Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bj-19.23bit Structured version   Visualization version   GIF version

Theorem bj-19.23bit 34873
Description: Closed form of 19.23bi 2184. (Contributed by BJ, 20-Oct-2019.)
Assertion
Ref Expression
bj-19.23bit ((∃𝑥𝜑𝜓) → (𝜑𝜓))

Proof of Theorem bj-19.23bit
StepHypRef Expression
1 19.8a 2174 . 2 (𝜑 → ∃𝑥𝜑)
21imim1i 63 1 ((∃𝑥𝜑𝜓) → (𝜑𝜓))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wex 1782
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-12 2171
This theorem depends on definitions:  df-bi 206  df-ex 1783
This theorem is referenced by:  bj-wnfanf  34901  bj-dfnnf3  34939
  Copyright terms: Public domain W3C validator