆, 𝐶, if(𝑆 < 𝑛, 𝐷, 𝐵))) = if(𝑁 = 0, 𝑁 / 𝑛𝐴, if(𝑁 = 𝑆, 𝑁 / 𝑛𝐶, if(𝑆 < 𝑁, 𝑁 / 𝑛𝐷, 𝑁 / 𝑛𝐵))))
202, 19eqtrid 2782 . . . 4 (𝜑𝑁 / 𝑛if(𝑛 = 0, 𝐴, if(𝑛 = 𝑆, 𝐶, if(𝑆 < 𝑛, 𝐷, 𝐵))) = if(𝑁 = 0, 𝑁 / 𝑛𝐴, if(𝑁 = 𝑆, 𝑁 / 𝑛𝐶, if(𝑆 < 𝑁, 𝑁 / 𝑛𝐷, 𝑁 / 𝑛𝐵))))
21 fvmptnn04if.a . . . . . 6 ((𝜑𝑁 = 0) → 𝑌 = 𝑁 / 𝑛𝐴)
22 fvmptnn04if.y . . . . . . 7 (𝜑𝑌𝑉)
2322adantr 480 . . . . . 6 ((𝜑𝑁 = 0) → 𝑌𝑉)
2421, 23eqeltrrd 2835 . . . . 5 ((𝜑𝑁 = 0) → 𝑁 / 𝑛𝐴𝑉)
25 fvmptnn04if.c . . . . . . . . 9 ((𝜑𝑁 = 𝑆) → 𝑌 = 𝑁 / 𝑛𝐶)
2625eqcomd 2741 . . . . . . . 8 ((𝜑𝑁 = 𝑆) → 𝑁 / 𝑛𝐶 = 𝑌)
2726adantlr 715 . . . . . . 7 (((𝜑 ∧ ¬ 𝑁 = 0) ∧ 𝑁 = 𝑆) → 𝑁 / 𝑛𝐶 = 𝑌)
2822ad2antrr 726 . . . . . . 7 (((𝜑 ∧ ¬ 𝑁 = 0) ∧ 𝑁 = 𝑆) → 𝑌𝑉)
2927, 28eqeltrd 2834 . . . . . 6 (((𝜑 ∧ ¬ 𝑁 = 0) ∧ 𝑁 = 𝑆) → 𝑁 / 𝑛𝐶𝑉)
30 fvmptnn04if.d . . . . . . . . . 10 ((𝜑𝑆 < 𝑁) → 𝑌 = 𝑁 / 𝑛𝐷)
3130eqcomd 2741 . . . . . . . . 9 ((𝜑𝑆 < 𝑁) → 𝑁 / 𝑛𝐷 = 𝑌)
3231ad4ant14 752 . . . . . . . 8 ((((𝜑 ∧ ¬ 𝑁 = 0) ∧ ¬ 𝑁 = 𝑆) ∧ 𝑆 < 𝑁) → 𝑁 / 𝑛𝐷 = 𝑌)
3322ad3antrrr 730 . . . . . . . 8 ((((𝜑 ∧ ¬ 𝑁 = 0) ∧ ¬ 𝑁 = 𝑆) ∧ 𝑆 < 𝑁) → 𝑌𝑉)
3432, 33eqeltrd 2834 . . . . . . 7 ((((𝜑 ∧ ¬ 𝑁 = 0) ∧ ¬ 𝑁 = 𝑆) ∧ 𝑆 < 𝑁) → 𝑁 / 𝑛𝐷𝑉)
35 simplll 774 . . . . . . . . 9 ((((𝜑 ∧ ¬ 𝑁 = 0) ∧ ¬ 𝑁 = 𝑆) ∧ ¬ 𝑆 < 𝑁) → 𝜑)
36 anass 468 . . . . . . . . . . . . 13 (((¬ 𝑁 = 0 ∧ ¬ 𝑁 = 𝑆) ∧ ¬ 𝑆 < 𝑁) ↔ (¬ 𝑁 = 0 ∧ (¬ 𝑁 = 𝑆 ∧ ¬ 𝑆 < 𝑁)))
3736bicomi 224 . . . . . . . . . . . 12 ((¬ 𝑁 = 0 ∧ (¬ 𝑁 = 𝑆 ∧ ¬ 𝑆 < 𝑁)) ↔ ((¬ 𝑁 = 0 ∧ ¬ 𝑁 = 𝑆) ∧ ¬ 𝑆 < 𝑁))
3837bianassc 643 . . . . . . . . . . 11 ((𝜑 ∧ (¬ 𝑁 = 0 ∧ (¬ 𝑁 = 𝑆 ∧ ¬ 𝑆 < 𝑁))) ↔ (((¬ 𝑁 = 0 ∧ ¬ 𝑁 = 𝑆) ∧ 𝜑) ∧ ¬ 𝑆 < 𝑁))
39 an32 646 . . . . . . . . . . . . 13 (((¬ 𝑁 = 0 ∧ ¬ 𝑁 = 𝑆) ∧ 𝜑) ↔ ((¬ 𝑁 = 0 ∧ 𝜑) ∧ ¬ 𝑁 = 𝑆))
40 ancom 460 . . . . . . . . . . . . . 14 ((¬ 𝑁 = 0 ∧ 𝜑) ↔ (𝜑 ∧ ¬ 𝑁 = 0))
4140anbi1i 624 . . . . . . . . . . . . 13 (((¬ 𝑁 = 0 ∧ 𝜑) ∧ ¬ 𝑁 = 𝑆) ↔ ((𝜑 ∧ ¬ 𝑁 = 0) ∧ ¬ 𝑁 = 𝑆))
