| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 3bitr3ri | Structured version Visualization version GIF version | ||
| Description: A chained inference from transitive law for logical equivalence. (Contributed by NM, 21-Jun-1993.) |
| Ref | Expression |
|---|---|
| 3bitr3i.1 | ⊢ (𝜑 ↔ 𝜓) |
| 3bitr3i.2 | ⊢ (𝜑 ↔ 𝜒) |
| 3bitr3i.3 | ⊢ (𝜓 ↔ 𝜃) |
| Ref | Expression |
|---|---|
| 3bitr3ri | ⊢ (𝜃 ↔ 𝜒) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3bitr3i.3 | . 2 ⊢ (𝜓 ↔ 𝜃) | |
| 2 | 3bitr3i.1 | . . 3 ⊢ (𝜑 ↔ 𝜓) | |
| 3 | 3bitr3i.2 | . . 3 ⊢ (𝜑 ↔ 𝜒) | |
| 4 | 2, 3 | bitr3i 277 | . 2 ⊢ (𝜓 ↔ 𝜒) |
| 5 | 1, 4 | bitr3i 277 | 1 ⊢ (𝜃 ↔ 𝜒) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 |
| This theorem is referenced by: bigolden 1028 sb8f 2356 2eu8 2656 sbccow 3760 sbcco 3763 dfiin2g 4981 zfpair 5361 dfpo2 6248 dffun6f 6501 fnssintima 7302 imaeqsexvOLD 7303 fsplit 8053 axdc3lem4 10351 addsuniflem 27945 addsasslem1 27947 addsasslem2 27948 addsdilem1 28091 addsdilem2 28092 mulsasslem1 28103 mulsasslem2 28104 renegscl 28401 istrkg2ld 28439 legso 28578 disjunsn 32576 gtiso 32686 fpwrelmapffslem 32719 qqhre 34054 satfdm 35434 dfdm5 35838 dfrn5 35839 brimg 36000 dfrecs2 36015 poimirlem25 37705 cdlemefrs29bpre0 40515 cdlemftr3 40684 dffrege115 44095 brco3f1o 44150 2reu8 47236 ichbi12i 47584 iuneq0 48943 i0oii 49044 setc1onsubc 49727 |
| Copyright terms: Public domain | W3C validator |