Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bj-restuni Structured version   Visualization version   GIF version

Theorem bj-restuni 35195
Description: The union of an elementwise intersection by a set is equal to the intersection with that set of the union of the family. See also restuni 22221 and restuni2 22226. (Contributed by BJ, 27-Apr-2021.)
Assertion
Ref Expression
bj-restuni ((𝑋𝑉𝐴𝑊) → (𝑋t 𝐴) = ( 𝑋𝐴))

Proof of Theorem bj-restuni
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eluni 4839 . . 3 (𝑥 (𝑋t 𝐴) ↔ ∃𝑦(𝑥𝑦𝑦 ∈ (𝑋t 𝐴)))
2 elrest 17055 . . . . . 6 ((𝑋𝑉𝐴𝑊) → (𝑦 ∈ (𝑋t 𝐴) ↔ ∃𝑧𝑋 𝑦 = (𝑧𝐴)))
32anbi2d 628 . . . . 5 ((𝑋𝑉𝐴𝑊) → ((𝑥𝑦𝑦 ∈ (𝑋t 𝐴)) ↔ (𝑥𝑦 ∧ ∃𝑧𝑋 𝑦 = (𝑧𝐴))))
43exbidv 1925 . . . 4 ((𝑋𝑉𝐴𝑊) → (∃𝑦(𝑥𝑦𝑦 ∈ (𝑋t 𝐴)) ↔ ∃𝑦(𝑥𝑦 ∧ ∃𝑧𝑋 𝑦 = (𝑧𝐴))))
5 eluni 4839 . . . . . . . 8 (𝑥 𝑋 ↔ ∃𝑧(𝑥𝑧𝑧𝑋))
65bicomi 223 . . . . . . 7 (∃𝑧(𝑥𝑧𝑧𝑋) ↔ 𝑥 𝑋)
76anbi1i 623 . . . . . 6 ((∃𝑧(𝑥𝑧𝑧𝑋) ∧ 𝑥𝐴) ↔ (𝑥 𝑋𝑥𝐴))
87a1i 11 . . . . 5 ((𝑋𝑉𝐴𝑊) → ((∃𝑧(𝑥𝑧𝑧𝑋) ∧ 𝑥𝐴) ↔ (𝑥 𝑋𝑥𝐴)))
9 df-rex 3069 . . . . . . . . 9 (∃𝑧𝑋 𝑦 = (𝑧𝐴) ↔ ∃𝑧(𝑧𝑋𝑦 = (𝑧𝐴)))
109anbi2i 622 . . . . . . . 8 ((𝑥𝑦 ∧ ∃𝑧𝑋 𝑦 = (𝑧𝐴)) ↔ (𝑥𝑦 ∧ ∃𝑧(𝑧𝑋𝑦 = (𝑧𝐴))))
11 19.42v 1958 . . . . . . . . 9 (∃𝑧(𝑥𝑦 ∧ (𝑧𝑋𝑦 = (𝑧𝐴))) ↔ (𝑥𝑦 ∧ ∃𝑧(𝑧𝑋𝑦 = (𝑧𝐴))))
1211bicomi 223 . . . . . . . 8 ((𝑥𝑦 ∧ ∃𝑧(𝑧𝑋𝑦 = (𝑧𝐴))) ↔ ∃𝑧(𝑥𝑦 ∧ (𝑧𝑋𝑦 = (𝑧𝐴))))
1310, 12bitri 274 . . . . . . 7 ((𝑥𝑦 ∧ ∃𝑧𝑋 𝑦 = (𝑧𝐴)) ↔ ∃𝑧(𝑥𝑦 ∧ (𝑧𝑋𝑦 = (𝑧𝐴))))
1413exbii 1851 . . . . . 6 (∃𝑦(𝑥𝑦 ∧ ∃𝑧𝑋 𝑦 = (𝑧𝐴)) ↔ ∃𝑦𝑧(𝑥𝑦 ∧ (𝑧𝑋𝑦 = (𝑧𝐴))))
