Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > 3bitr3ri | Structured version Visualization version GIF version |
Description: A chained inference from transitive law for logical equivalence. (Contributed by NM, 21-Jun-1993.) |
Ref | Expression |
---|---|
3bitr3i.1 | ⊢ (𝜑 ↔ 𝜓) |
3bitr3i.2 | ⊢ (𝜑 ↔ 𝜒) |
3bitr3i.3 | ⊢ (𝜓 ↔ 𝜃) |
Ref | Expression |
---|---|
3bitr3ri | ⊢ (𝜃 ↔ 𝜒) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3bitr3i.3 | . 2 ⊢ (𝜓 ↔ 𝜃) | |
2 | 3bitr3i.1 | . . 3 ⊢ (𝜑 ↔ 𝜓) | |
3 | 3bitr3i.2 | . . 3 ⊢ (𝜑 ↔ 𝜒) | |
4 | 2, 3 | bitr3i 276 | . 2 ⊢ (𝜓 ↔ 𝜒) |
5 | 1, 4 | bitr3i 276 | 1 ⊢ (𝜃 ↔ 𝜒) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 |
This theorem is referenced by: bigolden 1023 2eu8 2660 2ralorOLD 3295 sbccow 3734 sbcco 3737 dfiin2g 4958 zfpair 5339 dfpo2 6188 dffun6f 6432 fsplit 7928 fsplitOLD 7929 axdc3lem4 10140 istrkg2ld 26725 legso 26864 disjunsn 30834 gtiso 30935 fpwrelmapffslem 30969 qqhre 31870 satfdm 33231 fnssintima 33578 imaeqsexv 33593 dfdm5 33653 dfrn5 33654 brimg 34166 dfrecs2 34179 poimirlem25 35729 cdlemefrs29bpre0 38337 cdlemftr3 38506 dffrege115 41475 brco3f1o 41532 elnev 41945 2reu8 44491 ichbi12i 44800 i0oii 46101 |
Copyright terms: Public domain | W3C validator |