![]() |
Mathbox for Scott Fenton |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > axextdfeq | Structured version Visualization version GIF version |
Description: A version of ax-ext 2706 for use with defined equality. (Contributed by Scott Fenton, 12-Dec-2010.) |
Ref | Expression |
---|---|
axextdfeq | ⊢ ∃𝑧((𝑧 ∈ 𝑥 → 𝑧 ∈ 𝑦) → ((𝑧 ∈ 𝑦 → 𝑧 ∈ 𝑥) → (𝑥 ∈ 𝑤 → 𝑦 ∈ 𝑤))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | axextnd 10629 | . . 3 ⊢ ∃𝑧((𝑧 ∈ 𝑥 ↔ 𝑧 ∈ 𝑦) → 𝑥 = 𝑦) | |
2 | ax8 2112 | . . . 4 ⊢ (𝑥 = 𝑦 → (𝑥 ∈ 𝑤 → 𝑦 ∈ 𝑤)) | |
3 | 2 | imim2i 16 | . . 3 ⊢ (((𝑧 ∈ 𝑥 ↔ 𝑧 ∈ 𝑦) → 𝑥 = 𝑦) → ((𝑧 ∈ 𝑥 ↔ 𝑧 ∈ 𝑦) → (𝑥 ∈ 𝑤 → 𝑦 ∈ 𝑤))) |
4 | 1, 3 | eximii 1834 | . 2 ⊢ ∃𝑧((𝑧 ∈ 𝑥 ↔ 𝑧 ∈ 𝑦) → (𝑥 ∈ 𝑤 → 𝑦 ∈ 𝑤)) |
5 | biimpexp 35697 | . . 3 ⊢ (((𝑧 ∈ 𝑥 ↔ 𝑧 ∈ 𝑦) → (𝑥 ∈ 𝑤 → 𝑦 ∈ 𝑤)) ↔ ((𝑧 ∈ 𝑥 → 𝑧 ∈ 𝑦) → ((𝑧 ∈ 𝑦 → 𝑧 ∈ 𝑥) → (𝑥 ∈ 𝑤 → 𝑦 ∈ 𝑤)))) | |
6 | 5 | exbii 1845 | . 2 ⊢ (∃𝑧((𝑧 ∈ 𝑥 ↔ 𝑧 ∈ 𝑦) → (𝑥 ∈ 𝑤 → 𝑦 ∈ 𝑤)) ↔ ∃𝑧((𝑧 ∈ 𝑥 → 𝑧 ∈ 𝑦) → ((𝑧 ∈ 𝑦 → 𝑧 ∈ 𝑥) → (𝑥 ∈ 𝑤 → 𝑦 ∈ 𝑤)))) |
7 | 4, 6 | mpbi 230 | 1 ⊢ ∃𝑧((𝑧 ∈ 𝑥 → 𝑧 ∈ 𝑦) → ((𝑧 ∈ 𝑦 → 𝑧 ∈ 𝑥) → (𝑥 ∈ 𝑤 → 𝑦 ∈ 𝑤))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∃wex 1776 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-13 2375 ax-ext 2706 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1540 df-ex 1777 df-nf 1781 df-clel 2814 df-nfc 2890 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |