Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  nepss Structured version   Visualization version   GIF version

Theorem nepss 33180
Description: Two classes are unequal iff their intersection is a proper subset of one of them. (Contributed by Scott Fenton, 23-Feb-2011.)
Assertion
Ref Expression
nepss (𝐴𝐵 ↔ ((𝐴𝐵) ⊊ 𝐴 ∨ (𝐴𝐵) ⊊ 𝐵))

Proof of Theorem nepss
StepHypRef Expression
1 nne 2955 . . . . . 6 (¬ (𝐴𝐵) ≠ 𝐴 ↔ (𝐴𝐵) = 𝐴)
2 neeq1 3013 . . . . . . 7 ((𝐴𝐵) = 𝐴 → ((𝐴𝐵) ≠ 𝐵𝐴𝐵))
32biimprcd 253 . . . . . 6 (𝐴𝐵 → ((𝐴𝐵) = 𝐴 → (𝐴𝐵) ≠ 𝐵))
41, 3syl5bi 245 . . . . 5 (𝐴𝐵 → (¬ (𝐴𝐵) ≠ 𝐴 → (𝐴𝐵) ≠ 𝐵))
54orrd 860 . . . 4 (𝐴𝐵 → ((𝐴𝐵) ≠ 𝐴 ∨ (𝐴𝐵) ≠ 𝐵))
6 inss1 4133 . . . . . 6 (𝐴𝐵) ⊆ 𝐴
76jctl 527 . . . . 5 ((𝐴𝐵) ≠ 𝐴 → ((𝐴𝐵) ⊆ 𝐴 ∧ (𝐴𝐵) ≠ 𝐴))
8 inss2 4134 . . . . . 6 (𝐴𝐵) ⊆ 𝐵
98jctl 527 . . . . 5 ((𝐴𝐵) ≠ 𝐵 → ((𝐴𝐵) ⊆ 𝐵 ∧ (𝐴𝐵) ≠ 𝐵))
107, 9orim12i 906 . . . 4 (((𝐴𝐵) ≠ 𝐴 ∨ (𝐴𝐵) ≠ 𝐵) → (((𝐴𝐵) ⊆ 𝐴 ∧ (𝐴𝐵) ≠ 𝐴) ∨ ((𝐴𝐵) ⊆ 𝐵 ∧ (𝐴𝐵) ≠ 𝐵)))
115, 10syl 17 . . 3 (𝐴𝐵 → (((𝐴𝐵) ⊆ 𝐴 ∧ (𝐴𝐵) ≠ 𝐴) ∨ ((𝐴𝐵) ⊆ 𝐵 ∧ (𝐴𝐵) ≠ 𝐵)))
12 inidm 4123 . . . . . . 7 (𝐴𝐴) = 𝐴
13 ineq2 4111 . . . . . . 7 (𝐴 = 𝐵 → (𝐴𝐴) = (𝐴𝐵))
1412, 13syl5reqr 2808 . . . . . 6 (𝐴 = 𝐵 → (𝐴𝐵) = 𝐴)
1514necon3i 2983 . . . . 5 ((𝐴𝐵) ≠ 𝐴𝐴𝐵)
1615adantl 485 . . . 4 (((𝐴𝐵) ⊆ 𝐴 ∧ (𝐴𝐵) ≠ 𝐴) → 𝐴𝐵)
17 ineq1 4109 . . . . . . 7 (𝐴 = 𝐵 → (𝐴𝐵) = (𝐵𝐵))
18 inidm 4123 . . . . . . 7 (𝐵𝐵) = 𝐵
1917, 18eqtrdi 2809 . . . . . 6 (𝐴 = 𝐵 → (𝐴𝐵) = 𝐵)
2019necon3i 2983 . . . . 5 ((𝐴𝐵) ≠ 𝐵𝐴𝐵)
2120adantl 485 . . . 4 (((𝐴𝐵) ⊆ 𝐵 ∧ (𝐴𝐵) ≠ 𝐵) → 𝐴𝐵)
2216, 21jaoi 854 . . 3 ((((𝐴𝐵) ⊆ 𝐴 ∧ (𝐴𝐵) ≠ 𝐴) ∨ ((𝐴𝐵) ⊆ 𝐵 ∧ (𝐴𝐵) ≠ 𝐵)) → 𝐴𝐵)
2311, 22impbii 212 . 2 (𝐴𝐵 ↔ (((𝐴𝐵) ⊆ 𝐴 ∧ (𝐴𝐵) ≠ 𝐴) ∨ ((𝐴𝐵) ⊆ 𝐵 ∧ (𝐴𝐵) ≠ 𝐵)))
24 df-pss 3877 . . 3 ((𝐴𝐵) ⊊ 𝐴 ↔ ((𝐴𝐵) ⊆ 𝐴 ∧ (𝐴𝐵) ≠ 𝐴))
25 df-pss 3877 . . 3 ((𝐴𝐵) ⊊ 𝐵 ↔ ((𝐴𝐵) ⊆ 𝐵 ∧ (𝐴𝐵) ≠ 𝐵))
2624, 25orbi12i 912 . 2 (((𝐴𝐵) ⊊ 𝐴 ∨ (𝐴𝐵) ⊊ 𝐵) ↔ (((𝐴𝐵) ⊆ 𝐴 ∧ (𝐴𝐵) ≠ 𝐴) ∨ ((𝐴𝐵) ⊆ 𝐵 ∧ (𝐴𝐵) ≠ 𝐵)))
2723, 26bitr4i 281 1 (𝐴𝐵 ↔ ((𝐴𝐵) ⊊ 𝐴 ∨ (𝐴𝐵) ⊊ 𝐵))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wb 209  wa 399  wo 844   = wceq 1538  wne 2951  cin 3857  wss 3858  wpss 3859
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-ext 2729
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-tru 1541  df-ex 1782  df-sb 2070  df-clab 2736  df-cleq 2750  df-clel 2830  df-ne 2952  df-rab 3079  df-v 3411  df-in 3865  df-ss 3875  df-pss 3877
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator