Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  axextdfeq Structured version   Visualization version   GIF version

Theorem axextdfeq 35621
Description: A version of ax-ext 2697 for use with defined equality. (Contributed by Scott Fenton, 12-Dec-2010.)
Assertion
Ref Expression
axextdfeq 𝑧((𝑧𝑥𝑧𝑦) → ((𝑧𝑦𝑧𝑥) → (𝑥𝑤𝑦𝑤)))

Proof of Theorem axextdfeq
StepHypRef Expression
1 axextnd 10634 . . 3 𝑧((𝑧𝑥𝑧𝑦) → 𝑥 = 𝑦)
2 ax8 2105 . . . 4 (𝑥 = 𝑦 → (𝑥𝑤𝑦𝑤))
32imim2i 16 . . 3 (((𝑧𝑥𝑧𝑦) → 𝑥 = 𝑦) → ((𝑧𝑥𝑧𝑦) → (𝑥𝑤𝑦𝑤)))
41, 3eximii 1832 . 2 𝑧((𝑧𝑥𝑧𝑦) → (𝑥𝑤𝑦𝑤))
5 biimpexp 35539 . . 3 (((𝑧𝑥𝑧𝑦) → (𝑥𝑤𝑦𝑤)) ↔ ((𝑧𝑥𝑧𝑦) → ((𝑧𝑦𝑧𝑥) → (𝑥𝑤𝑦𝑤))))
65exbii 1843 . 2 (∃𝑧((𝑧𝑥𝑧𝑦) → (𝑥𝑤𝑦𝑤)) ↔ ∃𝑧((𝑧𝑥𝑧𝑦) → ((𝑧𝑦𝑧𝑥) → (𝑥𝑤𝑦𝑤))))
74, 6mpbi 229 1 𝑧((𝑧𝑥𝑧𝑦) → ((𝑧𝑦𝑧𝑥) → (𝑥𝑤𝑦𝑤)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wex 1774
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-13 2366  ax-ext 2697
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-tru 1537  df-ex 1775  df-nf 1779  df-clel 2803  df-nfc 2878
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator