MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fvmptnn04if Structured version   Visualization version   GIF version

Theorem fvmptnn04if 21746
Description: The function values of a mapping from the nonnegative integers with four distinct cases. (Contributed by AV, 10-Nov-2019.)
Hypotheses
Ref Expression
fvmptnn04if.g 𝐺 = (𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, 𝐴, if(𝑛 = 𝑆, 𝐶, if(𝑆 < 𝑛, 𝐷, 𝐵))))
fvmptnn04if.s (𝜑𝑆 ∈ ℕ)
fvmptnn04if.n (𝜑𝑁 ∈ ℕ0)
fvmptnn04if.y (𝜑𝑌𝑉)
fvmptnn04if.a ((𝜑𝑁 = 0) → 𝑌 = 𝑁 / 𝑛𝐴)
fvmptnn04if.b ((𝜑 ∧ 0 < 𝑁𝑁 < 𝑆) → 𝑌 = 𝑁 / 𝑛𝐵)
fvmptnn04if.c ((𝜑𝑁 = 𝑆) → 𝑌 = 𝑁 / 𝑛𝐶)
fvmptnn04if.d ((𝜑𝑆 < 𝑁) → 𝑌 = 𝑁 / 𝑛𝐷)
Assertion
Ref Expression
fvmptnn04if (𝜑 → (𝐺𝑁) = 𝑌)
Distinct variable groups:   𝑛,𝑁   𝑆,𝑛
Allowed substitution hints:   𝜑(𝑛)   𝐴(𝑛)   𝐵(𝑛)   𝐶(𝑛)   𝐷(𝑛)   𝐺(𝑛)   𝑉(𝑛)   𝑌(𝑛)

Proof of Theorem fvmptnn04if
StepHypRef Expression
1 fvmptnn04if.n . . 3 (𝜑𝑁 ∈ ℕ0)
2 csbif 4496 . . . . 5 𝑁 / 𝑛if(𝑛 = 0, 𝐴, if(𝑛 = 𝑆, 𝐶, if(𝑆 < 𝑛, 𝐷, 𝐵))) = if([𝑁 / 𝑛]𝑛 = 0, 𝑁 / 𝑛𝐴, 𝑁 / 𝑛if(𝑛 = 𝑆, 𝐶, if(𝑆 < 𝑛, 𝐷, 𝐵)))
3 eqsbc3 3743 . . . . . . 7 (𝑁 ∈ ℕ0 → ([𝑁 / 𝑛]𝑛 = 0 ↔ 𝑁 = 0))
41, 3syl 17 . . . . . 6 (𝜑 → ([𝑁 / 𝑛]𝑛 = 0 ↔ 𝑁 = 0))
5 csbif 4496 . . . . . . 7 𝑁 / 𝑛if(𝑛 = 𝑆, 𝐶, if(𝑆 < 𝑛, 𝐷, 𝐵)) = if([𝑁 / 𝑛]𝑛 = 𝑆, 𝑁 / 𝑛𝐶, 𝑁 / 𝑛if(𝑆 < 𝑛, 𝐷, 𝐵))
6 eqsbc3 3743 . . . . . . . . 9 (𝑁 ∈ ℕ0 → ([𝑁 / 𝑛]𝑛 = 𝑆𝑁 = 𝑆))
71, 6syl 17 . . . . . . . 8 (𝜑 → ([𝑁 / 𝑛]𝑛 = 𝑆𝑁 = 𝑆))
8 csbif 4496 . . . . . . . . 9 𝑁 / 𝑛if(𝑆 < 𝑛, 𝐷, 𝐵) = if([𝑁 / 𝑛]𝑆 < 𝑛, 𝑁 / 𝑛𝐷, 𝑁 / 𝑛𝐵)
9 sbcbr2g 5111 . . . . . . . . . . . 12 (𝑁 ∈ ℕ0 → ([𝑁 / 𝑛]𝑆 < 𝑛𝑆 < 𝑁 / 𝑛𝑛))
101, 9syl 17 . . . . . . . . . . 11 (𝜑 → ([𝑁 / 𝑛]𝑆 < 𝑛𝑆 < 𝑁 / 𝑛𝑛))
11 csbvarg 4346 . . . . . . . . . . . . 13 (𝑁 ∈ ℕ0𝑁 / 𝑛𝑛 = 𝑁)
