MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  an21 Structured version   Visualization version   GIF version

Theorem an21 644
Description: Swap two conjuncts. (Contributed by Peter Mazsa, 18-Sep-2022.)
Assertion
Ref Expression
an21 (((𝜑𝜓) ∧ 𝜒) ↔ (𝜓 ∧ (𝜑𝜒)))

Proof of Theorem an21
StepHypRef Expression
1 biid 261 . . 3 ((𝜑𝜒) ↔ (𝜑𝜒))
21bianassc 643 . 2 ((𝜓 ∧ (𝜑𝜒)) ↔ ((𝜑𝜓) ∧ 𝜒))
32bicomi 224 1 (((𝜑𝜓) ∧ 𝜒) ↔ (𝜓 ∧ (𝜑𝜒)))
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 207  df-an 396
This theorem is referenced by:  an32  646  an13  647  indifdi  4274  fncnv  6614  mpocurryd  8273  rexuz2  12920  resmndismnd  18791  imasabl  19862  logfac2  27185  ltgov  28581  brimg  35960  eldmqsres  38310  xrninxp2  38416
  Copyright terms: Public domain W3C validator