| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 3bitr3ri | Structured version Visualization version GIF version | ||
| Description: A chained inference from transitive law for logical equivalence. (Contributed by NM, 21-Jun-1993.) |
| Ref | Expression |
|---|---|
| 3bitr3i.1 | ⊢ (𝜑 ↔ 𝜓) |
| 3bitr3i.2 | ⊢ (𝜑 ↔ 𝜒) |
| 3bitr3i.3 | ⊢ (𝜓 ↔ 𝜃) |
| Ref | Expression |
|---|---|
| 3bitr3ri | ⊢ (𝜃 ↔ 𝜒) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3bitr3i.3 | . 2 ⊢ (𝜓 ↔ 𝜃) | |
| 2 | 3bitr3i.1 | . . 3 ⊢ (𝜑 ↔ 𝜓) | |
| 3 | 3bitr3i.2 | . . 3 ⊢ (𝜑 ↔ 𝜒) | |
| 4 | 2, 3 | bitr3i 277 | . 2 ⊢ (𝜓 ↔ 𝜒) |
| 5 | 1, 4 | bitr3i 277 | 1 ⊢ (𝜃 ↔ 𝜒) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 |
| This theorem is referenced by: bigolden 1028 sb8f 2352 2eu8 2652 sbccow 3767 sbcco 3770 dfiin2g 4984 zfpair 5363 dfpo2 6248 dffun6f 6501 fnssintima 7303 imaeqsexvOLD 7304 fsplit 8057 axdc3lem4 10366 addsuniflem 27931 addsasslem1 27933 addsasslem2 27934 addsdilem1 28077 addsdilem2 28078 mulsasslem1 28089 mulsasslem2 28090 renegscl 28385 istrkg2ld 28423 legso 28562 disjunsn 32556 gtiso 32657 fpwrelmapffslem 32688 qqhre 33986 satfdm 35341 dfdm5 35745 dfrn5 35746 brimg 35910 dfrecs2 35923 poimirlem25 37624 cdlemefrs29bpre0 40375 cdlemftr3 40544 dffrege115 43951 brco3f1o 44006 2reu8 47097 ichbi12i 47445 iuneq0 48804 i0oii 48905 setc1onsubc 49588 |
| Copyright terms: Public domain | W3C validator |