121, 11syl 17 . . . . . . . . . . . 12 (𝜑𝑁 / 𝑛𝑛 = 𝑁)
1312breq2d 5065 . . . . . . . . . . 11 (𝜑 → (𝑆 < 𝑁 / 𝑛𝑛𝑆 < 𝑁))
1410, 13bitrd 282 . . . . . . . . . 10 (𝜑 → ([𝑁 / 𝑛]𝑆 < 𝑛𝑆 < 𝑁))
1514ifbid 4462 . . . . . . . . 9 (𝜑 → if([𝑁 / 𝑛]𝑆 < 𝑛, 𝑁 / 𝑛𝐷, 𝑁 / 𝑛𝐵) = if(𝑆 < 𝑁, 𝑁 / 𝑛𝐷, 𝑁 / 𝑛𝐵))
168, 15syl5eq 2790 . . . . . . . 8 (𝜑𝑁 / 𝑛if(𝑆 < 𝑛, 𝐷, 𝐵) = if(𝑆 < 𝑁, 𝑁 / 𝑛𝐷, 𝑁 / 𝑛𝐵))
177, 16ifbieq2d 4465 . . . . . . 7 (𝜑 → if([𝑁 / 𝑛]𝑛 = 𝑆, 𝑁 / 𝑛𝐶, 𝑁 / 𝑛if(𝑆 < 𝑛, 𝐷, 𝐵)) = if(𝑁 = 𝑆, 𝑁 / 𝑛𝐶, if(𝑆 < 𝑁, 𝑁 / 𝑛𝐷, 𝑁 / 𝑛𝐵)))
185, 17syl5eq 2790 . . . . . 6 (𝜑𝑁 / 𝑛if(𝑛 = 𝑆, 𝐶, if(𝑆 < 𝑛, 𝐷, 𝐵)) = if(𝑁 = 𝑆, 𝑁 / 𝑛𝐶, if(𝑆 < 𝑁, 𝑁 / 𝑛𝐷, 𝑁 / 𝑛𝐵)))
194, 18ifbieq2d 4465 . . . . 5 (𝜑 → if([𝑁 / 𝑛]𝑛 = 0, 𝑁 / 𝑛𝐴, 𝑁 / 𝑛if(𝑛 = 𝑆, 𝐶, if(𝑆 < 𝑛, 𝐷, 𝐵))) = if(𝑁 = 0, 𝑁 / 𝑛𝐴, if(𝑁 = 𝑆, 𝑁 / 𝑛𝐶, if(𝑆 < 𝑁, 𝑁 / 𝑛𝐷, 𝑁 / 𝑛𝐵))))
202, 19syl5eq 2790 . . . 4 (𝜑𝑁 / 𝑛if(𝑛 = 0, 𝐴, if(𝑛 = 𝑆, 𝐶, if(𝑆 < 𝑛, 𝐷, 𝐵))) = if(𝑁 = 0, 𝑁 / 𝑛𝐴, if(𝑁 = 𝑆, 𝑁 / 𝑛𝐶, if(𝑆 < 𝑁, 𝑁 / 𝑛𝐷, 𝑁 / 𝑛𝐵))))
21 fvmptnn04if.a . . . . . 6 ((𝜑𝑁 = 0) → 𝑌 = 𝑁 / 𝑛𝐴)
22 fvmptnn04if.y . . . . . . 7 (𝜑𝑌𝑉)
2322adantr 484 . . . . . 6 ((𝜑𝑁 = 0) → 𝑌𝑉)
2421, 23eqeltrrd 2839 . . . . 5 ((𝜑𝑁 = 0) → 𝑁 / 𝑛𝐴𝑉)
25 fvmptnn04if.c . . . . . . . . 9 ((𝜑𝑁 = 𝑆) → 𝑌 = 𝑁 / 𝑛𝐶)
2625eqcomd 2743 . . . . . . . 8 ((𝜑𝑁 = 𝑆) → 𝑁 / 𝑛𝐶 = 𝑌)
2726adantlr 715 . . . . . . 7 (((𝜑 ∧ ¬ 𝑁 = 0) ∧ 𝑁 = 𝑆) → 𝑁 / 𝑛𝐶 = 𝑌)
2822ad2antrr 726 . . . . . . 7 (((𝜑 ∧ ¬ 𝑁 = 0) ∧ 𝑁 = 𝑆) → 𝑌𝑉)
2927, 28eqeltrd 2838 . . . . . 6 (((𝜑 ∧ ¬ 𝑁 = 0) ∧ 𝑁 = 𝑆) → 𝑁 / 𝑛𝐶𝑉)
30 fvmptnn04if.d . . . . . . . . . 10 ((𝜑𝑆 < 𝑁) → 𝑌 = 𝑁 / 𝑛𝐷)
3130eqcomd 2743 . . . . . . . . 9 ((𝜑𝑆 < 𝑁) → 𝑁 / 𝑛𝐷 = 𝑌)
3231ad4ant14 752 . . . . . . . 8 ((((𝜑 ∧ ¬ 𝑁 = 0) ∧ ¬ 𝑁 = 𝑆) ∧ 𝑆 < 𝑁) → 𝑁 / 𝑛𝐷 = 𝑌)
