Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > an21 | Structured version Visualization version GIF version |
Description: Swap two conjuncts. (Contributed by Peter Mazsa, 18-Sep-2022.) |
Ref | Expression |
---|---|
an21 | ⊢ (((𝜑 ∧ 𝜓) ∧ 𝜒) ↔ (𝜓 ∧ (𝜑 ∧ 𝜒))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | biid 260 | . . 3 ⊢ ((𝜑 ∧ 𝜒) ↔ (𝜑 ∧ 𝜒)) | |
2 | 1 | bianassc 640 | . 2 ⊢ ((𝜓 ∧ (𝜑 ∧ 𝜒)) ↔ ((𝜑 ∧ 𝜓) ∧ 𝜒)) |
3 | 2 | bicomi 223 | 1 ⊢ (((𝜑 ∧ 𝜓) ∧ 𝜒) ↔ (𝜓 ∧ (𝜑 ∧ 𝜒))) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∧ wa 396 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 397 |
This theorem is referenced by: an32 643 an13 644 indifdi 4230 fncnv 6557 mpocurryd 8155 rexuz2 12740 resmndismnd 18544 logfac2 26471 ltgov 27247 brimg 34335 eldmqsres 36552 xrninxp2 36660 |
Copyright terms: Public domain | W3C validator |