| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 3bitr3ri | Structured version Visualization version GIF version | ||
| Description: A chained inference from transitive law for logical equivalence. (Contributed by NM, 21-Jun-1993.) |
| Ref | Expression |
|---|---|
| 3bitr3i.1 | ⊢ (𝜑 ↔ 𝜓) |
| 3bitr3i.2 | ⊢ (𝜑 ↔ 𝜒) |
| 3bitr3i.3 | ⊢ (𝜓 ↔ 𝜃) |
| Ref | Expression |
|---|---|
| 3bitr3ri | ⊢ (𝜃 ↔ 𝜒) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3bitr3i.3 | . 2 ⊢ (𝜓 ↔ 𝜃) | |
| 2 | 3bitr3i.1 | . . 3 ⊢ (𝜑 ↔ 𝜓) | |
| 3 | 3bitr3i.2 | . . 3 ⊢ (𝜑 ↔ 𝜒) | |
| 4 | 2, 3 | bitr3i 277 | . 2 ⊢ (𝜓 ↔ 𝜒) |
| 5 | 1, 4 | bitr3i 277 | 1 ⊢ (𝜃 ↔ 𝜒) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 |
| This theorem is referenced by: bigolden 1028 sb8f 2354 2eu8 2654 sbccow 3764 sbcco 3767 dfiin2g 4981 zfpair 5359 dfpo2 6243 dffun6f 6496 fnssintima 7296 imaeqsexvOLD 7297 fsplit 8047 axdc3lem4 10341 addsuniflem 27942 addsasslem1 27944 addsasslem2 27945 addsdilem1 28088 addsdilem2 28089 mulsasslem1 28100 mulsasslem2 28101 renegscl 28398 istrkg2ld 28436 legso 28575 disjunsn 32569 gtiso 32677 fpwrelmapffslem 32710 qqhre 34028 satfdm 35401 dfdm5 35805 dfrn5 35806 brimg 35970 dfrecs2 35983 poimirlem25 37684 cdlemefrs29bpre0 40434 cdlemftr3 40603 dffrege115 44010 brco3f1o 44065 2reu8 47142 ichbi12i 47490 iuneq0 48849 i0oii 48950 setc1onsubc 49633 |
| Copyright terms: Public domain | W3C validator |