3322ad3antrrr 730 . . . . . . . 8 ((((𝜑 ∧ ¬ 𝑁 = 0) ∧ ¬ 𝑁 = 𝑆) ∧ 𝑆 < 𝑁) → 𝑌𝑉)
3432, 33eqeltrd 2838 . . . . . . 7 ((((𝜑 ∧ ¬ 𝑁 = 0) ∧ ¬ 𝑁 = 𝑆) ∧ 𝑆 < 𝑁) → 𝑁 / 𝑛𝐷𝑉)
35 simplll 775 . . . . . . . . 9 ((((𝜑 ∧ ¬ 𝑁 = 0) ∧ ¬ 𝑁 = 𝑆) ∧ ¬ 𝑆 < 𝑁) → 𝜑)
36 anass 472 . . . . . . . . . . . . 13 (((¬ 𝑁 = 0 ∧ ¬ 𝑁 = 𝑆) ∧ ¬ 𝑆 < 𝑁) ↔ (¬ 𝑁 = 0 ∧ (¬ 𝑁 = 𝑆 ∧ ¬ 𝑆 < 𝑁)))
3736bicomi 227 . . . . . . . . . . . 12 ((¬ 𝑁 = 0 ∧ (¬ 𝑁 = 𝑆 ∧ ¬ 𝑆 < 𝑁)) ↔ ((¬ 𝑁 = 0 ∧ ¬ 𝑁 = 𝑆) ∧ ¬ 𝑆 < 𝑁))
3837bianassc 643 . . . . . . . . . . 11 ((𝜑 ∧ (¬ 𝑁 = 0 ∧ (¬ 𝑁 = 𝑆 ∧ ¬ 𝑆 < 𝑁))) ↔ (((¬ 𝑁 = 0 ∧ ¬ 𝑁 = 𝑆) ∧ 𝜑) ∧ ¬ 𝑆 < 𝑁))
39 an32 646 . . . . . . . . . . . . 13 (((¬ 𝑁 = 0 ∧ ¬ 𝑁 = 𝑆) ∧ 𝜑) ↔ ((¬ 𝑁 = 0 ∧ 𝜑) ∧ ¬ 𝑁 = 𝑆))
40 ancom 464 . . . . . . . . . . . . . 14 ((¬ 𝑁 = 0 ∧ 𝜑) ↔ (𝜑 ∧ ¬ 𝑁 = 0))
4140anbi1i 627 . . . . . . . . . . . . 13 (((¬ 𝑁 = 0 ∧ 𝜑) ∧ ¬ 𝑁 = 𝑆) ↔ ((𝜑 ∧ ¬ 𝑁 = 0) ∧ ¬ 𝑁 = 𝑆))
4239, 41bitri 278 . . . . . . . . . . . 12 (((¬ 𝑁 = 0 ∧ ¬ 𝑁 = 𝑆) ∧ 𝜑) ↔ ((𝜑 ∧ ¬ 𝑁 = 0) ∧ ¬ 𝑁 = 𝑆))
4342anbi1i 627 . . . . . . . . . . 11 ((((¬ 𝑁 = 0 ∧ ¬ 𝑁 = 𝑆) ∧ 𝜑) ∧ ¬ 𝑆 < 𝑁) ↔ (((𝜑 ∧ ¬ 𝑁 = 0) ∧ ¬ 𝑁 = 𝑆) ∧ ¬ 𝑆 < 𝑁))
4438, 43bitri 278 . . . . . . . . . 10 ((𝜑 ∧ (¬ 𝑁 = 0 ∧ (¬ 𝑁 = 𝑆 ∧ ¬ 𝑆 < 𝑁))) ↔ (((𝜑 ∧ ¬ 𝑁 = 0) ∧ ¬ 𝑁 = 𝑆) ∧ ¬ 𝑆 < 𝑁))
45 df-ne 2941 . . . . . . . . . . . . 13 (𝑁 ≠ 0 ↔ ¬ 𝑁 = 0)
46 elnnne0 12104 . . . . . . . . . . . . . . 15 (𝑁 ∈ ℕ ↔ (𝑁 ∈ ℕ0𝑁 ≠ 0))
47 nngt0 11861 . . . . . . . . . . . . . . 15 (𝑁 ∈ ℕ → 0 < 𝑁)
4846, 47sylbir 238 . . . . . . . . . . . . . 14 ((𝑁 ∈ ℕ0𝑁 ≠ 0) → 0 < 𝑁)
4948expcom 417 . . . . . . . . . . . . 13 (𝑁 ≠ 0 → (𝑁 ∈ ℕ0 → 0 < 𝑁))
5045, 49sylbir 238 . . . . . . . . . . . 12 𝑁 = 0 → (𝑁 ∈ ℕ0 → 0 < 𝑁))
5150adantr 484 . . . . . . . . . . 11 ((¬ 𝑁 = 0 ∧ (¬ 𝑁 = 𝑆 ∧ ¬ 𝑆 < 𝑁)) → (𝑁 ∈ ℕ0 → 0 < 𝑁))
