![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 3bitr3ri | Structured version Visualization version GIF version |
Description: A chained inference from transitive law for logical equivalence. (Contributed by NM, 21-Jun-1993.) |
Ref | Expression |
---|---|
3bitr3i.1 | ⊢ (𝜑 ↔ 𝜓) |
3bitr3i.2 | ⊢ (𝜑 ↔ 𝜒) |
3bitr3i.3 | ⊢ (𝜓 ↔ 𝜃) |
Ref | Expression |
---|---|
3bitr3ri | ⊢ (𝜃 ↔ 𝜒) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3bitr3i.3 | . 2 ⊢ (𝜓 ↔ 𝜃) | |
2 | 3bitr3i.1 | . . 3 ⊢ (𝜑 ↔ 𝜓) | |
3 | 3bitr3i.2 | . . 3 ⊢ (𝜑 ↔ 𝜒) | |
4 | 2, 3 | bitr3i 276 | . 2 ⊢ (𝜓 ↔ 𝜒) |
5 | 1, 4 | bitr3i 276 | 1 ⊢ (𝜃 ↔ 𝜒) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 |
This theorem is referenced by: bigolden 1023 sb8f 2347 2eu8 2652 2ralorOLD 3227 sbccow 3799 sbcco 3802 dfiin2g 5034 zfpair 5418 dfpo2 6294 dffun6f 6560 fnssintima 7361 imaeqsexv 7362 fsplit 8105 axdc3lem4 10450 addsuniflem 27723 addsasslem1 27725 addsasslem2 27726 addsdilem1 27845 addsdilem2 27846 mulsasslem1 27857 mulsasslem2 27858 istrkg2ld 27978 legso 28117 disjunsn 32092 gtiso 32189 fpwrelmapffslem 32224 qqhre 33298 satfdm 34658 dfdm5 35048 dfrn5 35049 brimg 35213 dfrecs2 35226 poimirlem25 36816 cdlemefrs29bpre0 39570 cdlemftr3 39739 dffrege115 43031 brco3f1o 43086 2reu8 46118 ichbi12i 46426 i0oii 47639 |
Copyright terms: Public domain | W3C validator |