Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bj-restuni Structured version   Visualization version   GIF version

Theorem bj-restuni 34402
Description: The union of an elementwise intersection by a set is equal to the intersection with that set of the union of the family. See also restuni 21743 and restuni2 21748. (Contributed by BJ, 27-Apr-2021.)
Assertion
Ref Expression
bj-restuni ((𝑋𝑉𝐴𝑊) → (𝑋t 𝐴) = ( 𝑋𝐴))

Proof of Theorem bj-restuni
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eluni 4815 . . 3 (𝑥 (𝑋t 𝐴) ↔ ∃𝑦(𝑥𝑦𝑦 ∈ (𝑋t 𝐴)))
2 elrest 16677 . . . . . 6 ((𝑋𝑉𝐴𝑊) → (𝑦 ∈ (𝑋t 𝐴) ↔ ∃𝑧𝑋 𝑦 = (𝑧𝐴)))
32anbi2d 630 . . . . 5 ((𝑋𝑉𝐴𝑊) → ((𝑥𝑦𝑦 ∈ (𝑋t 𝐴)) ↔ (𝑥𝑦 ∧ ∃𝑧𝑋 𝑦 = (𝑧𝐴))))
43exbidv 1922 . . . 4 ((𝑋𝑉𝐴𝑊) → (∃𝑦(𝑥𝑦𝑦 ∈ (𝑋t 𝐴)) ↔ ∃𝑦(𝑥𝑦 ∧ ∃𝑧𝑋 𝑦 = (𝑧𝐴))))
5 eluni 4815 . . . . . . . 8 (𝑥 𝑋 ↔ ∃𝑧(𝑥𝑧𝑧𝑋))
65bicomi 226 . . . . . . 7 (∃𝑧(𝑥𝑧𝑧𝑋) ↔ 𝑥 𝑋)
76anbi1i 625 . . . . . 6 ((∃𝑧(𝑥𝑧𝑧𝑋) ∧ 𝑥𝐴) ↔ (𝑥 𝑋𝑥𝐴))
87a1i 11 . . . . 5 ((𝑋𝑉𝐴𝑊) → ((∃𝑧(𝑥𝑧𝑧𝑋) ∧ 𝑥𝐴) ↔ (𝑥 𝑋𝑥𝐴)))
9 df-rex 3131 . . . . . . . . 9 (∃𝑧𝑋 𝑦 = (𝑧𝐴) ↔ ∃𝑧(𝑧𝑋𝑦 = (𝑧𝐴)))
109anbi2i 624 . . . . . . . 8 ((𝑥𝑦 ∧ ∃𝑧𝑋 𝑦 = (𝑧𝐴)) ↔ (𝑥𝑦 ∧ ∃𝑧(𝑧𝑋𝑦 = (𝑧𝐴))))
11 19.42v 1954 . . . . . . . . 9 (∃𝑧(𝑥𝑦 ∧ (𝑧𝑋𝑦 = (𝑧𝐴))) ↔ (𝑥𝑦 ∧ ∃𝑧(𝑧𝑋𝑦 = (𝑧𝐴))))
1211bicomi 226 . . . . . . . 8 ((𝑥𝑦 ∧ ∃𝑧(𝑧𝑋𝑦 = (𝑧𝐴))) ↔ ∃𝑧(𝑥𝑦 ∧ (𝑧𝑋𝑦 = (𝑧𝐴))))
1310, 12bitri 277 . . . . . . 7 ((𝑥𝑦 ∧ ∃𝑧𝑋 𝑦 = (𝑧𝐴)) ↔ ∃𝑧(𝑥𝑦 ∧ (𝑧𝑋𝑦 = (𝑧𝐴))))
1413exbii 1848 . . . . . 6 (∃𝑦(𝑥𝑦 ∧ ∃𝑧𝑋 𝑦 = (𝑧𝐴)) ↔ ∃𝑦𝑧(𝑥𝑦 ∧ (𝑧𝑋𝑦 = (𝑧𝐴))))
15 excom 2169 . . . . . 6 (∃𝑦𝑧(𝑥𝑦 ∧ (𝑧𝑋𝑦 = (𝑧𝐴))) ↔ ∃𝑧𝑦(𝑥𝑦 ∧ (𝑧𝑋𝑦 = (𝑧𝐴))))
16 an12 643 . . . . . . . . . 10 ((𝑥𝑦 ∧ (𝑧𝑋𝑦 = (𝑧𝐴))) ↔ (𝑧𝑋 ∧ (𝑥𝑦𝑦 = (𝑧𝐴))))
