MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fvmptnn04if Structured version   Visualization version   GIF version

Theorem fvmptnn04if 21906
Description: The function values of a mapping from the nonnegative integers with four distinct cases. (Contributed by AV, 10-Nov-2019.)
Hypotheses
Ref Expression
fvmptnn04if.g 𝐺 = (𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, 𝐴, if(𝑛 = 𝑆, 𝐶, if(𝑆 < 𝑛, 𝐷, 𝐵))))
fvmptnn04if.s (𝜑𝑆 ∈ ℕ)
fvmptnn04if.n (𝜑𝑁 ∈ ℕ0)
fvmptnn04if.y (𝜑𝑌𝑉)
fvmptnn04if.a ((𝜑𝑁 = 0) → 𝑌 = 𝑁 / 𝑛𝐴)
fvmptnn04if.b ((𝜑 ∧ 0 < 𝑁𝑁 < 𝑆) → 𝑌 = 𝑁 / 𝑛𝐵)
fvmptnn04if.c ((𝜑𝑁 = 𝑆) → 𝑌 = 𝑁 / 𝑛𝐶)
fvmptnn04if.d ((𝜑𝑆 < 𝑁) → 𝑌 = 𝑁 / 𝑛𝐷)
Assertion
Ref Expression
fvmptnn04if (𝜑 → (𝐺𝑁) = 𝑌)
Distinct variable groups:   𝑛,𝑁   𝑆,𝑛
Allowed substitution hints:   𝜑(𝑛)   𝐴(𝑛)   𝐵(𝑛)   𝐶(𝑛)   𝐷(𝑛)   𝐺(𝑛)   𝑉(𝑛)   𝑌(𝑛)

Proof of Theorem fvmptnn04if
StepHypRef Expression
1 fvmptnn04if.n . . 3 (𝜑𝑁 ∈ ℕ0)
2 csbif 4513 . . . . 5 𝑁 / 𝑛if(𝑛 = 0, 𝐴, if(𝑛 = 𝑆, 𝐶, if(𝑆 < 𝑛, 𝐷, 𝐵))) = if([𝑁 / 𝑛]𝑛 = 0, 𝑁 / 𝑛𝐴, 𝑁 / 𝑛if(𝑛 = 𝑆, 𝐶, if(𝑆 < 𝑛, 𝐷, 𝐵)))
3 eqsbc1 3760 . . . . . . 7 (𝑁 ∈ ℕ0 → ([𝑁 / 𝑛]𝑛 = 0 ↔ 𝑁 = 0))
41, 3syl 17 . . . . . 6 (𝜑 → ([𝑁 / 𝑛]𝑛 = 0 ↔ 𝑁 = 0))
5 csbif 4513 . . . . . . 7 𝑁 / 𝑛if(𝑛 = 𝑆, 𝐶, if(𝑆 < 𝑛, 𝐷, 𝐵)) = if([𝑁 / 𝑛]𝑛 = 𝑆, 𝑁 / 𝑛𝐶, 𝑁 / 𝑛if(𝑆 < 𝑛, 𝐷, 𝐵))
6 eqsbc1 3760 . . . . . . . . 9 (𝑁 ∈ ℕ0 → ([𝑁 / 𝑛]𝑛 = 𝑆𝑁 = 𝑆))
71, 6syl 17 . . . . . . . 8 (𝜑 → ([𝑁 / 𝑛]𝑛 = 𝑆𝑁 = 𝑆))