521, 51mpan9 510 . . . . . . . . . 10 ((𝜑 ∧ (¬ 𝑁 = 0 ∧ (¬ 𝑁 = 𝑆 ∧ ¬ 𝑆 < 𝑁))) → 0 < 𝑁)
5344, 52sylbir 238 . . . . . . . . 9 ((((𝜑 ∧ ¬ 𝑁 = 0) ∧ ¬ 𝑁 = 𝑆) ∧ ¬ 𝑆 < 𝑁) → 0 < 𝑁)
541nn0red 12151 . . . . . . . . . . . 12 (𝜑𝑁 ∈ ℝ)
5554adantr 484 . . . . . . . . . . 11 ((𝜑 ∧ (¬ 𝑁 = 0 ∧ (¬ 𝑁 = 𝑆 ∧ ¬ 𝑆 < 𝑁))) → 𝑁 ∈ ℝ)
56 fvmptnn04if.s . . . . . . . . . . . . 13 (𝜑𝑆 ∈ ℕ)
5756nnred 11845 . . . . . . . . . . . 12 (𝜑𝑆 ∈ ℝ)
5857adantr 484 . . . . . . . . . . 11 ((𝜑 ∧ (¬ 𝑁 = 0 ∧ (¬ 𝑁 = 𝑆 ∧ ¬ 𝑆 < 𝑁))) → 𝑆 ∈ ℝ)
5954, 57lenltd 10978 . . . . . . . . . . . . . . 15 (𝜑 → (𝑁𝑆 ↔ ¬ 𝑆 < 𝑁))
6059biimprd 251 . . . . . . . . . . . . . 14 (𝜑 → (¬ 𝑆 < 𝑁𝑁𝑆))
6160adantld 494 . . . . . . . . . . . . 13 (𝜑 → ((¬ 𝑁 = 𝑆 ∧ ¬ 𝑆 < 𝑁) → 𝑁𝑆))
6261adantld 494 . . . . . . . . . . . 12 (𝜑 → ((¬ 𝑁 = 0 ∧ (¬ 𝑁 = 𝑆 ∧ ¬ 𝑆 < 𝑁)) → 𝑁𝑆))
6362imp 410 . . . . . . . . . . 11 ((𝜑 ∧ (¬ 𝑁 = 0 ∧ (¬ 𝑁 = 𝑆 ∧ ¬ 𝑆 < 𝑁))) → 𝑁𝑆)
64 nesym 2997 . . . . . . . . . . . . . 14 (𝑆𝑁 ↔ ¬ 𝑁 = 𝑆)
6564biimpri 231 . . . . . . . . . . . . 13 𝑁 = 𝑆𝑆𝑁)
6665adantr 484 . . . . . . . . . . . 12 ((¬ 𝑁 = 𝑆 ∧ ¬ 𝑆 < 𝑁) → 𝑆𝑁)
6766ad2antll 729 . . . . . . . . . . 11 ((𝜑 ∧ (¬ 𝑁 = 0 ∧ (¬ 𝑁 = 𝑆 ∧ ¬ 𝑆 < 𝑁))) → 𝑆𝑁)
6855, 58, 63, 67leneltd 10986 . . . . . . . . . 10 ((𝜑 ∧ (¬ 𝑁 = 0 ∧ (¬ 𝑁 = 𝑆 ∧ ¬ 𝑆 < 𝑁))) → 𝑁 < 𝑆)
6944, 68sylbir 238 . . . . . . . . 9 ((((𝜑 ∧ ¬ 𝑁 = 0) ∧ ¬ 𝑁 = 𝑆) ∧ ¬ 𝑆 < 𝑁) → 𝑁 < 𝑆)
70 fvmptnn04if.b . . . . . . . . . 10 ((𝜑 ∧ 0 < 𝑁𝑁 < 𝑆) → 𝑌 = 𝑁 / 𝑛𝐵)
7170eqcomd 2743 . . . . . . . . 9 ((𝜑 ∧ 0 < 𝑁𝑁 < 𝑆) → 𝑁 / 𝑛𝐵 = 𝑌)
7235, 53, 69, 71syl3anc 1373 . . . . . . . 8 ((((𝜑 ∧ ¬ 𝑁 = 0) ∧ ¬ 𝑁 = 𝑆) ∧ ¬ 𝑆 < 𝑁) → 𝑁 / 𝑛𝐵 = 𝑌)
7322ad3antrrr 730 . . . . . . . 8 ((((𝜑 ∧ ¬ 𝑁 = 0) ∧ ¬ 𝑁 = 𝑆) ∧ ¬ 𝑆 < 𝑁) → 𝑌𝑉)
