Proof of Theorem nepss
| Step | Hyp | Ref
| Expression |
| 1 | | nne 2937 |
. . . . . 6
⊢ (¬
(𝐴 ∩ 𝐵) ≠ 𝐴 ↔ (𝐴 ∩ 𝐵) = 𝐴) |
| 2 | | neeq1 2995 |
. . . . . . 7
⊢ ((𝐴 ∩ 𝐵) = 𝐴 → ((𝐴 ∩ 𝐵) ≠ 𝐵 ↔ 𝐴 ≠ 𝐵)) |
| 3 | 2 | biimprcd 250 |
. . . . . 6
⊢ (𝐴 ≠ 𝐵 → ((𝐴 ∩ 𝐵) = 𝐴 → (𝐴 ∩ 𝐵) ≠ 𝐵)) |
| 4 | 1, 3 | biimtrid 242 |
. . . . 5
⊢ (𝐴 ≠ 𝐵 → (¬ (𝐴 ∩ 𝐵) ≠ 𝐴 → (𝐴 ∩ 𝐵) ≠ 𝐵)) |
| 5 | 4 | orrd 863 |
. . . 4
⊢ (𝐴 ≠ 𝐵 → ((𝐴 ∩ 𝐵) ≠ 𝐴 ∨ (𝐴 ∩ 𝐵) ≠ 𝐵)) |
| 6 | | inss1 4217 |
. . . . . 6
⊢ (𝐴 ∩ 𝐵) ⊆ 𝐴 |
| 7 | 6 | jctl 523 |
. . . . 5
⊢ ((𝐴 ∩ 𝐵) ≠ 𝐴 → ((𝐴 ∩ 𝐵) ⊆ 𝐴 ∧ (𝐴 ∩ 𝐵) ≠ 𝐴)) |
| 8 | | inss2 4218 |
. . . . . 6
⊢ (𝐴 ∩ 𝐵) ⊆ 𝐵 |
| 9 | 8 | jctl 523 |
. . . . 5
⊢ ((𝐴 ∩ 𝐵) ≠ 𝐵 → ((𝐴 ∩ 𝐵) ⊆ 𝐵 ∧ (𝐴 ∩ 𝐵) ≠ 𝐵)) |
| 10 | 7, 9 | orim12i 908 |
. . . 4
⊢ (((𝐴 ∩ 𝐵) ≠ 𝐴 ∨ (𝐴 ∩ 𝐵) ≠ 𝐵) → (((𝐴 ∩ 𝐵) ⊆ 𝐴 ∧ (𝐴 ∩ 𝐵) ≠ 𝐴) ∨ ((𝐴 ∩ 𝐵) ⊆ 𝐵 ∧ (𝐴 ∩ 𝐵) ≠ 𝐵))) |
| 11 | 5, 10 | syl 17 |
. . 3
⊢ (𝐴 ≠ 𝐵 → (((𝐴 ∩ 𝐵) ⊆ 𝐴 ∧ (𝐴 ∩ 𝐵) ≠ 𝐴) ∨ ((𝐴 ∩ 𝐵) ⊆ 𝐵 ∧ (𝐴 ∩ 𝐵) ≠ 𝐵))) |
| 12 | | ineq2 4194 |
. . . . . . 7
⊢ (𝐴 = 𝐵 → (𝐴 ∩ 𝐴) = (𝐴 ∩ 𝐵)) |
| 13 | | inidm 4207 |
. . . . . . 7
⊢ (𝐴 ∩ 𝐴) = 𝐴 |
| 14 | 12, 13 | eqtr3di 2786 |
. . . . . 6
⊢ (𝐴 = 𝐵 → (𝐴 ∩ 𝐵) = 𝐴) |
| 15 | 14 | necon3i 2965 |
. . . . 5
⊢ ((𝐴 ∩ 𝐵) ≠ 𝐴 → 𝐴 ≠ 𝐵) |
| 16 | 15 | adantl 481 |
. . . 4
⊢ (((𝐴 ∩ 𝐵) ⊆ 𝐴 ∧ (𝐴 ∩ 𝐵) ≠ 𝐴) → 𝐴 ≠ 𝐵) |
| 17 | | ineq1 4193 |
. . . . . . 7
⊢ (𝐴 = 𝐵 → (𝐴 ∩ 𝐵) = (𝐵 ∩ 𝐵)) |
| 18 | | inidm 4207 |
. . . . . . 7
⊢ (𝐵 ∩ 𝐵) = 𝐵 |
| 19 | 17, 18 | eqtrdi 2787 |
. . . . . 6
⊢ (𝐴 = 𝐵 → (𝐴 ∩ 𝐵) = 𝐵) |
| 20 | 19 | necon3i 2965 |
. . . . 5
⊢ ((𝐴 ∩ 𝐵) ≠ 𝐵 → 𝐴 ≠ 𝐵) |
| 21 | 20 | adantl 481 |
. . . 4
⊢ (((𝐴 ∩ 𝐵) ⊆ 𝐵 ∧ (𝐴 ∩ 𝐵) ≠ 𝐵) → 𝐴 ≠ 𝐵) |
| 22 | 16, 21 | jaoi 857 |
. . 3
⊢ ((((𝐴 ∩ 𝐵) ⊆ 𝐴 ∧ (𝐴 ∩ 𝐵) ≠ 𝐴) ∨ ((𝐴 ∩ 𝐵) ⊆ 𝐵 ∧ (𝐴 ∩ 𝐵) ≠ 𝐵)) → 𝐴 ≠ 𝐵) |
| 23 | 11, 22 | impbii 209 |
. 2
⊢ (𝐴 ≠ 𝐵 ↔ (((𝐴 ∩ 𝐵) ⊆ 𝐴 ∧ (𝐴 ∩ 𝐵) ≠ 𝐴) ∨ ((𝐴 ∩ 𝐵) ⊆ 𝐵 ∧ (𝐴 ∩ 𝐵) ≠ 𝐵))) |
| 24 | | df-pss 3951 |
. . 3
⊢ ((𝐴 ∩ 𝐵) ⊊ 𝐴 ↔ ((𝐴 ∩ 𝐵) ⊆ 𝐴 ∧ (𝐴 ∩ 𝐵) ≠ 𝐴)) |
| 25 | | df-pss 3951 |
. . 3
⊢ ((𝐴 ∩ 𝐵) ⊊ 𝐵 ↔ ((𝐴 ∩ 𝐵) ⊆ 𝐵 ∧ (𝐴 ∩ 𝐵) ≠ 𝐵)) |
| 26 | 24, 25 | orbi12i 914 |
. 2
⊢ (((𝐴 ∩ 𝐵) ⊊ 𝐴 ∨ (𝐴 ∩ 𝐵) ⊊ 𝐵) ↔ (((𝐴 ∩ 𝐵) ⊆ 𝐴 ∧ (𝐴 ∩ 𝐵) ≠ 𝐴) ∨ ((𝐴 ∩ 𝐵) ⊆ 𝐵 ∧ (𝐴 ∩ 𝐵) ≠ 𝐵))) |
| 27 | 23, 26 | bitr4i 278 |
1
⊢ (𝐴 ≠ 𝐵 ↔ ((𝐴 ∩ 𝐵) ⊊ 𝐴 ∨ (𝐴 ∩ 𝐵) ⊊ 𝐵)) |