MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ssrnres Structured version   Visualization version   GIF version

Theorem ssrnres 6132
Description: Two ways to express surjectivity of a restricted and corestricted binary relation (intersection of a binary relation with a Cartesian product): the LHS expresses inclusion in the range of the restricted relation, while the RHS expresses equality with the range of the restricted and corestricted relation. (Contributed by NM, 16-Jan-2006.) (Proof shortened by Peter Mazsa, 2-Oct-2022.)
Assertion
Ref Expression
ssrnres (𝐵 ⊆ ran (𝐶𝐴) ↔ ran (𝐶 ∩ (𝐴 × 𝐵)) = 𝐵)

Proof of Theorem ssrnres
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 inss2 4187 . . . . 5 (𝐶 ∩ (𝐴 × 𝐵)) ⊆ (𝐴 × 𝐵)
21rnssi 5886 . . . 4 ran (𝐶 ∩ (𝐴 × 𝐵)) ⊆ ran (𝐴 × 𝐵)
3 rnxpss 6126 . . . 4 ran (𝐴 × 𝐵) ⊆ 𝐵
42, 3sstri 3940 . . 3 ran (𝐶 ∩ (𝐴 × 𝐵)) ⊆ 𝐵
5 eqss 3946 . . 3 (ran (𝐶 ∩ (𝐴 × 𝐵)) = 𝐵 ↔ (ran (𝐶 ∩ (𝐴 × 𝐵)) ⊆ 𝐵𝐵 ⊆ ran (𝐶 ∩ (𝐴 × 𝐵))))
64, 5mpbiran 709 . 2 (ran (𝐶 ∩ (𝐴 × 𝐵)) = 𝐵𝐵 ⊆ ran (𝐶 ∩ (𝐴 × 𝐵)))
7 inxpssres 5638 . . . . 5 (𝐶 ∩ (𝐴 × 𝐵)) ⊆ (𝐶𝐴)
87rnssi 5886 . . . 4 ran (𝐶 ∩ (𝐴 × 𝐵)) ⊆ ran (𝐶𝐴)
9 sstr 3939 . . . 4 ((𝐵 ⊆ ran (𝐶 ∩ (𝐴 × 𝐵)) ∧ ran (𝐶 ∩ (𝐴 × 𝐵)) ⊆ ran (𝐶𝐴)) → 𝐵 ⊆ ran (𝐶𝐴))
108, 9mpan2 691 . . 3 (𝐵 ⊆ ran (𝐶 ∩ (𝐴 × 𝐵)) → 𝐵 ⊆ ran (𝐶𝐴))
11 ssel 3924 . . . . . . 7 (𝐵 ⊆ ran (𝐶𝐴) → (𝑦𝐵𝑦 ∈ ran (𝐶𝐴)))
12 vex 3441 . . . . . . . 8 𝑦 ∈ V
1312elrn2 5838 . . . . . . 7 (𝑦 ∈ ran (𝐶𝐴) ↔ ∃𝑥𝑥, 𝑦⟩ ∈ (𝐶𝐴))
1411, 13imbitrdi 251 . . . . . 6 (𝐵 ⊆ ran (𝐶𝐴) → (𝑦𝐵 → ∃𝑥𝑥, 𝑦⟩ ∈ (𝐶𝐴)))
1514ancld 550 . . . . 5 (𝐵 ⊆ ran (𝐶𝐴) → (𝑦𝐵 → (𝑦𝐵 ∧ ∃𝑥𝑥, 𝑦⟩ ∈ (𝐶𝐴))))
1612elrn2 5838 . . . . . 6 (𝑦 ∈ ran (𝐶 ∩ (𝐴 × 𝐵)) ↔ ∃𝑥𝑥, 𝑦⟩ ∈ (𝐶 ∩ (𝐴 × 𝐵)))
17 opelinxp 5701 . . . . . . . 8 (⟨𝑥, 𝑦⟩ ∈ (𝐶 ∩ (𝐴 × 𝐵)) ↔ ((𝑥𝐴𝑦𝐵) ∧ ⟨𝑥, 𝑦⟩ ∈ 𝐶))
1812opelresi 5942 . . . . . . . . 9 (⟨𝑥, 𝑦⟩ ∈ (𝐶𝐴) ↔ (𝑥𝐴 ∧ ⟨𝑥, 𝑦⟩ ∈ 𝐶))
1918bianassc 643 . . . . . . . 8 ((𝑦𝐵 ∧ ⟨𝑥, 𝑦⟩ ∈ (𝐶𝐴)) ↔ ((𝑥𝐴𝑦𝐵) ∧ ⟨𝑥, 𝑦⟩ ∈ 𝐶))
2017, 19bitr4i 278 . . . . . . 7 (⟨𝑥, 𝑦⟩ ∈ (𝐶 ∩ (𝐴 × 𝐵)) ↔ (𝑦𝐵 ∧ ⟨𝑥, 𝑦⟩ ∈ (𝐶𝐴)))
2120exbii 1849 . . . . . 6 (∃𝑥𝑥, 𝑦⟩ ∈ (𝐶 ∩ (𝐴 × 𝐵)) ↔ ∃𝑥(𝑦𝐵 ∧ ⟨𝑥, 𝑦⟩ ∈ (𝐶𝐴)))
22 19.42v 1954 . . . . . 6 (∃𝑥(𝑦𝐵 ∧ ⟨𝑥, 𝑦⟩ ∈ (𝐶𝐴)) ↔ (𝑦𝐵 ∧ ∃𝑥𝑥, 𝑦⟩ ∈ (𝐶𝐴)))
2316, 21, 223bitri 297 . . . . 5 (𝑦 ∈ ran (𝐶 ∩ (𝐴 × 𝐵)) ↔ (𝑦𝐵 ∧ ∃𝑥𝑥, 𝑦⟩ ∈ (𝐶𝐴)))
2415, 23imbitrrdi 252 . . . 4 (𝐵 ⊆ ran (𝐶𝐴) → (𝑦𝐵𝑦 ∈ ran (𝐶 ∩ (𝐴 × 𝐵))))
2524ssrdv 3936 . . 3 (𝐵 ⊆ ran (𝐶𝐴) → 𝐵 ⊆ ran (𝐶 ∩ (𝐴 × 𝐵)))
2610, 25impbii 209 . 2 (𝐵 ⊆ ran (𝐶 ∩ (𝐴 × 𝐵)) ↔ 𝐵 ⊆ ran (𝐶𝐴))
276, 26bitr2i 276 1 (𝐵 ⊆ ran (𝐶𝐴) ↔ ran (𝐶 ∩ (𝐴 × 𝐵)) = 𝐵)
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395   = wceq 1541  wex 1780  wcel 2113  cin 3897  wss 3898  cop 4583   × cxp 5619  ran crn 5622  cres 5623
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-11 2162  ax-ext 2705  ax-sep 5238  ax-nul 5248  ax-pr 5374
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-sb 2068  df-clab 2712  df-cleq 2725  df-clel 2808  df-ne 2930  df-ral 3049  df-rex 3058  df-rab 3397  df-v 3439  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-nul 4283  df-if 4477  df-sn 4578  df-pr 4580  df-op 4584  df-br 5096  df-opab 5158  df-xp 5627  df-rel 5628  df-cnv 5629  df-dm 5631  df-rn 5632  df-res 5633
This theorem is referenced by:  rninxp  6133
  Copyright terms: Public domain W3C validator