15 excom 2164 . . . . . 6 (∃𝑦𝑧(𝑥𝑦 ∧ (𝑧𝑋𝑦 = (𝑧𝐴))) ↔ ∃𝑧𝑦(𝑥𝑦 ∧ (𝑧𝑋𝑦 = (𝑧𝐴))))
16 an12 641 . . . . . . . . . 10 ((𝑥𝑦 ∧ (𝑧𝑋𝑦 = (𝑧𝐴))) ↔ (𝑧𝑋 ∧ (𝑥𝑦𝑦 = (𝑧𝐴))))
1716exbii 1851 . . . . . . . . 9 (∃𝑦(𝑥𝑦 ∧ (𝑧𝑋𝑦 = (𝑧𝐴))) ↔ ∃𝑦(𝑧𝑋 ∧ (𝑥𝑦𝑦 = (𝑧𝐴))))
18 19.42v 1958 . . . . . . . . 9 (∃𝑦(𝑧𝑋 ∧ (𝑥𝑦𝑦 = (𝑧𝐴))) ↔ (𝑧𝑋 ∧ ∃𝑦(𝑥𝑦𝑦 = (𝑧𝐴))))
19 eqimss 3973 . . . . . . . . . . . . . . 15 (𝑦 = (𝑧𝐴) → 𝑦 ⊆ (𝑧𝐴))
2019sseld 3916 . . . . . . . . . . . . . 14 (𝑦 = (𝑧𝐴) → (𝑥𝑦𝑥 ∈ (𝑧𝐴)))
2120imdistanri 569 . . . . . . . . . . . . 13 ((𝑥𝑦𝑦 = (𝑧𝐴)) → (𝑥 ∈ (𝑧𝐴) ∧ 𝑦 = (𝑧𝐴)))
22 eqimss2 3974 . . . . . . . . . . . . . . 15 (𝑦 = (𝑧𝐴) → (𝑧𝐴) ⊆ 𝑦)
2322sseld 3916 . . . . . . . . . . . . . 14 (𝑦 = (𝑧𝐴) → (𝑥 ∈ (𝑧𝐴) → 𝑥𝑦))
2423imdistanri 569 . . . . . . . . . . . . 13 ((𝑥 ∈ (𝑧𝐴) ∧ 𝑦 = (𝑧𝐴)) → (𝑥𝑦𝑦 = (𝑧𝐴)))
2521, 24impbii 208 . . . . . . . . . . . 12 ((𝑥𝑦𝑦 = (𝑧𝐴)) ↔ (𝑥 ∈ (𝑧𝐴) ∧ 𝑦 = (𝑧𝐴)))
2625exbii 1851 . . . . . . . . . . 11 (∃𝑦(𝑥𝑦𝑦 = (𝑧𝐴)) ↔ ∃𝑦(𝑥 ∈ (𝑧𝐴) ∧ 𝑦 = (𝑧𝐴)))
27 19.42v 1958 . . . . . . . . . . 11 (∃𝑦(𝑥 ∈ (𝑧𝐴) ∧ 𝑦 = (𝑧𝐴)) ↔ (𝑥 ∈ (𝑧𝐴) ∧ ∃𝑦 𝑦 = (𝑧𝐴)))
28 vex 3426 . . . . . . . . . . . . . . . 16 𝑧 ∈ V
2928inex1 5236 . . . . . . . . . . . . . . 15 (𝑧𝐴) ∈ V
3029isseti 3437 . . . . . . . . . . . . . 14 𝑦 𝑦 = (𝑧𝐴)
3130biantru 529 . . . . . . . . . . . . 13 (𝑥 ∈ (𝑧𝐴) ↔ (𝑥 ∈ (𝑧𝐴) ∧ ∃𝑦 𝑦 = (𝑧𝐴)))
3231bicomi 223 . . . . . . . . . . . 12 ((𝑥 ∈ (𝑧𝐴) ∧ ∃𝑦 𝑦 = (𝑧𝐴)) ↔ 𝑥 ∈ (𝑧𝐴))
33 elin 3899 . . . . . . . . . . . 12 (𝑥 ∈ (𝑧𝐴) ↔ (𝑥𝑧𝑥𝐴))