1716exbii 1848 . . . . . . . . 9 (∃𝑦(𝑥𝑦 ∧ (𝑧𝑋𝑦 = (𝑧𝐴))) ↔ ∃𝑦(𝑧𝑋 ∧ (𝑥𝑦𝑦 = (𝑧𝐴))))
18 19.42v 1954 . . . . . . . . 9 (∃𝑦(𝑧𝑋 ∧ (𝑥𝑦𝑦 = (𝑧𝐴))) ↔ (𝑧𝑋 ∧ ∃𝑦(𝑥𝑦𝑦 = (𝑧𝐴))))
19 eqimss 3999 . . . . . . . . . . . . . . 15 (𝑦 = (𝑧𝐴) → 𝑦 ⊆ (𝑧𝐴))
2019sseld 3942 . . . . . . . . . . . . . 14 (𝑦 = (𝑧𝐴) → (𝑥𝑦𝑥 ∈ (𝑧𝐴)))
2120imdistanri 572 . . . . . . . . . . . . 13 ((𝑥𝑦𝑦 = (𝑧𝐴)) → (𝑥 ∈ (𝑧𝐴) ∧ 𝑦 = (𝑧𝐴)))
22 eqimss2 4000 . . . . . . . . . . . . . . 15 (𝑦 = (𝑧𝐴) → (𝑧𝐴) ⊆ 𝑦)
2322sseld 3942 . . . . . . . . . . . . . 14 (𝑦 = (𝑧𝐴) → (𝑥 ∈ (𝑧𝐴) → 𝑥𝑦))
2423imdistanri 572 . . . . . . . . . . . . 13 ((𝑥 ∈ (𝑧𝐴) ∧ 𝑦 = (𝑧𝐴)) → (𝑥𝑦𝑦 = (𝑧𝐴)))
2521, 24impbii 211 . . . . . . . . . . . 12 ((𝑥𝑦𝑦 = (𝑧𝐴)) ↔ (𝑥 ∈ (𝑧𝐴) ∧ 𝑦 = (𝑧𝐴)))
2625exbii 1848 . . . . . . . . . . 11 (∃𝑦(𝑥𝑦𝑦 = (𝑧𝐴)) ↔ ∃𝑦(𝑥 ∈ (𝑧𝐴) ∧ 𝑦 = (𝑧𝐴)))
27 19.42v 1954 . . . . . . . . . . 11 (∃𝑦(𝑥 ∈ (𝑧𝐴) ∧ 𝑦 = (𝑧𝐴)) ↔ (𝑥 ∈ (𝑧𝐴) ∧ ∃𝑦 𝑦 = (𝑧𝐴)))
28 vex 3476 . . . . . . . . . . . . . . . 16 𝑧 ∈ V
2928inex1 5195 . . . . . . . . . . . . . . 15 (𝑧𝐴) ∈ V
3029isseti 3487 . . . . . . . . . . . . . 14 𝑦 𝑦 = (𝑧𝐴)
3130biantru 532 . . . . . . . . . . . . 13 (𝑥 ∈ (𝑧𝐴) ↔ (𝑥 ∈ (𝑧𝐴) ∧ ∃𝑦 𝑦 = (𝑧𝐴)))
3231bicomi 226 . . . . . . . . . . . 12 ((𝑥 ∈ (𝑧𝐴) ∧ ∃𝑦 𝑦 = (𝑧𝐴)) ↔ 𝑥 ∈ (𝑧𝐴))
33 elin 4145 . . . . . . . . . . . 12 (𝑥 ∈ (𝑧𝐴) ↔ (𝑥𝑧𝑥𝐴))
3432, 33bitri 277 . . . . . . . . . . 11 ((𝑥 ∈ (𝑧𝐴) ∧ ∃𝑦 𝑦 = (𝑧𝐴)) ↔ (𝑥𝑧𝑥𝐴))
3526, 27, 343bitri 299 . . . . . . . . . 10 (∃𝑦(𝑥𝑦𝑦 = (𝑧𝐴)) ↔ (𝑥𝑧𝑥𝐴))
3635bianassc 641 . . . . . . . . 9 ((𝑧𝑋 ∧ ∃𝑦(𝑥𝑦𝑦 = (𝑧𝐴))) ↔ ((𝑥𝑧𝑧𝑋) ∧ 𝑥𝐴))
3717, 18, 363bitri 299 . . . . . . . 8 (∃𝑦(𝑥𝑦 ∧ (𝑧𝑋𝑦 = (𝑧𝐴))) ↔ ((𝑥𝑧𝑧𝑋) ∧ 𝑥𝐴))
