Mathbox for Scott Fenton |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > biimpexp | Structured version Visualization version GIF version |
Description: A biconditional in the antecedent is the same as two implications. (Contributed by Scott Fenton, 12-Dec-2010.) |
Ref | Expression |
---|---|
biimpexp | ⊢ (((𝜑 ↔ 𝜓) → 𝜒) ↔ ((𝜑 → 𝜓) → ((𝜓 → 𝜑) → 𝜒))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dfbi2 478 | . . 3 ⊢ ((𝜑 ↔ 𝜓) ↔ ((𝜑 → 𝜓) ∧ (𝜓 → 𝜑))) | |
2 | 1 | imbi1i 353 | . 2 ⊢ (((𝜑 ↔ 𝜓) → 𝜒) ↔ (((𝜑 → 𝜓) ∧ (𝜓 → 𝜑)) → 𝜒)) |
3 | impexp 454 | . 2 ⊢ ((((𝜑 → 𝜓) ∧ (𝜓 → 𝜑)) → 𝜒) ↔ ((𝜑 → 𝜓) → ((𝜓 → 𝜑) → 𝜒))) | |
4 | 2, 3 | bitri 278 | 1 ⊢ (((𝜑 ↔ 𝜓) → 𝜒) ↔ ((𝜑 → 𝜓) → ((𝜓 → 𝜑) → 𝜒))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 209 ∧ wa 399 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 210 df-an 400 |
This theorem is referenced by: axextdfeq 33492 |
Copyright terms: Public domain | W3C validator |