Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bj-19.23bit Structured version   Visualization version   GIF version

Theorem bj-19.23bit 36657
Description: Closed form of 19.23bi 2192. (Contributed by BJ, 20-Oct-2019.)
Assertion
Ref Expression
bj-19.23bit ((∃𝑥𝜑𝜓) → (𝜑𝜓))

Proof of Theorem bj-19.23bit
StepHypRef Expression
1 19.8a 2182 . 2 (𝜑 → ∃𝑥𝜑)
21imim1i 63 1 ((∃𝑥𝜑𝜓) → (𝜑𝜓))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wex 1777
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-12 2178
This theorem depends on definitions:  df-bi 207  df-ex 1778
This theorem is referenced by:  bj-wnfanf  36685  bj-dfnnf3  36723
  Copyright terms: Public domain W3C validator