4239, 41bitri 275 . . . . . . . . . . . 12 (((¬ 𝑁 = 0 ∧ ¬ 𝑁 = 𝑆) ∧ 𝜑) ↔ ((𝜑 ∧ ¬ 𝑁 = 0) ∧ ¬ 𝑁 = 𝑆))
4342anbi1i 624 . . . . . . . . . . 11 ((((¬ 𝑁 = 0 ∧ ¬ 𝑁 = 𝑆) ∧ 𝜑) ∧ ¬ 𝑆 < 𝑁) ↔ (((𝜑 ∧ ¬ 𝑁 = 0) ∧ ¬ 𝑁 = 𝑆) ∧ ¬ 𝑆 < 𝑁))
4438, 43bitri 275 . . . . . . . . . 10 ((𝜑 ∧ (¬ 𝑁 = 0 ∧ (¬ 𝑁 = 𝑆 ∧ ¬ 𝑆 < 𝑁))) ↔ (((𝜑 ∧ ¬ 𝑁 = 0) ∧ ¬ 𝑁 = 𝑆) ∧ ¬ 𝑆 < 𝑁))
45 df-ne 2933 . . . . . . . . . . . . 13 (𝑁 ≠ 0 ↔ ¬ 𝑁 = 0)
46 elnnne0 12515 . . . . . . . . . . . . . . 15 (𝑁 ∈ ℕ ↔ (𝑁 ∈ ℕ0𝑁 ≠ 0))
47 nngt0 12271 . . . . . . . . . . . . . . 15 (𝑁 ∈ ℕ → 0 < 𝑁)
4846, 47sylbir 235 . . . . . . . . . . . . . 14 ((𝑁 ∈ ℕ0𝑁 ≠ 0) → 0 < 𝑁)
4948expcom 413 . . . . . . . . . . . . 13 (𝑁 ≠ 0 → (𝑁 ∈ ℕ0 → 0 < 𝑁))
5045, 49sylbir 235 . . . . . . . . . . . 12 𝑁 = 0 → (𝑁 ∈ ℕ0 → 0 < 𝑁))
5150adantr 480 . . . . . . . . . . 11 ((¬ 𝑁 = 0 ∧ (¬ 𝑁 = 𝑆 ∧ ¬ 𝑆 < 𝑁)) → (𝑁 ∈ ℕ0 → 0 < 𝑁))
521, 51mpan9 506 . . . . . . . . . 10 ((𝜑 ∧ (¬ 𝑁 = 0 ∧ (¬ 𝑁 = 𝑆 ∧ ¬ 𝑆 < 𝑁))) → 0 < 𝑁)
5344, 52sylbir 235 . . . . . . . . 9 ((((𝜑 ∧ ¬ 𝑁 = 0) ∧ ¬ 𝑁 = 𝑆) ∧ ¬ 𝑆 < 𝑁) → 0 < 𝑁)
541nn0red 12563 . . . . . . . . . . . 12 (𝜑𝑁 ∈ ℝ)
5554adantr 480 . . . . . . . . . . 11 ((𝜑 ∧ (¬ 𝑁 = 0 ∧ (¬ 𝑁 = 𝑆 ∧ ¬ 𝑆 < 𝑁))) → 𝑁 ∈ ℝ)
56 fvmptnn04if.s . . . . . . . . . . . . 13 (𝜑𝑆 ∈ ℕ)
5756nnred 12255 . . . . . . . . . . . 12 (𝜑𝑆 ∈ ℝ)
5857adantr 480 . . . . . . . . . . 11 ((𝜑 ∧ (¬ 𝑁 = 0 ∧ (¬ 𝑁 = 𝑆 ∧ ¬ 𝑆 < 𝑁))) → 𝑆 ∈ ℝ)
5954, 57lenltd 11381 . . . . . . . . . . . . . . 15 (𝜑 → (𝑁𝑆 ↔ ¬ 𝑆 < 𝑁))
6059biimprd 248 . . . . . . . . . . . . . 14 (𝜑 → (¬ 𝑆 < 𝑁𝑁𝑆))
6160adantld 490 . . . . . . . . . . . . 13 (𝜑 → ((¬ 𝑁 = 𝑆 ∧ ¬ 𝑆 < 𝑁) → 𝑁𝑆))
6261adantld 490 . . . . . . . . . . . 12 (𝜑 → ((¬ 𝑁 = 0 ∧ (¬ 𝑁 = 𝑆 ∧ ¬ 𝑆 < 𝑁)) → 𝑁𝑆))
6362imp 406 . . . . . . . . . . 11 ((𝜑 ∧ (¬ 𝑁 = 0 ∧ (¬ 𝑁 = 𝑆 ∧ ¬ 𝑆 < 𝑁))) → 𝑁𝑆)
64 nesym 2988 . . . . . . . . . . . . . 14 (𝑆𝑁 ↔ ¬ 𝑁 = 𝑆)
