Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bj-restuni Structured version   Visualization version   GIF version

Theorem bj-restuni 37085
Description: The union of an elementwise intersection by a set is equal to the intersection with that set of the union of the family. See also restuni 23049 and restuni2 23054. (Contributed by BJ, 27-Apr-2021.)
Assertion
Ref Expression
bj-restuni ((𝑋𝑉𝐴𝑊) → (𝑋t 𝐴) = ( 𝑋𝐴))

Proof of Theorem bj-restuni
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eluni 4874 . . 3 (𝑥 (𝑋t 𝐴) ↔ ∃𝑦(𝑥𝑦𝑦 ∈ (𝑋t 𝐴)))
2 elrest 17390 . . . . . 6 ((𝑋𝑉𝐴𝑊) → (𝑦 ∈ (𝑋t 𝐴) ↔ ∃𝑧𝑋 𝑦 = (𝑧𝐴)))
32anbi2d 630 . . . . 5 ((𝑋𝑉𝐴𝑊) → ((𝑥𝑦𝑦 ∈ (𝑋t 𝐴)) ↔ (𝑥𝑦 ∧ ∃𝑧𝑋 𝑦 = (𝑧𝐴))))
43exbidv 1921 . . . 4 ((𝑋𝑉𝐴𝑊) → (∃𝑦(𝑥𝑦𝑦 ∈ (𝑋t 𝐴)) ↔ ∃𝑦(𝑥𝑦 ∧ ∃𝑧𝑋 𝑦 = (𝑧𝐴))))
5 eluni 4874 . . . . . . . 8 (𝑥 𝑋 ↔ ∃𝑧(𝑥𝑧𝑧𝑋))
65bicomi 224 . . . . . . 7 (∃𝑧(𝑥𝑧𝑧𝑋) ↔ 𝑥 𝑋)
76anbi1i 624 . . . . . 6 ((∃𝑧(𝑥𝑧𝑧𝑋) ∧ 𝑥𝐴) ↔ (𝑥 𝑋𝑥𝐴))
87a1i 11 . . . . 5 ((𝑋𝑉𝐴𝑊) → ((∃𝑧(𝑥𝑧𝑧𝑋) ∧ 𝑥𝐴) ↔ (𝑥 𝑋𝑥𝐴)))
9 df-rex 3054 . . . . . . . . 9 (∃𝑧𝑋 𝑦 = (𝑧𝐴) ↔ ∃𝑧(𝑧𝑋𝑦 = (𝑧𝐴)))
109anbi2i 623 . . . . . . . 8 ((𝑥𝑦 ∧ ∃𝑧𝑋 𝑦 = (𝑧𝐴)) ↔ (𝑥𝑦 ∧ ∃𝑧(𝑧𝑋𝑦 = (𝑧𝐴))))
11 19.42v 1953 . . . . . . . . 9 (∃𝑧(𝑥𝑦 ∧ (𝑧𝑋𝑦 = (𝑧𝐴))) ↔ (𝑥𝑦 ∧ ∃𝑧(𝑧𝑋𝑦 = (𝑧𝐴))))
1211bicomi 224 . . . . . . . 8 ((𝑥𝑦 ∧ ∃𝑧(𝑧𝑋𝑦 = (𝑧𝐴))) ↔ ∃𝑧(𝑥𝑦 ∧ (𝑧𝑋𝑦 = (𝑧𝐴))))
1310, 12bitri 275 . . . . . . 7 ((𝑥𝑦 ∧ ∃𝑧𝑋 𝑦 = (𝑧𝐴)) ↔ ∃𝑧(𝑥𝑦 ∧ (𝑧𝑋𝑦 = (𝑧𝐴))))
1413exbii 1848 . . . . . 6 (∃𝑦(𝑥𝑦 ∧ ∃𝑧𝑋 𝑦 = (𝑧𝐴)) ↔ ∃𝑦𝑧(𝑥𝑦 ∧ (𝑧𝑋𝑦 = (𝑧𝐴))))
