![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 3bitr3ri | Structured version Visualization version GIF version |
Description: A chained inference from transitive law for logical equivalence. (Contributed by NM, 21-Jun-1993.) |
Ref | Expression |
---|---|
3bitr3i.1 | ⊢ (𝜑 ↔ 𝜓) |
3bitr3i.2 | ⊢ (𝜑 ↔ 𝜒) |
3bitr3i.3 | ⊢ (𝜓 ↔ 𝜃) |
Ref | Expression |
---|---|
3bitr3ri | ⊢ (𝜃 ↔ 𝜒) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3bitr3i.3 | . 2 ⊢ (𝜓 ↔ 𝜃) | |
2 | 3bitr3i.1 | . . 3 ⊢ (𝜑 ↔ 𝜓) | |
3 | 3bitr3i.2 | . . 3 ⊢ (𝜑 ↔ 𝜒) | |
4 | 2, 3 | bitr3i 277 | . 2 ⊢ (𝜓 ↔ 𝜒) |
5 | 1, 4 | bitr3i 277 | 1 ⊢ (𝜃 ↔ 𝜒) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 206 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 207 |
This theorem is referenced by: bigolden 1027 sb8f 2359 2eu8 2662 2ralorOLD 3238 sbccow 3827 sbcco 3830 dfiin2g 5055 zfpair 5439 dfpo2 6327 dffun6f 6591 fnssintima 7398 imaeqsexvOLD 7399 fsplit 8158 axdc3lem4 10522 addsuniflem 28052 addsasslem1 28054 addsasslem2 28055 addsdilem1 28195 addsdilem2 28196 mulsasslem1 28207 mulsasslem2 28208 renegscl 28448 istrkg2ld 28486 legso 28625 disjunsn 32616 gtiso 32712 fpwrelmapffslem 32746 qqhre 33966 satfdm 35337 dfdm5 35736 dfrn5 35737 brimg 35901 dfrecs2 35914 poimirlem25 37605 cdlemefrs29bpre0 40353 cdlemftr3 40522 dffrege115 43940 brco3f1o 43995 2reu8 47027 ichbi12i 47334 i0oii 48599 |
Copyright terms: Public domain | W3C validator |