7472, 73eqeltrd 2838 . . . . . . 7 ((((𝜑 ∧ ¬ 𝑁 = 0) ∧ ¬ 𝑁 = 𝑆) ∧ ¬ 𝑆 < 𝑁) → 𝑁 / 𝑛𝐵𝑉)
7534, 74ifclda 4474 . . . . . 6 (((𝜑 ∧ ¬ 𝑁 = 0) ∧ ¬ 𝑁 = 𝑆) → if(𝑆 < 𝑁, 𝑁 / 𝑛𝐷, 𝑁 / 𝑛𝐵) ∈ 𝑉)
7629, 75ifclda 4474 . . . . 5 ((𝜑 ∧ ¬ 𝑁 = 0) → if(𝑁 = 𝑆, 𝑁 / 𝑛𝐶, if(𝑆 < 𝑁, 𝑁 / 𝑛𝐷, 𝑁 / 𝑛𝐵)) ∈ 𝑉)
7724, 76ifclda 4474 . . . 4 (𝜑 → if(𝑁 = 0, 𝑁 / 𝑛𝐴, if(𝑁 = 𝑆, 𝑁 / 𝑛𝐶, if(𝑆 < 𝑁, 𝑁 / 𝑛𝐷, 𝑁 / 𝑛𝐵))) ∈ 𝑉)
7820, 77eqeltrd 2838 . . 3 (𝜑𝑁 / 𝑛if(𝑛 = 0, 𝐴, if(𝑛 = 𝑆, 𝐶, if(𝑆 < 𝑛, 𝐷, 𝐵))) ∈ 𝑉)
79 fvmptnn04if.g . . . 4 𝐺 = (𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, 𝐴, if(𝑛 = 𝑆, 𝐶, if(𝑆 < 𝑛, 𝐷, 𝐵))))
8079fvmpts 6821 . . 3 ((𝑁 ∈ ℕ0𝑁 / 𝑛if(𝑛 = 0, 𝐴, if(𝑛 = 𝑆, 𝐶, if(𝑆 < 𝑛, 𝐷, 𝐵))) ∈ 𝑉) → (𝐺𝑁) = 𝑁 / 𝑛if(𝑛 = 0, 𝐴, if(𝑛 = 𝑆, 𝐶, if(𝑆 < 𝑛, 𝐷, 𝐵))))
811, 78, 80syl2anc 587 . 2 (𝜑 → (𝐺𝑁) = 𝑁 / 𝑛if(𝑛 = 0, 𝐴, if(𝑛 = 𝑆, 𝐶, if(𝑆 < 𝑛, 𝐷, 𝐵))))
8221eqcomd 2743 . . 3 ((𝜑𝑁 = 0) → 𝑁 / 𝑛𝐴 = 𝑌)
8332, 72ifeqda 4475 . . . 4 (((𝜑 ∧ ¬ 𝑁 = 0) ∧ ¬ 𝑁 = 𝑆) → if(𝑆 < 𝑁, 𝑁 / 𝑛𝐷, 𝑁 / 𝑛𝐵) = 𝑌)
8427, 83ifeqda 4475 . . 3 ((𝜑 ∧ ¬ 𝑁 = 0) → if(𝑁 = 𝑆, 𝑁 / 𝑛𝐶, if(𝑆 < 𝑁, 𝑁 / 𝑛𝐷, 𝑁 / 𝑛𝐵)) = 𝑌)
8582, 84ifeqda 4475 . 2 (𝜑 → if(𝑁 = 0, 𝑁 / 𝑛𝐴, if(𝑁 = 𝑆, 𝑁 / 𝑛𝐶, if(𝑆 < 𝑁, 𝑁 / 𝑛𝐷, 𝑁 / 𝑛𝐵))) = 𝑌)
8681, 20, 853eqtrd 2781 1 (𝜑 → (𝐺𝑁) = 𝑌)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 209  wa 399  w3a 1089   = wceq 1543  wcel 2110  wne 2940  [wsbc 3694  csb 3811  ifcif 4439   class class class wbr 5053  cmpt 5135  cfv 6380  cr 10728  0cc0 10729   < clt 10867  cle 10868  cn 11830  0cn0 12090