3837exbii 1848 . . . . . . 7 (∃𝑧𝑦(𝑥𝑦 ∧ (𝑧𝑋𝑦 = (𝑧𝐴))) ↔ ∃𝑧((𝑥𝑧𝑧𝑋) ∧ 𝑥𝐴))
39 19.41v 1950 . . . . . . 7 (∃𝑧((𝑥𝑧𝑧𝑋) ∧ 𝑥𝐴) ↔ (∃𝑧(𝑥𝑧𝑧𝑋) ∧ 𝑥𝐴))
4038, 39bitri 277 . . . . . 6 (∃𝑧𝑦(𝑥𝑦 ∧ (𝑧𝑋𝑦 = (𝑧𝐴))) ↔ (∃𝑧(𝑥𝑧𝑧𝑋) ∧ 𝑥𝐴))
4114, 15, 403bitri 299 . . . . 5 (∃𝑦(𝑥𝑦 ∧ ∃𝑧𝑋 𝑦 = (𝑧𝐴)) ↔ (∃𝑧(𝑥𝑧𝑧𝑋) ∧ 𝑥𝐴))
42 elin 4145 . . . . 5 (𝑥 ∈ ( 𝑋𝐴) ↔ (𝑥 𝑋𝑥𝐴))
438, 41, 423bitr4g 316 . . . 4 ((𝑋𝑉𝐴𝑊) → (∃𝑦(𝑥𝑦 ∧ ∃𝑧𝑋 𝑦 = (𝑧𝐴)) ↔ 𝑥 ∈ ( 𝑋𝐴)))
444, 43bitrd 281 . . 3 ((𝑋𝑉𝐴𝑊) → (∃𝑦(𝑥𝑦𝑦 ∈ (𝑋t 𝐴)) ↔ 𝑥 ∈ ( 𝑋𝐴)))
451, 44syl5bb 285 . 2 ((𝑋𝑉𝐴𝑊) → (𝑥 (𝑋t 𝐴) ↔ 𝑥 ∈ ( 𝑋𝐴)))
4645eqrdv 2818 1 ((𝑋𝑉𝐴𝑊) → (𝑋t 𝐴) = ( 𝑋𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398   = wceq 1537  wex 1780  wcel 2114  wrex 3126  cin 3911   cuni 4812  (class class class)co 7131  t crest 16670
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2792  ax-rep 5164  ax-sep 5177  ax-nul 5184  ax-pr 5304  ax-un 7437
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2653  df-clab 2799  df-cleq 2813  df-clel 2891  df-nfc 2959  df-ne 3007  df-ral 3130  df-rex 3131  df-reu 3132  df-rab 3134  df-v 3475  df-sbc 3752  df-csb 3860  df-dif 3915  df-un 3917  df-in 3919  df-ss 3928  df-nul 4268  df-if 4442  df-sn 4542  df-pr 4544  df-op 4548  df-uni 4813  df-iun 4895  df-br 5041  df-opab 5103  df-mpt 5121  df-id 5434  df-xp 5535  df-rel 5536  df-cnv 5537  df-co 5538  df-dm 5539  df-rn 5540  df-res 5541  df-ima 5542  df-iota 6288  df-fun 6331  df-fn 6332  df-f 6333  df-f1 6334  df-fo 6335  df-f1o 6336  df-fv 6337  df-ov 7134  df-oprab 7135  df-mpo 7136  df-rest 16672
This theorem is referenced by:  bj-restuni2  34403
  Copyright terms: Public domain W3C validator