|   | Mathbox for BJ | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > Mathboxes > bj-dfnnf3 | Structured version Visualization version GIF version | ||
| Description: Alternate definition of nonfreeness when sp 2182 is available. (Contributed by BJ, 28-Jul-2023.) The proof should not rely on df-nf 1783. (Proof modification is discouraged.) | 
| Ref | Expression | 
|---|---|
| bj-dfnnf3 | ⊢ (Ⅎ'𝑥𝜑 ↔ (∃𝑥𝜑 → ∀𝑥𝜑)) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | bj-nnfea 36736 | . 2 ⊢ (Ⅎ'𝑥𝜑 → (∃𝑥𝜑 → ∀𝑥𝜑)) | |
| 2 | bj-19.21bit 36692 | . . 3 ⊢ ((∃𝑥𝜑 → ∀𝑥𝜑) → (∃𝑥𝜑 → 𝜑)) | |
| 3 | bj-19.23bit 36693 | . . 3 ⊢ ((∃𝑥𝜑 → ∀𝑥𝜑) → (𝜑 → ∀𝑥𝜑)) | |
| 4 | df-bj-nnf 36726 | . . 3 ⊢ (Ⅎ'𝑥𝜑 ↔ ((∃𝑥𝜑 → 𝜑) ∧ (𝜑 → ∀𝑥𝜑))) | |
| 5 | 2, 3, 4 | sylanbrc 583 | . 2 ⊢ ((∃𝑥𝜑 → ∀𝑥𝜑) → Ⅎ'𝑥𝜑) | 
| 6 | 1, 5 | impbii 209 | 1 ⊢ (Ⅎ'𝑥𝜑 ↔ (∃𝑥𝜑 → ∀𝑥𝜑)) | 
| Colors of variables: wff setvar class | 
| Syntax hints: → wi 4 ↔ wb 206 ∀wal 1537 ∃wex 1778 Ⅎ'wnnf 36725 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-12 2176 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1779 df-bj-nnf 36726 | 
| This theorem is referenced by: bj-nfnnfTEMP 36760 | 
| Copyright terms: Public domain | W3C validator |