3432, 33bitri 274 . . . . . . . . . . 11 ((𝑥 ∈ (𝑧𝐴) ∧ ∃𝑦 𝑦 = (𝑧𝐴)) ↔ (𝑥𝑧𝑥𝐴))
3526, 27, 343bitri 296 . . . . . . . . . 10 (∃𝑦(𝑥𝑦𝑦 = (𝑧𝐴)) ↔ (𝑥𝑧𝑥𝐴))
3635bianassc 639 . . . . . . . . 9 ((𝑧𝑋 ∧ ∃𝑦(𝑥𝑦𝑦 = (𝑧𝐴))) ↔ ((𝑥𝑧𝑧𝑋) ∧ 𝑥𝐴))
3717, 18, 363bitri 296 . . . . . . . 8 (∃𝑦(𝑥𝑦 ∧ (𝑧𝑋𝑦 = (𝑧𝐴))) ↔ ((𝑥𝑧𝑧𝑋) ∧ 𝑥𝐴))
3837exbii 1851 . . . . . . 7 (∃𝑧𝑦(𝑥𝑦 ∧ (𝑧𝑋𝑦 = (𝑧𝐴))) ↔ ∃𝑧((𝑥𝑧𝑧𝑋) ∧ 𝑥𝐴))
39 19.41v 1954 . . . . . . 7 (∃𝑧((𝑥𝑧𝑧𝑋) ∧ 𝑥𝐴) ↔ (∃𝑧(𝑥𝑧𝑧𝑋) ∧ 𝑥𝐴))
4038, 39bitri 274 . . . . . 6 (∃𝑧𝑦(𝑥𝑦 ∧ (𝑧𝑋𝑦 = (𝑧𝐴))) ↔ (∃𝑧(𝑥𝑧𝑧𝑋) ∧ 𝑥𝐴))
4114, 15, 403bitri 296 . . . . 5 (∃𝑦(𝑥𝑦 ∧ ∃𝑧𝑋 𝑦 = (𝑧𝐴)) ↔ (∃𝑧(𝑥𝑧𝑧𝑋) ∧ 𝑥𝐴))
42 elin 3899 . . . . 5 (𝑥 ∈ ( 𝑋𝐴) ↔ (𝑥 𝑋𝑥𝐴))
438, 41, 423bitr4g 313 . . . 4 ((𝑋𝑉𝐴𝑊) → (∃𝑦(𝑥𝑦 ∧ ∃𝑧𝑋 𝑦 = (𝑧𝐴)) ↔ 𝑥 ∈ ( 𝑋𝐴)))
444, 43bitrd 278 . . 3 ((𝑋𝑉𝐴𝑊) → (∃𝑦(𝑥𝑦𝑦 ∈ (𝑋t 𝐴)) ↔ 𝑥 ∈ ( 𝑋𝐴)))
451, 44syl5bb 282 . 2 ((𝑋𝑉𝐴𝑊) → (𝑥 (𝑋t 𝐴) ↔ 𝑥 ∈ ( 𝑋𝐴)))
4645eqrdv 2736 1 ((𝑋𝑉𝐴𝑊) → (𝑋t 𝐴) = ( 𝑋𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395   = wceq 1539  wex 1783  wcel 2108  wrex 3064  cin 3882   cuni 4836  (class class class)co 7255  t crest 17048
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pr 5347  ax-un 7566
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rex 3069  df-reu 3070  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-id 5480  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-ov 7258  df-oprab 7259  df-mpo 7260  df-rest 17050
This theorem is referenced by:  bj-restuni2  35196
  Copyright terms: Public domain W3C validator