Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > 3bitr3ri | Structured version Visualization version GIF version |
Description: A chained inference from transitive law for logical equivalence. (Contributed by NM, 21-Jun-1993.) |
Ref | Expression |
---|---|
3bitr3i.1 | ⊢ (𝜑 ↔ 𝜓) |
3bitr3i.2 | ⊢ (𝜑 ↔ 𝜒) |
3bitr3i.3 | ⊢ (𝜓 ↔ 𝜃) |
Ref | Expression |
---|---|
3bitr3ri | ⊢ (𝜃 ↔ 𝜒) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3bitr3i.3 | . 2 ⊢ (𝜓 ↔ 𝜃) | |
2 | 3bitr3i.1 | . . 3 ⊢ (𝜑 ↔ 𝜓) | |
3 | 3bitr3i.2 | . . 3 ⊢ (𝜑 ↔ 𝜒) | |
4 | 2, 3 | bitr3i 276 | . 2 ⊢ (𝜓 ↔ 𝜒) |
5 | 1, 4 | bitr3i 276 | 1 ⊢ (𝜃 ↔ 𝜒) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 |
This theorem is referenced by: bigolden 1024 sb8f 2351 2eu8 2660 2ralorOLD 3297 sbccow 3739 sbcco 3742 dfiin2g 4962 zfpair 5344 dfpo2 6199 dffun6f 6448 fsplit 7957 fsplitOLD 7958 axdc3lem4 10209 istrkg2ld 26821 legso 26960 disjunsn 30933 gtiso 31033 fpwrelmapffslem 31067 qqhre 31970 satfdm 33331 fnssintima 33676 imaeqsexv 33690 dfdm5 33747 dfrn5 33748 brimg 34239 dfrecs2 34252 poimirlem25 35802 cdlemefrs29bpre0 38410 cdlemftr3 38579 dffrege115 41586 brco3f1o 41643 elnev 42056 2reu8 44604 ichbi12i 44912 i0oii 46213 |
Copyright terms: Public domain | W3C validator |