| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 3bitr3ri | Structured version Visualization version GIF version | ||
| Description: A chained inference from transitive law for logical equivalence. (Contributed by NM, 21-Jun-1993.) |
| Ref | Expression |
|---|---|
| 3bitr3i.1 | ⊢ (𝜑 ↔ 𝜓) |
| 3bitr3i.2 | ⊢ (𝜑 ↔ 𝜒) |
| 3bitr3i.3 | ⊢ (𝜓 ↔ 𝜃) |
| Ref | Expression |
|---|---|
| 3bitr3ri | ⊢ (𝜃 ↔ 𝜒) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3bitr3i.3 | . 2 ⊢ (𝜓 ↔ 𝜃) | |
| 2 | 3bitr3i.1 | . . 3 ⊢ (𝜑 ↔ 𝜓) | |
| 3 | 3bitr3i.2 | . . 3 ⊢ (𝜑 ↔ 𝜒) | |
| 4 | 2, 3 | bitr3i 277 | . 2 ⊢ (𝜓 ↔ 𝜒) |
| 5 | 1, 4 | bitr3i 277 | 1 ⊢ (𝜃 ↔ 𝜒) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 |
| This theorem is referenced by: bigolden 1028 sb8f 2352 2eu8 2653 sbccow 3779 sbcco 3782 dfiin2g 4999 zfpair 5379 dfpo2 6272 dffun6f 6532 fnssintima 7340 imaeqsexvOLD 7341 fsplit 8099 axdc3lem4 10413 addsuniflem 27915 addsasslem1 27917 addsasslem2 27918 addsdilem1 28061 addsdilem2 28062 mulsasslem1 28073 mulsasslem2 28074 renegscl 28356 istrkg2ld 28394 legso 28533 disjunsn 32530 gtiso 32631 fpwrelmapffslem 32662 qqhre 34017 satfdm 35363 dfdm5 35767 dfrn5 35768 brimg 35932 dfrecs2 35945 poimirlem25 37646 cdlemefrs29bpre0 40397 cdlemftr3 40566 dffrege115 43974 brco3f1o 44029 2reu8 47117 ichbi12i 47465 iuneq0 48811 i0oii 48912 setc1onsubc 49595 |
| Copyright terms: Public domain | W3C validator |