8 csbif 4513 . . . . . . . . 9 𝑁 / 𝑛if(𝑆 < 𝑛, 𝐷, 𝐵) = if([𝑁 / 𝑛]𝑆 < 𝑛, 𝑁 / 𝑛𝐷, 𝑁 / 𝑛𝐵)
9 sbcbr2g 5128 . . . . . . . . . . . 12 (𝑁 ∈ ℕ0 → ([𝑁 / 𝑛]𝑆 < 𝑛𝑆 < 𝑁 / 𝑛𝑛))
101, 9syl 17 . . . . . . . . . . 11 (𝜑 → ([𝑁 / 𝑛]𝑆 < 𝑛𝑆 < 𝑁 / 𝑛𝑛))
11 csbvarg 4362 . . . . . . . . . . . . 13 (𝑁 ∈ ℕ0𝑁 / 𝑛𝑛 = 𝑁)
121, 11syl 17 . . . . . . . . . . . 12 (𝜑𝑁 / 𝑛𝑛 = 𝑁)
1312breq2d 5082 . . . . . . . . . . 11 (𝜑 → (𝑆 < 𝑁 / 𝑛𝑛𝑆 < 𝑁))
1410, 13bitrd 278 . . . . . . . . . 10 (𝜑 → ([𝑁 / 𝑛]𝑆 < 𝑛𝑆 < 𝑁))
1514ifbid 4479 . . . . . . . . 9 (𝜑 → if([𝑁 / 𝑛]𝑆 < 𝑛, 𝑁 / 𝑛𝐷, 𝑁 / 𝑛𝐵) = if(𝑆 < 𝑁, 𝑁 / 𝑛𝐷, 𝑁 / 𝑛𝐵))
168, 15eqtrid 2790 . . . . . . . 8 (𝜑𝑁 / 𝑛if(𝑆 < 𝑛, 𝐷, 𝐵) = if(𝑆 < 𝑁, 𝑁 / 𝑛𝐷, 𝑁 / 𝑛𝐵))
177, 16ifbieq2d 4482 . . . . . . 7 (𝜑 → if([𝑁 / 𝑛]𝑛 = 𝑆, 𝑁 / 𝑛𝐶, 𝑁 / 𝑛if(𝑆 < 𝑛, 𝐷, 𝐵)) = if(𝑁 = 𝑆, 𝑁 / 𝑛𝐶, if(𝑆 < 𝑁, 𝑁 / 𝑛𝐷, 𝑁 / 𝑛𝐵)))
185, 17eqtrid 2790 . . . . . 6 (𝜑𝑁 / 𝑛if(𝑛 = 𝑆, 𝐶, if(𝑆 < 𝑛, 𝐷, 𝐵)) = if(𝑁 = 𝑆, 𝑁 / 𝑛𝐶, if(𝑆 < 𝑁, 𝑁 / 𝑛𝐷, 𝑁 / 𝑛𝐵)))
194, 18ifbieq2d 4482 . . . . 5 (𝜑 → if([𝑁 / 𝑛]𝑛 = 0, 𝑁 / 𝑛𝐴, 𝑁 / 𝑛if(𝑛 = 𝑆, 𝐶, if(𝑆 < 𝑛, 𝐷, 𝐵))) = if(𝑁 = 0, 𝑁 / 𝑛𝐴, if(𝑁 = 𝑆, 𝑁 / 𝑛𝐶, if(𝑆 < 𝑁, 𝑁 / 𝑛𝐷, 𝑁 / 𝑛𝐵))))
202, 19eqtrid 2790 . . . 4 (𝜑𝑁 / 𝑛if(𝑛 = 0, 𝐴, if(𝑛 = 𝑆, 𝐶, if(𝑆 < 𝑛, 𝐷, 𝐵))) = if(𝑁 = 0, 𝑁 / 𝑛𝐴, if(𝑁 = 𝑆, 𝑁 / 𝑛𝐶, if(𝑆 < 𝑁, 𝑁 / 𝑛𝐷, 𝑁 / 𝑛𝐵))))
21 fvmptnn04if.a . . . . . 6 ((𝜑𝑁 = 0) → 𝑌 = 𝑁 / 𝑛𝐴)
22 fvmptnn04if.y . . . . . . 7 (𝜑𝑌𝑉)
2322adantr 480 . . . . . 6 ((𝜑𝑁 = 0) → 𝑌𝑉)
2421, 23eqeltrrd 2840 . . . . 5 ((𝜑𝑁 = 0) → 𝑁 / 𝑛𝐴𝑉)
25 fvmptnn04if.c . . . . . . . . 9 ((𝜑𝑁 = 𝑆) → 𝑌 = 𝑁 / 𝑛𝐶)
