![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 3bitr3ri | Structured version Visualization version GIF version |
Description: A chained inference from transitive law for logical equivalence. (Contributed by NM, 21-Jun-1993.) |
Ref | Expression |
---|---|
3bitr3i.1 | ⊢ (𝜑 ↔ 𝜓) |
3bitr3i.2 | ⊢ (𝜑 ↔ 𝜒) |
3bitr3i.3 | ⊢ (𝜓 ↔ 𝜃) |
Ref | Expression |
---|---|
3bitr3ri | ⊢ (𝜃 ↔ 𝜒) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3bitr3i.3 | . 2 ⊢ (𝜓 ↔ 𝜃) | |
2 | 3bitr3i.1 | . . 3 ⊢ (𝜑 ↔ 𝜓) | |
3 | 3bitr3i.2 | . . 3 ⊢ (𝜑 ↔ 𝜒) | |
4 | 2, 3 | bitr3i 277 | . 2 ⊢ (𝜓 ↔ 𝜒) |
5 | 1, 4 | bitr3i 277 | 1 ⊢ (𝜃 ↔ 𝜒) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 206 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 207 |
This theorem is referenced by: bigolden 1028 sb8f 2354 2eu8 2657 2ralorOLD 3230 sbccow 3814 sbcco 3817 dfiin2g 5037 zfpair 5427 dfpo2 6318 dffun6f 6581 fnssintima 7382 imaeqsexvOLD 7383 fsplit 8141 axdc3lem4 10491 addsuniflem 28049 addsasslem1 28051 addsasslem2 28052 addsdilem1 28192 addsdilem2 28193 mulsasslem1 28204 mulsasslem2 28205 renegscl 28445 istrkg2ld 28483 legso 28622 disjunsn 32614 gtiso 32716 fpwrelmapffslem 32750 qqhre 33983 satfdm 35354 dfdm5 35754 dfrn5 35755 brimg 35919 dfrecs2 35932 poimirlem25 37632 cdlemefrs29bpre0 40379 cdlemftr3 40548 dffrege115 43968 brco3f1o 44023 2reu8 47062 ichbi12i 47385 i0oii 48716 |
Copyright terms: Public domain | W3C validator |