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2016  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2708  ax-sep 5192  ax-nul 5199  ax-pow 5258  ax-pr 5322  ax-un 7523  ax-resscn 10786  ax-1cn 10787  ax-icn 10788  ax-addcl 10789  ax-addrcl 10790  ax-mulcl 10791  ax-mulrcl 10792  ax-mulcom 10793  ax-addass 10794  ax-mulass 10795  ax-distr 10796  ax-i2m1 10797  ax-1ne0 10798  ax-1rid 10799  ax-rnegex 10800  ax-rrecex 10801  ax-cnre 10802  ax-pre-lttri 10803  ax-pre-lttrn 10804  ax-pre-ltadd 10805  ax-pre-mulgt0 10806
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3or 1090  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2071  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2886  df-ne 2941  df-nel 3047  df-ral 3066  df-rex 3067  df-reu 3068  df-rab 3070  df-v 3410  df-sbc 3695  df-csb 3812  df-dif 3869  df-un 3871  df-in 3873  df-ss 3883  df-pss 3885  df-nul 4238  df-if 4440  df-pw 4515  df-sn 4542  df-pr 4544  df-tp 4546  df-op 4548  df-uni 4820  df-iun 4906  df-br 5054  df-opab 5116  df-mpt 5136  df-tr 5162  df-id 5455  df-eprel 5460  df-po 5468  df-so 5469  df-fr 5509  df-we 5511  df-xp 5557  df-rel 5558  df-cnv 5559  df-co 5560  df-dm 5561  df-rn 5562  df-res 5563  df-ima 5564  df-pred 6160  df-ord 6216  df-on 6217  df-lim 6218  df-suc 6219  df-iota 6338  df-fun 6382  df-fn 6383  df-f 6384  df-f1 6385  df-fo 6386  df-f1o 6387  df-fv 6388  df-riota 7170  df-ov 7216  df-oprab 7217  df-mpo 7218  df-om 7645  df-wrecs 8047  df-recs 8108  df-rdg 8146  df-er 8391  df-en 8627  df-dom 8628  df-sdom 8629  df-pnf 10869  df-mnf 10870  df-xr 10871  df-ltxr 10872  df-le 10873  df-sub 11064  df-neg 11065  df-nn 11831  df-n0 12091
This theorem is referenced by:  fvmptnn04ifa  21747  fvmptnn04ifb  21748  fvmptnn04ifc  21749  fvmptnn04ifd  21750
  Copyright terms: Public domain W3C validator