| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 3bitr3ri | Structured version Visualization version GIF version | ||
| Description: A chained inference from transitive law for logical equivalence. (Contributed by NM, 21-Jun-1993.) |
| Ref | Expression |
|---|---|
| 3bitr3i.1 | ⊢ (𝜑 ↔ 𝜓) |
| 3bitr3i.2 | ⊢ (𝜑 ↔ 𝜒) |
| 3bitr3i.3 | ⊢ (𝜓 ↔ 𝜃) |
| Ref | Expression |
|---|---|
| 3bitr3ri | ⊢ (𝜃 ↔ 𝜒) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3bitr3i.3 | . 2 ⊢ (𝜓 ↔ 𝜃) | |
| 2 | 3bitr3i.1 | . . 3 ⊢ (𝜑 ↔ 𝜓) | |
| 3 | 3bitr3i.2 | . . 3 ⊢ (𝜑 ↔ 𝜒) | |
| 4 | 2, 3 | bitr3i 277 | . 2 ⊢ (𝜓 ↔ 𝜒) |
| 5 | 1, 4 | bitr3i 277 | 1 ⊢ (𝜃 ↔ 𝜒) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 |
| This theorem is referenced by: bigolden 1028 sb8f 2352 2eu8 2652 sbccow 3776 sbcco 3779 dfiin2g 4996 zfpair 5376 dfpo2 6269 dffun6f 6529 fnssintima 7337 imaeqsexvOLD 7338 fsplit 8096 axdc3lem4 10406 addsuniflem 27908 addsasslem1 27910 addsasslem2 27911 addsdilem1 28054 addsdilem2 28055 mulsasslem1 28066 mulsasslem2 28067 renegscl 28349 istrkg2ld 28387 legso 28526 disjunsn 32523 gtiso 32624 fpwrelmapffslem 32655 qqhre 34010 satfdm 35356 dfdm5 35760 dfrn5 35761 brimg 35925 dfrecs2 35938 poimirlem25 37639 cdlemefrs29bpre0 40390 cdlemftr3 40559 dffrege115 43967 brco3f1o 44022 2reu8 47113 ichbi12i 47461 iuneq0 48807 i0oii 48908 setc1onsubc 49591 |
| Copyright terms: Public domain | W3C validator |