2625eqcomd 2744 . . . . . . . 8 ((𝜑𝑁 = 𝑆) → 𝑁 / 𝑛𝐶 = 𝑌)
2726adantlr 711 . . . . . . 7 (((𝜑 ∧ ¬ 𝑁 = 0) ∧ 𝑁 = 𝑆) → 𝑁 / 𝑛𝐶 = 𝑌)
2822ad2antrr 722 . . . . . . 7 (((𝜑 ∧ ¬ 𝑁 = 0) ∧ 𝑁 = 𝑆) → 𝑌𝑉)
2927, 28eqeltrd 2839 . . . . . 6 (((𝜑 ∧ ¬ 𝑁 = 0) ∧ 𝑁 = 𝑆) → 𝑁 / 𝑛𝐶𝑉)
30 fvmptnn04if.d . . . . . . . . . 10 ((𝜑𝑆 < 𝑁) → 𝑌 = 𝑁 / 𝑛𝐷)
3130eqcomd 2744 . . . . . . . . 9 ((𝜑𝑆 < 𝑁) → 𝑁 / 𝑛𝐷 = 𝑌)
3231ad4ant14 748 . . . . . . . 8 ((((𝜑 ∧ ¬ 𝑁 = 0) ∧ ¬ 𝑁 = 𝑆) ∧ 𝑆 < 𝑁) → 𝑁 / 𝑛𝐷 = 𝑌)
3322ad3antrrr 726 . . . . . . . 8 ((((𝜑 ∧ ¬ 𝑁 = 0) ∧ ¬ 𝑁 = 𝑆) ∧ 𝑆 < 𝑁) → 𝑌𝑉)
3432, 33eqeltrd 2839 . . . . . . 7 ((((𝜑 ∧ ¬ 𝑁 = 0) ∧ ¬ 𝑁 = 𝑆) ∧ 𝑆 < 𝑁) → 𝑁 / 𝑛𝐷𝑉)
35 simplll 771 . . . . . . . . 9 ((((𝜑 ∧ ¬ 𝑁 = 0) ∧ ¬ 𝑁 = 𝑆) ∧ ¬ 𝑆 < 𝑁) → 𝜑)
36 anass 468 . . . . . . . . . . . . 13 (((¬ 𝑁 = 0 ∧ ¬ 𝑁 = 𝑆) ∧ ¬ 𝑆 < 𝑁) ↔ (¬ 𝑁 = 0 ∧ (¬ 𝑁 = 𝑆 ∧ ¬ 𝑆 < 𝑁)))
3736bicomi 223 . . . . . . . . . . . 12 ((¬ 𝑁 = 0 ∧ (¬ 𝑁 = 𝑆 ∧ ¬ 𝑆 < 𝑁)) ↔ ((¬ 𝑁 = 0 ∧ ¬ 𝑁 = 𝑆) ∧ ¬ 𝑆 < 𝑁))
3837bianassc 639 . . . . . . . . . . 11 ((𝜑 ∧ (¬ 𝑁 = 0 ∧ (¬ 𝑁 = 𝑆 ∧ ¬ 𝑆 < 𝑁))) ↔ (((¬ 𝑁 = 0 ∧ ¬ 𝑁 = 𝑆) ∧ 𝜑) ∧ ¬ 𝑆 < 𝑁))
39 an32 642 . . . . . . . . . . . . 13 (((¬ 𝑁 = 0 ∧ ¬ 𝑁 = 𝑆) ∧ 𝜑) ↔ ((¬ 𝑁 = 0 ∧ 𝜑) ∧ ¬ 𝑁 = 𝑆))
40 ancom 460 . . . . . . . . . . . . . 14 ((¬ 𝑁 = 0 ∧ 𝜑) ↔ (𝜑 ∧ ¬ 𝑁 = 0))
4140anbi1i 623 . . . . . . . . . . . . 13 (((¬ 𝑁 = 0 ∧ 𝜑) ∧ ¬ 𝑁 = 𝑆) ↔ ((𝜑 ∧ ¬ 𝑁 = 0) ∧ ¬ 𝑁 = 𝑆))
4239, 41bitri 274 . . . . . . . . . . . 12 (((¬ 𝑁 = 0 ∧ ¬ 𝑁 = 𝑆) ∧ 𝜑) ↔ ((𝜑 ∧ ¬ 𝑁 = 0) ∧ ¬ 𝑁 = 𝑆))
