| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > an21 | Structured version Visualization version GIF version | ||
| Description: Swap two conjuncts. (Contributed by Peter Mazsa, 18-Sep-2022.) |
| Ref | Expression |
|---|---|
| an21 | ⊢ (((𝜑 ∧ 𝜓) ∧ 𝜒) ↔ (𝜓 ∧ (𝜑 ∧ 𝜒))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | biid 261 | . . 3 ⊢ ((𝜑 ∧ 𝜒) ↔ (𝜑 ∧ 𝜒)) | |
| 2 | 1 | bianassc 643 | . 2 ⊢ ((𝜓 ∧ (𝜑 ∧ 𝜒)) ↔ ((𝜑 ∧ 𝜓) ∧ 𝜒)) |
| 3 | 2 | bicomi 224 | 1 ⊢ (((𝜑 ∧ 𝜓) ∧ 𝜒) ↔ (𝜓 ∧ (𝜑 ∧ 𝜒))) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 |
| This theorem is referenced by: an32 646 an13 647 indifdi 4245 fncnv 6555 mpocurryd 8202 rexuz2 12800 resmndismnd 18682 imasabl 19755 logfac2 27126 ltgov 28542 brimg 35911 eldmqsres 38261 xrninxp2 38365 |
| Copyright terms: Public domain | W3C validator |