| Mathbox for Scott Fenton |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > biimpexp | Structured version Visualization version GIF version | ||
| Description: A biconditional in the antecedent is the same as two implications. (Contributed by Scott Fenton, 12-Dec-2010.) |
| Ref | Expression |
|---|---|
| biimpexp | ⊢ (((𝜑 ↔ 𝜓) → 𝜒) ↔ ((𝜑 → 𝜓) → ((𝜓 → 𝜑) → 𝜒))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dfbi2 474 | . . 3 ⊢ ((𝜑 ↔ 𝜓) ↔ ((𝜑 → 𝜓) ∧ (𝜓 → 𝜑))) | |
| 2 | 1 | imbi1i 349 | . 2 ⊢ (((𝜑 ↔ 𝜓) → 𝜒) ↔ (((𝜑 → 𝜓) ∧ (𝜓 → 𝜑)) → 𝜒)) |
| 3 | impexp 450 | . 2 ⊢ ((((𝜑 → 𝜓) ∧ (𝜓 → 𝜑)) → 𝜒) ↔ ((𝜑 → 𝜓) → ((𝜓 → 𝜑) → 𝜒))) | |
| 4 | 2, 3 | bitri 275 | 1 ⊢ (((𝜑 ↔ 𝜓) → 𝜒) ↔ ((𝜑 → 𝜓) → ((𝜓 → 𝜑) → 𝜒))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 |
| This theorem is referenced by: axextdfeq 35798 |
| Copyright terms: Public domain | W3C validator |