4342anbi1i 623 . . . . . . . . . . 11 ((((¬ 𝑁 = 0 ∧ ¬ 𝑁 = 𝑆) ∧ 𝜑) ∧ ¬ 𝑆 < 𝑁) ↔ (((𝜑 ∧ ¬ 𝑁 = 0) ∧ ¬ 𝑁 = 𝑆) ∧ ¬ 𝑆 < 𝑁))
4438, 43bitri 274 . . . . . . . . . 10 ((𝜑 ∧ (¬ 𝑁 = 0 ∧ (¬ 𝑁 = 𝑆 ∧ ¬ 𝑆 < 𝑁))) ↔ (((𝜑 ∧ ¬ 𝑁 = 0) ∧ ¬ 𝑁 = 𝑆) ∧ ¬ 𝑆 < 𝑁))
45 df-ne 2943 . . . . . . . . . . . . 13 (𝑁 ≠ 0 ↔ ¬ 𝑁 = 0)
46 elnnne0 12177 . . . . . . . . . . . . . . 15 (𝑁 ∈ ℕ ↔ (𝑁 ∈ ℕ0𝑁 ≠ 0))
47 nngt0 11934 . . . . . . . . . . . . . . 15 (𝑁 ∈ ℕ → 0 < 𝑁)
4846, 47sylbir 234 . . . . . . . . . . . . . 14 ((𝑁 ∈ ℕ0𝑁 ≠ 0) → 0 < 𝑁)
4948expcom 413 . . . . . . . . . . . . 13 (𝑁 ≠ 0 → (𝑁 ∈ ℕ0 → 0 < 𝑁))
5045, 49sylbir 234 . . . . . . . . . . . 12 𝑁 = 0 → (𝑁 ∈ ℕ0 → 0 < 𝑁))
5150adantr 480 . . . . . . . . . . 11 ((¬ 𝑁 = 0 ∧ (¬ 𝑁 = 𝑆 ∧ ¬ 𝑆 < 𝑁)) → (𝑁 ∈ ℕ0 → 0 < 𝑁))
521, 51mpan9 506 . . . . . . . . . 10 ((𝜑 ∧ (¬ 𝑁 = 0 ∧ (¬ 𝑁 = 𝑆 ∧ ¬ 𝑆 < 𝑁))) → 0 < 𝑁)
5344, 52sylbir 234 . . . . . . . . 9 ((((𝜑 ∧ ¬ 𝑁 = 0) ∧ ¬ 𝑁 = 𝑆) ∧ ¬ 𝑆 < 𝑁) → 0 < 𝑁)
541nn0red 12224 . . . . . . . . . . . 12 (𝜑𝑁 ∈ ℝ)
5554adantr 480 . . . . . . . . . . 11 ((𝜑 ∧ (¬ 𝑁 = 0 ∧ (¬ 𝑁 = 𝑆 ∧ ¬ 𝑆 < 𝑁))) → 𝑁 ∈ ℝ)
56 fvmptnn04if.s . . . . . . . . . . . . 13 (𝜑𝑆 ∈ ℕ)
5756nnred 11918 . . . . . . . . . . . 12 (𝜑𝑆 ∈ ℝ)
5857adantr 480 . . . . . . . . . . 11 ((𝜑 ∧ (¬ 𝑁 = 0 ∧ (¬ 𝑁 = 𝑆 ∧ ¬ 𝑆 < 𝑁))) → 𝑆 ∈ ℝ)
5954, 57lenltd 11051 . . . . . . . . . . . . . . 15 (𝜑 → (𝑁𝑆 ↔ ¬ 𝑆 < 𝑁))
6059biimprd 247 . . . . . . . . . . . . . 14 (𝜑 → (¬ 𝑆 < 𝑁𝑁𝑆))
