| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > pm4.71 | Structured version Visualization version GIF version | ||
| Description: Implication in terms of biconditional and conjunction. Theorem *4.71 of [WhiteheadRussell] p. 120. (Contributed by NM, 21-Jun-1993.) (Proof shortened by Wolf Lammen, 2-Dec-2012.) |
| Ref | Expression |
|---|---|
| pm4.71 | ⊢ ((𝜑 → 𝜓) ↔ (𝜑 ↔ (𝜑 ∧ 𝜓))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpl 482 | . . 3 ⊢ ((𝜑 ∧ 𝜓) → 𝜑) | |
| 2 | 1 | biantru 529 | . 2 ⊢ ((𝜑 → (𝜑 ∧ 𝜓)) ↔ ((𝜑 → (𝜑 ∧ 𝜓)) ∧ ((𝜑 ∧ 𝜓) → 𝜑))) |
| 3 | anclb 545 | . 2 ⊢ ((𝜑 → 𝜓) ↔ (𝜑 → (𝜑 ∧ 𝜓))) | |
| 4 | dfbi2 474 | . 2 ⊢ ((𝜑 ↔ (𝜑 ∧ 𝜓)) ↔ ((𝜑 → (𝜑 ∧ 𝜓)) ∧ ((𝜑 ∧ 𝜓) → 𝜑))) | |
| 5 | 2, 3, 4 | 3bitr4i 303 | 1 ⊢ ((𝜑 → 𝜓) ↔ (𝜑 ↔ (𝜑 ∧ 𝜓))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 |
| This theorem is referenced by: pm4.71r 558 pm4.71i 559 pm4.71d 561 bigolden 1028 rabid2f 3467 rabid2im 3468 rabid2OLD 3470 disj3 4453 dmopab3 5929 rnopab3 5966 mptfnf 6702 wl-ifp4impr 37469 nanorxor 44329 |
| Copyright terms: Public domain | W3C validator |