15 excom 2163 . . . . . 6 (∃𝑦𝑧(𝑥𝑦 ∧ (𝑧𝑋𝑦 = (𝑧𝐴))) ↔ ∃𝑧𝑦(𝑥𝑦 ∧ (𝑧𝑋𝑦 = (𝑧𝐴))))
16 an12 645 . . . . . . . . . 10 ((𝑥𝑦 ∧ (𝑧𝑋𝑦 = (𝑧𝐴))) ↔ (𝑧𝑋 ∧ (𝑥𝑦𝑦 = (𝑧𝐴))))
1716exbii 1848 . . . . . . . . 9 (∃𝑦(𝑥𝑦 ∧ (𝑧𝑋𝑦 = (𝑧𝐴))) ↔ ∃𝑦(𝑧𝑋 ∧ (𝑥𝑦𝑦 = (𝑧𝐴))))
18 19.42v 1953 . . . . . . . . 9 (∃𝑦(𝑧𝑋 ∧ (𝑥𝑦𝑦 = (𝑧𝐴))) ↔ (𝑧𝑋 ∧ ∃𝑦(𝑥𝑦𝑦 = (𝑧𝐴))))
19 eqimss 4005 . . . . . . . . . . . . . . 15 (𝑦 = (𝑧𝐴) → 𝑦 ⊆ (𝑧𝐴))
2019sseld 3945 . . . . . . . . . . . . . 14 (𝑦 = (𝑧𝐴) → (𝑥𝑦𝑥 ∈ (𝑧𝐴)))
2120imdistanri 569 . . . . . . . . . . . . 13 ((𝑥𝑦𝑦 = (𝑧𝐴)) → (𝑥 ∈ (𝑧𝐴) ∧ 𝑦 = (𝑧𝐴)))
22 eqimss2 4006 . . . . . . . . . . . . . . 15 (𝑦 = (𝑧𝐴) → (𝑧𝐴) ⊆ 𝑦)
2322sseld 3945 . . . . . . . . . . . . . 14 (𝑦 = (𝑧𝐴) → (𝑥 ∈ (𝑧𝐴) → 𝑥𝑦))
2423imdistanri 569 . . . . . . . . . . . . 13 ((𝑥 ∈ (𝑧𝐴) ∧ 𝑦 = (𝑧𝐴)) → (𝑥𝑦𝑦 = (𝑧𝐴)))
2521, 24impbii 209 . . . . . . . . . . . 12 ((𝑥𝑦𝑦 = (𝑧𝐴)) ↔ (𝑥 ∈ (𝑧𝐴) ∧ 𝑦 = (𝑧𝐴)))
2625exbii 1848 . . . . . . . . . . 11 (∃𝑦(𝑥𝑦𝑦 = (𝑧𝐴)) ↔ ∃𝑦(𝑥 ∈ (𝑧𝐴) ∧ 𝑦 = (𝑧𝐴)))
27 19.42v 1953 . . . . . . . . . . 11 (∃𝑦(𝑥 ∈ (𝑧𝐴) ∧ 𝑦 = (𝑧𝐴)) ↔ (𝑥 ∈ (𝑧𝐴) ∧ ∃𝑦 𝑦 = (𝑧𝐴)))
28 vex 3451 . . . . . . . . . . . . . . . 16 𝑧 ∈ V
2928inex1 5272 . . . . . . . . . . . . . . 15 (𝑧𝐴) ∈ V
3029isseti 3465 . . . . . . . . . . . . . 14 𝑦 𝑦 = (𝑧𝐴)
3130biantru 529 . . . . . . . . . . . . 13 (𝑥 ∈ (𝑧𝐴) ↔ (𝑥 ∈ (𝑧𝐴) ∧ ∃𝑦 𝑦 = (𝑧𝐴)))
3231bicomi 224 . . . . . . . . . . . 12 ((𝑥 ∈ (𝑧𝐴) ∧ ∃𝑦 𝑦 = (𝑧𝐴)) ↔ 𝑥 ∈ (𝑧𝐴))
33 elin 3930 . . . . . . . . . . . 12 (𝑥 ∈ (𝑧𝐴) ↔ (𝑥𝑧𝑥𝐴))