6160adantld 490 . . . . . . . . . . . . 13 (𝜑 → ((¬ 𝑁 = 𝑆 ∧ ¬ 𝑆 < 𝑁) → 𝑁𝑆))
6261adantld 490 . . . . . . . . . . . 12 (𝜑 → ((¬ 𝑁 = 0 ∧ (¬ 𝑁 = 𝑆 ∧ ¬ 𝑆 < 𝑁)) → 𝑁𝑆))
6362imp 406 . . . . . . . . . . 11 ((𝜑 ∧ (¬ 𝑁 = 0 ∧ (¬ 𝑁 = 𝑆 ∧ ¬ 𝑆 < 𝑁))) → 𝑁𝑆)
64 nesym 2999 . . . . . . . . . . . . . 14 (𝑆𝑁 ↔ ¬ 𝑁 = 𝑆)
6564biimpri 227 . . . . . . . . . . . . 13 𝑁 = 𝑆𝑆𝑁)
6665adantr 480 . . . . . . . . . . . 12 ((¬ 𝑁 = 𝑆 ∧ ¬ 𝑆 < 𝑁) → 𝑆𝑁)
6766ad2antll 725 . . . . . . . . . . 11 ((𝜑 ∧ (¬ 𝑁 = 0 ∧ (¬ 𝑁 = 𝑆 ∧ ¬ 𝑆 < 𝑁))) → 𝑆𝑁)
6855, 58, 63, 67leneltd 11059 . . . . . . . . . 10 ((𝜑 ∧ (¬ 𝑁 = 0 ∧ (¬ 𝑁 = 𝑆 ∧ ¬ 𝑆 < 𝑁))) → 𝑁 < 𝑆)
6944, 68sylbir 234 . . . . . . . . 9 ((((𝜑 ∧ ¬ 𝑁 = 0) ∧ ¬ 𝑁 = 𝑆) ∧ ¬ 𝑆 < 𝑁) → 𝑁 < 𝑆)
70 fvmptnn04if.b . . . . . . . . . 10 ((𝜑 ∧ 0 < 𝑁𝑁 < 𝑆) → 𝑌 = 𝑁 / 𝑛𝐵)
7170eqcomd 2744 . . . . . . . . 9 ((𝜑 ∧ 0 < 𝑁𝑁 < 𝑆) → 𝑁 / 𝑛𝐵 = 𝑌)
7235, 53, 69, 71syl3anc 1369 . . . . . . . 8 ((((𝜑 ∧ ¬ 𝑁 = 0) ∧ ¬ 𝑁 = 𝑆) ∧ ¬ 𝑆 < 𝑁) → 𝑁 / 𝑛𝐵 = 𝑌)
7322ad3antrrr 726 . . . . . . . 8 ((((𝜑 ∧ ¬ 𝑁 = 0) ∧ ¬ 𝑁 = 𝑆) ∧ ¬ 𝑆 < 𝑁) → 𝑌𝑉)
7472, 73eqeltrd 2839 . . . . . . 7 ((((𝜑 ∧ ¬ 𝑁 = 0) ∧ ¬ 𝑁 = 𝑆) ∧ ¬ 𝑆 < 𝑁) → 𝑁 / 𝑛𝐵𝑉)
7534, 74ifclda 4491 . . . . . 6 (((𝜑 ∧ ¬ 𝑁 = 0) ∧ ¬ 𝑁 = 𝑆) → if(𝑆 < 𝑁, 𝑁 / 𝑛𝐷, 𝑁 / 𝑛𝐵) ∈ 𝑉)
7629, 75ifclda 4491 . . . . 5 ((𝜑 ∧ ¬ 𝑁 = 0) → if(𝑁 = 𝑆, 𝑁 / 𝑛𝐶, if(𝑆 < 𝑁, 𝑁 / 𝑛𝐷, 𝑁 / 𝑛𝐵)) ∈ 𝑉)
7724, 76ifclda 4491 . . . 4 (𝜑 → if(𝑁 = 0, 𝑁 / 𝑛𝐴, if(𝑁 = 𝑆, 𝑁 / 𝑛𝐶, if(𝑆 < 𝑁, 𝑁 / 𝑛𝐷, 𝑁 / 𝑛𝐵))) ∈ 𝑉)
7820, 77eqeltrd 2839 . . 3 (𝜑𝑁 / 𝑛if(𝑛 = 0, 𝐴, if(𝑛 = 𝑆, 𝐶, if(𝑆 < 𝑛, 𝐷, 𝐵))) ∈ 𝑉)
