| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 3bitr3ri | Structured version Visualization version GIF version | ||
| Description: A chained inference from transitive law for logical equivalence. (Contributed by NM, 21-Jun-1993.) |
| Ref | Expression |
|---|---|
| 3bitr3i.1 | ⊢ (𝜑 ↔ 𝜓) |
| 3bitr3i.2 | ⊢ (𝜑 ↔ 𝜒) |
| 3bitr3i.3 | ⊢ (𝜓 ↔ 𝜃) |
| Ref | Expression |
|---|---|
| 3bitr3ri | ⊢ (𝜃 ↔ 𝜒) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3bitr3i.3 | . 2 ⊢ (𝜓 ↔ 𝜃) | |
| 2 | 3bitr3i.1 | . . 3 ⊢ (𝜑 ↔ 𝜓) | |
| 3 | 3bitr3i.2 | . . 3 ⊢ (𝜑 ↔ 𝜒) | |
| 4 | 2, 3 | bitr3i 277 | . 2 ⊢ (𝜓 ↔ 𝜒) |
| 5 | 1, 4 | bitr3i 277 | 1 ⊢ (𝜃 ↔ 𝜒) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 |
| This theorem is referenced by: bigolden 1028 sb8f 2356 2eu8 2659 2ralorOLD 3220 sbccow 3793 sbcco 3796 dfiin2g 5013 zfpair 5396 dfpo2 6290 dffun6f 6554 fnssintima 7360 imaeqsexvOLD 7361 fsplit 8121 axdc3lem4 10472 addsuniflem 27965 addsasslem1 27967 addsasslem2 27968 addsdilem1 28111 addsdilem2 28112 mulsasslem1 28123 mulsasslem2 28124 renegscl 28406 istrkg2ld 28444 legso 28583 disjunsn 32580 gtiso 32683 fpwrelmapffslem 32714 qqhre 34056 satfdm 35396 dfdm5 35795 dfrn5 35796 brimg 35960 dfrecs2 35973 poimirlem25 37674 cdlemefrs29bpre0 40420 cdlemftr3 40589 dffrege115 43969 brco3f1o 44024 2reu8 47108 ichbi12i 47441 iuneq0 48764 i0oii 48861 setc1onsubc 49446 |
| Copyright terms: Public domain | W3C validator |