3432, 33bitri 275 . . . . . . . . . . 11 ((𝑥 ∈ (𝑧𝐴) ∧ ∃𝑦 𝑦 = (𝑧𝐴)) ↔ (𝑥𝑧𝑥𝐴))
3526, 27, 343bitri 297 . . . . . . . . . 10 (∃𝑦(𝑥𝑦𝑦 = (𝑧𝐴)) ↔ (𝑥𝑧𝑥𝐴))
3635bianassc 643 . . . . . . . . 9 ((𝑧𝑋 ∧ ∃𝑦(𝑥𝑦𝑦 = (𝑧𝐴))) ↔ ((𝑥𝑧𝑧𝑋) ∧ 𝑥𝐴))
3717, 18, 363bitri 297 . . . . . . . 8 (∃𝑦(𝑥𝑦 ∧ (𝑧𝑋𝑦 = (𝑧𝐴))) ↔ ((𝑥𝑧𝑧𝑋) ∧ 𝑥𝐴))
3837exbii 1848 . . . . . . 7 (∃𝑧𝑦(𝑥𝑦 ∧ (𝑧𝑋𝑦 = (𝑧𝐴))) ↔ ∃𝑧((𝑥𝑧𝑧𝑋) ∧ 𝑥𝐴))
39 19.41v 1949 . . . . . . 7 (∃𝑧((𝑥𝑧𝑧𝑋) ∧ 𝑥𝐴) ↔ (∃𝑧(𝑥𝑧𝑧𝑋) ∧ 𝑥𝐴))
4038, 39bitri 275 . . . . . 6 (∃𝑧𝑦(𝑥𝑦 ∧ (𝑧𝑋𝑦 = (𝑧𝐴))) ↔ (∃𝑧(𝑥𝑧𝑧𝑋) ∧ 𝑥𝐴))
4114, 15, 403bitri 297 . . . . 5 (∃𝑦(𝑥𝑦 ∧ ∃𝑧𝑋 𝑦 = (𝑧𝐴)) ↔ (∃𝑧(𝑥𝑧𝑧𝑋) ∧ 𝑥𝐴))
42 elin 3930 . . . . 5 (𝑥 ∈ ( 𝑋𝐴) ↔ (𝑥 𝑋𝑥𝐴))
438, 41, 423bitr4g 314 . . . 4 ((𝑋𝑉𝐴𝑊) → (∃𝑦(𝑥𝑦 ∧ ∃𝑧𝑋 𝑦 = (𝑧𝐴)) ↔ 𝑥 ∈ ( 𝑋𝐴)))
444, 43bitrd 279 . . 3 ((𝑋𝑉𝐴𝑊) → (∃𝑦(𝑥𝑦𝑦 ∈ (𝑋t 𝐴)) ↔ 𝑥 ∈ ( 𝑋𝐴)))
451, 44bitrid 283 . 2 ((𝑋𝑉𝐴𝑊) → (𝑥 (𝑋t 𝐴) ↔ 𝑥 ∈ ( 𝑋𝐴)))
4645eqrdv 2727 1 ((𝑋𝑉𝐴𝑊) → (𝑋t 𝐴) = ( 𝑋𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wex 1779  wcel 2109  wrex 3053  cin 3913   cuni 4871  (class class class)co 7387  t crest 17383
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pr 5387  ax-un 7711
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4297  df-if 4489  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-id 5533  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-ov 7390  df-oprab 7391  df-mpo 7392  df-rest 17385
This theorem is referenced by:  bj-restuni2  37086
  Copyright terms: Public domain W3C validator