6564biimpri 228 . . . . . . . . . . . . 13 𝑁 = 𝑆𝑆𝑁)
6665adantr 480 . . . . . . . . . . . 12 ((¬ 𝑁 = 𝑆 ∧ ¬ 𝑆 < 𝑁) → 𝑆𝑁)
6766ad2antll 729 . . . . . . . . . . 11 ((𝜑 ∧ (¬ 𝑁 = 0 ∧ (¬ 𝑁 = 𝑆 ∧ ¬ 𝑆 < 𝑁))) → 𝑆𝑁)
6855, 58, 63, 67leneltd 11389 . . . . . . . . . 10 ((𝜑 ∧ (¬ 𝑁 = 0 ∧ (¬ 𝑁 = 𝑆 ∧ ¬ 𝑆 < 𝑁))) → 𝑁 < 𝑆)
6944, 68sylbir 235 . . . . . . . . 9 ((((𝜑 ∧ ¬ 𝑁 = 0) ∧ ¬ 𝑁 = 𝑆) ∧ ¬ 𝑆 < 𝑁) → 𝑁 < 𝑆)
70 fvmptnn04if.b . . . . . . . . . 10 ((𝜑 ∧ 0 < 𝑁𝑁 < 𝑆) → 𝑌 = 𝑁 / 𝑛𝐵)
7170eqcomd 2741 . . . . . . . . 9 ((𝜑 ∧ 0 < 𝑁𝑁 < 𝑆) → 𝑁 / 𝑛𝐵 = 𝑌)
7235, 53, 69, 71syl3anc 1373 . . . . . . . 8 ((((𝜑 ∧ ¬ 𝑁 = 0) ∧ ¬ 𝑁 = 𝑆) ∧ ¬ 𝑆 < 𝑁) → 𝑁 / 𝑛𝐵 = 𝑌)
7322ad3antrrr 730 . . . . . . . 8 ((((𝜑 ∧ ¬ 𝑁 = 0) ∧ ¬ 𝑁 = 𝑆) ∧ ¬ 𝑆 < 𝑁) → 𝑌𝑉)
7472, 73eqeltrd 2834 . . . . . . 7 ((((𝜑 ∧ ¬ 𝑁 = 0) ∧ ¬ 𝑁 = 𝑆) ∧ ¬ 𝑆 < 𝑁) → 𝑁 / 𝑛𝐵𝑉)
7534, 74ifclda 4536 . . . . . 6 (((𝜑 ∧ ¬ 𝑁 = 0) ∧ ¬ 𝑁 = 𝑆) → if(𝑆 < 𝑁, 𝑁 / 𝑛𝐷, 𝑁 / 𝑛𝐵) ∈ 𝑉)
7629, 75ifclda 4536 . . . . 5 ((𝜑 ∧ ¬ 𝑁 = 0) → if(𝑁 = 𝑆, 𝑁 / 𝑛𝐶, if(𝑆 < 𝑁, 𝑁 / 𝑛𝐷, 𝑁 / 𝑛𝐵)) ∈ 𝑉)
7724, 76ifclda 4536 . . . 4 (𝜑 → if(𝑁 = 0, 𝑁 / 𝑛𝐴, if(𝑁 = 𝑆, 𝑁 / 𝑛𝐶, if(𝑆 < 𝑁, 𝑁 / 𝑛𝐷, 𝑁 / 𝑛𝐵))) ∈ 𝑉)
7820, 77eqeltrd 2834 . . 3 (𝜑𝑁 / 𝑛if(𝑛 = 0, 𝐴, if(𝑛 = 𝑆, 𝐶, if(𝑆 < 𝑛, 𝐷, 𝐵))) ∈ 𝑉)
79 fvmptnn04if.g . . . 4 𝐺 = (𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, 𝐴, if(𝑛 = 𝑆, 𝐶, if(𝑆 < 𝑛, 𝐷, 𝐵))))
8079fvmpts 6989 . . 3 ((𝑁 ∈ ℕ0𝑁 / 𝑛if(𝑛 = 0, 𝐴, if(𝑛 = 𝑆, 𝐶, if(𝑆 < 𝑛, 𝐷, 𝐵))) ∈ 𝑉) → (𝐺𝑁) = 𝑁 / 𝑛if(𝑛 = 0, 𝐴, if(𝑛 = 𝑆, 𝐶, if(𝑆 < 𝑛, 𝐷, 𝐵))))
811, 78, 80syl2anc 584 . 2 (𝜑 → (𝐺𝑁) = 𝑁 / 𝑛if(𝑛 = 0, 𝐴, if(𝑛 = 𝑆, 𝐶, if(𝑆 < 𝑛, 𝐷, 𝐵))))
8221eqcomd 2741 . . 3 ((𝜑𝑁 = 0) → 𝑁 / 𝑛𝐴 = 𝑌)
8332, 72ifeqda 4537 . . . 4 (((𝜑 ∧ ¬ 𝑁 = 0) ∧ ¬ 𝑁 = 𝑆) → if(𝑆 < 𝑁, 𝑁 / 𝑛𝐷, 𝑁 / 𝑛𝐵) = 𝑌)
8427, 83ifeqda 4537 . . 3 ((𝜑 ∧ ¬ 𝑁 = 0) → if(𝑁 = 𝑆, 𝑁 / 𝑛𝐶, if(𝑆 < 𝑁, 𝑁 / 𝑛𝐷, 𝑁 / 𝑛𝐵)) = 𝑌)