79 fvmptnn04if.g . . . 4 𝐺 = (𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, 𝐴, if(𝑛 = 𝑆, 𝐶, if(𝑆 < 𝑛, 𝐷, 𝐵))))
8079fvmpts 6860 . . 3 ((𝑁 ∈ ℕ0𝑁 / 𝑛if(𝑛 = 0, 𝐴, if(𝑛 = 𝑆, 𝐶, if(𝑆 < 𝑛, 𝐷, 𝐵))) ∈ 𝑉) → (𝐺𝑁) = 𝑁 / 𝑛if(𝑛 = 0, 𝐴, if(𝑛 = 𝑆, 𝐶, if(𝑆 < 𝑛, 𝐷, 𝐵))))
811, 78, 80syl2anc 583 . 2 (𝜑 → (𝐺𝑁) = 𝑁 / 𝑛if(𝑛 = 0, 𝐴, if(𝑛 = 𝑆, 𝐶, if(𝑆 < 𝑛, 𝐷, 𝐵))))
8221eqcomd 2744 . . 3 ((𝜑𝑁 = 0) → 𝑁 / 𝑛𝐴 = 𝑌)
8332, 72ifeqda 4492 . . . 4 (((𝜑 ∧ ¬ 𝑁 = 0) ∧ ¬ 𝑁 = 𝑆) → if(𝑆 < 𝑁, 𝑁 / 𝑛𝐷, 𝑁 / 𝑛𝐵) = 𝑌)
8427, 83ifeqda 4492 . . 3 ((𝜑 ∧ ¬ 𝑁 = 0) → if(𝑁 = 𝑆, 𝑁 / 𝑛𝐶, if(𝑆 < 𝑁, 𝑁 / 𝑛𝐷, 𝑁 / 𝑛𝐵)) = 𝑌)
8582, 84ifeqda 4492 . 2 (𝜑 → if(𝑁 = 0, 𝑁 / 𝑛𝐴, if(𝑁 = 𝑆, 𝑁 / 𝑛𝐶, if(𝑆 < 𝑁, 𝑁 / 𝑛𝐷, 𝑁 / 𝑛𝐵))) = 𝑌)
8681, 20, 853eqtrd 2782 1 (𝜑 → (𝐺𝑁) = 𝑌)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 395  w3a 1085   = wceq 1539  wcel 2108  wne 2942  [wsbc 3711  csb 3828  ifcif 4456   class class class wbr 5070  cmpt 5153  cfv 6418  cr 10801  0cc0 10802   < clt 10940  cle 10941  cn 11903  0cn0 12163
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-om 7688  df-2nd 7805  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-er 8456  df-en 8692  df-dom 8693  df-sdom 8694  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-nn 11904  df-n0 12164
This theorem is referenced by:  fvmptnn04ifa  21907  fvmptnn04ifb  21908  fvmptnn04ifc  21909  fvmptnn04ifd  21910
  Copyright terms: Public domain W3C validator