![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 3bitr3ri | Structured version Visualization version GIF version |
Description: A chained inference from transitive law for logical equivalence. (Contributed by NM, 21-Jun-1993.) |
Ref | Expression |
---|---|
3bitr3i.1 | ⊢ (𝜑 ↔ 𝜓) |
3bitr3i.2 | ⊢ (𝜑 ↔ 𝜒) |
3bitr3i.3 | ⊢ (𝜓 ↔ 𝜃) |
Ref | Expression |
---|---|
3bitr3ri | ⊢ (𝜃 ↔ 𝜒) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3bitr3i.3 | . 2 ⊢ (𝜓 ↔ 𝜃) | |
2 | 3bitr3i.1 | . . 3 ⊢ (𝜑 ↔ 𝜓) | |
3 | 3bitr3i.2 | . . 3 ⊢ (𝜑 ↔ 𝜒) | |
4 | 2, 3 | bitr3i 277 | . 2 ⊢ (𝜓 ↔ 𝜒) |
5 | 1, 4 | bitr3i 277 | 1 ⊢ (𝜃 ↔ 𝜒) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 |
This theorem is referenced by: bigolden 1026 sb8f 2350 2eu8 2655 2ralorOLD 3230 sbccow 3801 sbcco 3804 dfiin2g 5036 zfpair 5420 dfpo2 6296 dffun6f 6562 fnssintima 7359 imaeqsexv 7360 fsplit 8103 axdc3lem4 10448 addsuniflem 27484 addsasslem1 27486 addsasslem2 27487 addsdilem1 27606 addsdilem2 27607 mulsasslem1 27618 mulsasslem2 27619 istrkg2ld 27711 legso 27850 disjunsn 31825 gtiso 31922 fpwrelmapffslem 31957 qqhre 33000 satfdm 34360 dfdm5 34744 dfrn5 34745 brimg 34909 dfrecs2 34922 poimirlem25 36513 cdlemefrs29bpre0 39267 cdlemftr3 39436 dffrege115 42729 brco3f1o 42784 2reu8 45820 ichbi12i 46128 i0oii 47552 |
Copyright terms: Public domain | W3C validator |