8582, 84ifeqda 4537 . 2 (𝜑 → if(𝑁 = 0, 𝑁 / 𝑛𝐴, if(𝑁 = 𝑆, 𝑁 / 𝑛𝐶, if(𝑆 < 𝑁, 𝑁 / 𝑛𝐷, 𝑁 / 𝑛𝐵))) = 𝑌)
8681, 20, 853eqtrd 2774 1 (𝜑 → (𝐺𝑁) = 𝑌)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2108  wne 2932  [wsbc 3765  csb 3874  ifcif 4500   class class class wbr 5119  cmpt 5201  cfv 6531  cr 11128  0cc0 11129   < clt 11269  cle 11270  cn 12240  0cn0 12501
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7729  ax-resscn 11186  ax-1cn 11187  ax-icn 11188  ax-addcl 11189  ax-addrcl 11190  ax-mulcl 11191  ax-mulrcl 11192  ax-mulcom 11193  ax-addass 11194  ax-mulass 11195  ax-distr 11196  ax-i2m1 11197  ax-1ne0 11198  ax-1rid 11199  ax-rnegex 11200  ax-rrecex 11201  ax-cnre 11202  ax-pre-lttri 11203  ax-pre-lttrn 11204  ax-pre-ltadd 11205  ax-pre-mulgt0 11206
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-nel 3037  df-ral 3052  df-rex 3061  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-pss 3946  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-iun 4969  df-br 5120  df-opab 5182  df-mpt 5202  df-tr 5230  df-id 5548  df-eprel 5553  df-po 5561  df-so 5562  df-fr 5606  df-we 5608  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-pred 6290  df-ord 6355  df-on 6356  df-lim 6357  df-suc 6358  df-iota 6484  df-fun 6533  df-fn 6534  df-f 6535  df-f1 6536  df-fo 6537  df-f1o 6538  df-fv 6539  df-riota 7362  df-ov 7408  df-oprab 7409  df-mpo 7410  df-om 7862  df-2nd 7989  df-frecs 8280  df-wrecs 8311  df-recs 8385  df-rdg 8424  df-er 8719  df-en 8960  df-dom 8961  df-sdom 8962  df-pnf 11271  df-mnf 11272  df-xr 11273  df-ltxr 11274  df-le 11275  df-sub 11468  df-neg 11469  df-nn 12241  df-n0 12502
This theorem is referenced by:  fvmptnn04ifa  22788  fvmptnn04ifb  22789  fvmptnn04ifc  22790  fvmptnn04ifd  22791
  Copyright terms: Public domain W3C validator