| Mathbox for Scott Fenton |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > axextdfeq | Structured version Visualization version GIF version | ||
| Description: A version of ax-ext 2705 for use with defined equality. (Contributed by Scott Fenton, 12-Dec-2010.) |
| Ref | Expression |
|---|---|
| axextdfeq | ⊢ ∃𝑧((𝑧 ∈ 𝑥 → 𝑧 ∈ 𝑦) → ((𝑧 ∈ 𝑦 → 𝑧 ∈ 𝑥) → (𝑥 ∈ 𝑤 → 𝑦 ∈ 𝑤))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | axextnd 10489 | . . 3 ⊢ ∃𝑧((𝑧 ∈ 𝑥 ↔ 𝑧 ∈ 𝑦) → 𝑥 = 𝑦) | |
| 2 | ax8 2119 | . . . 4 ⊢ (𝑥 = 𝑦 → (𝑥 ∈ 𝑤 → 𝑦 ∈ 𝑤)) | |
| 3 | 2 | imim2i 16 | . . 3 ⊢ (((𝑧 ∈ 𝑥 ↔ 𝑧 ∈ 𝑦) → 𝑥 = 𝑦) → ((𝑧 ∈ 𝑥 ↔ 𝑧 ∈ 𝑦) → (𝑥 ∈ 𝑤 → 𝑦 ∈ 𝑤))) |
| 4 | 1, 3 | eximii 1838 | . 2 ⊢ ∃𝑧((𝑧 ∈ 𝑥 ↔ 𝑧 ∈ 𝑦) → (𝑥 ∈ 𝑤 → 𝑦 ∈ 𝑤)) |
| 5 | biimpexp 35782 | . . 3 ⊢ (((𝑧 ∈ 𝑥 ↔ 𝑧 ∈ 𝑦) → (𝑥 ∈ 𝑤 → 𝑦 ∈ 𝑤)) ↔ ((𝑧 ∈ 𝑥 → 𝑧 ∈ 𝑦) → ((𝑧 ∈ 𝑦 → 𝑧 ∈ 𝑥) → (𝑥 ∈ 𝑤 → 𝑦 ∈ 𝑤)))) | |
| 6 | 5 | exbii 1849 | . 2 ⊢ (∃𝑧((𝑧 ∈ 𝑥 ↔ 𝑧 ∈ 𝑦) → (𝑥 ∈ 𝑤 → 𝑦 ∈ 𝑤)) ↔ ∃𝑧((𝑧 ∈ 𝑥 → 𝑧 ∈ 𝑦) → ((𝑧 ∈ 𝑦 → 𝑧 ∈ 𝑥) → (𝑥 ∈ 𝑤 → 𝑦 ∈ 𝑤)))) |
| 7 | 4, 6 | mpbi 230 | 1 ⊢ ∃𝑧((𝑧 ∈ 𝑥 → 𝑧 ∈ 𝑦) → ((𝑧 ∈ 𝑦 → 𝑧 ∈ 𝑥) → (𝑥 ∈ 𝑤 → 𝑦 ∈ 𝑤))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∃wex 1780 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-13 2374 ax-ext 2705 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1544 df-ex 1781 df-nf 1785 df-clel 2808 df-nfc 2882 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |